

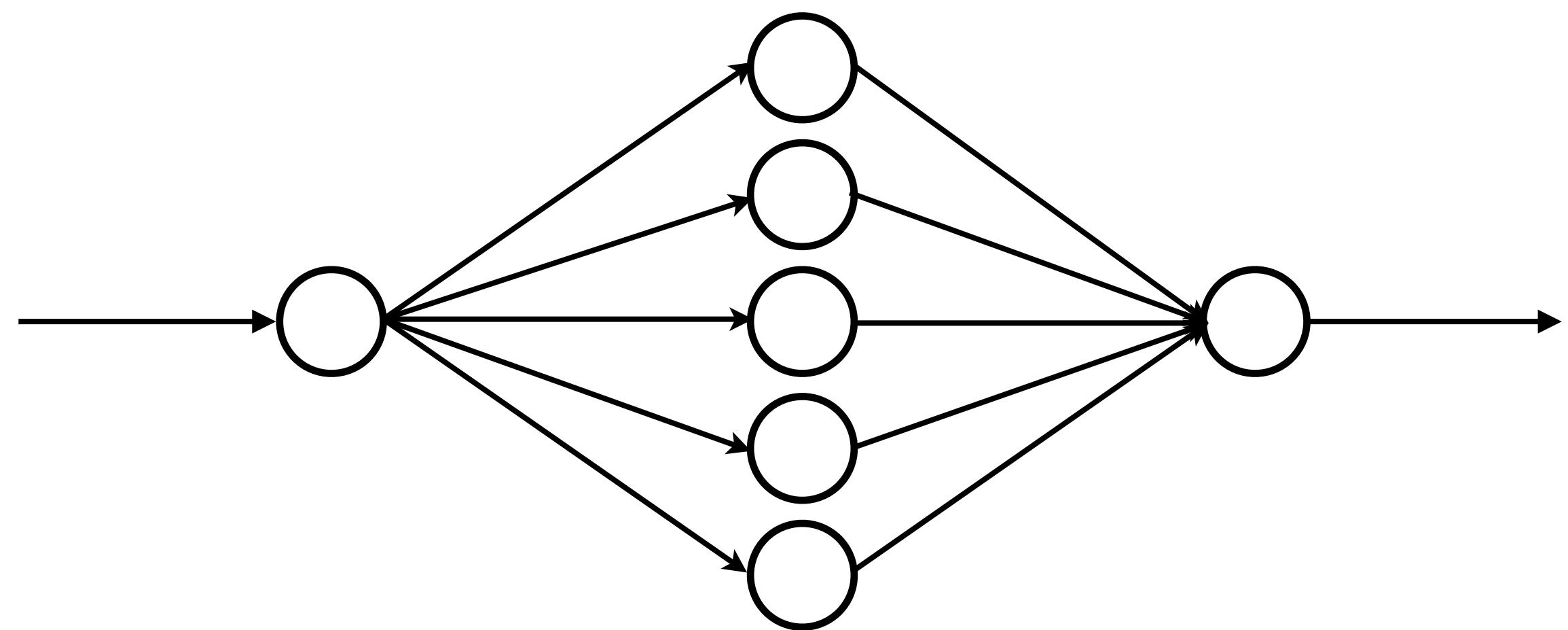
LSTM Networks

Fundamentals

Rahul Singh
rsingh@arrsingh.com

Recurrent Neural Networks

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

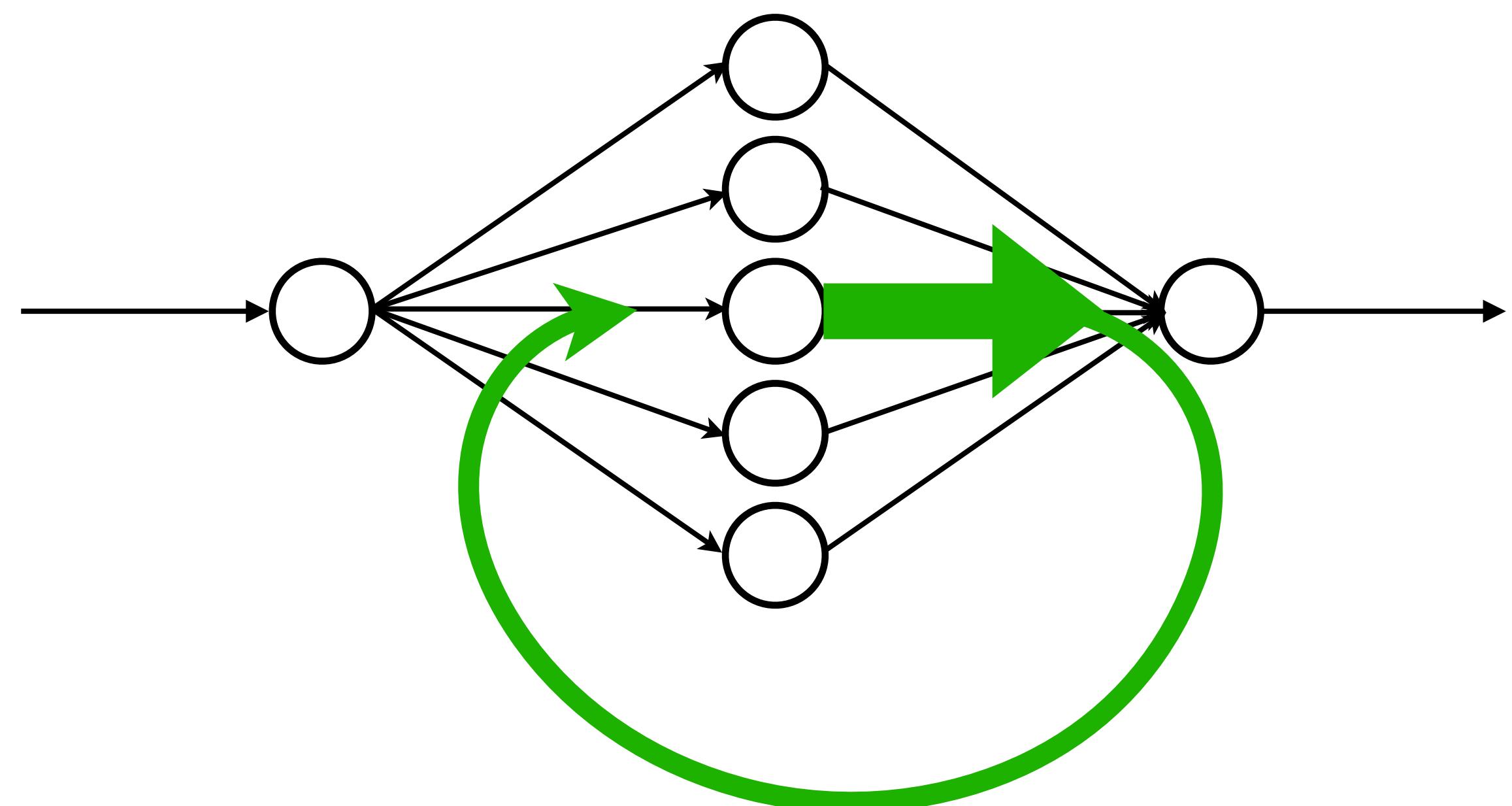


In an RNN, since the inputs have a temporal dependency, the inputs are fed to the network and processed one at a time.

The structure of an RNN is similar to that of a FeedForward Network (input layer, hidden layers and an output layer) with one additional nuance...

Recurrent Neural Networks

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering



In an RNN, since the inputs have a temporal dependency, the inputs are fed to the network and processed one at a time.

The structure of an RNN is similar to that of a FeedForward Network (input layer, hidden layers and an output layer) with one additional nuance...

... the output from the hidden layer at time t , is fed back as input to the hidden layer at time $t + 1$ along with the input at time $t + 1$

Recurrent Neural Networks

Simple Example: Network Traffic Prediction

Problem Statement: We have a network service (http) and we want to predict the traffic every hour (for capacity planning). We want to scale up the service (add capacity) if we predict that the traffic is going to increase, and we want to scale down the service (release capacity) if we predict the traffic is going to decrease.

Here are the observations of traffic (Requests Per Hour) for the past 8 hours:

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Question:

Can we predict the traffic at 6:00 AM?
Should we add capacity or reduce it?

We can model this as a Recurrent
Neural Network?

Recurrent Neural Networks

Simple Example: Network Traffic Prediction

Problem Statement: We have a network service (http) and we want to predict the traffic every hour (for capacity planning). We want to scale up the service (add capacity) if we predict that the traffic is going to increase, and we want to scale down the service (release capacity) if we predict the traffic is going to decrease.

Given a sequence (traffic) over 8 time steps...

530, 645, 732, 845, 865, 720, 485, 366 ?

$t_0 \quad t_1 \quad t_2 \quad t_3 \quad t_4 \quad t_5 \quad t_6 \quad t_7 \quad t_8$

Question:

Can we predict the traffic at t_8 (6:00 AM)?
Should we add capacity or reduce it?

Recurrent Neural Networks

Lets take another example...

Recurrent Neural Networks

Remember the First Element

Problem Statement: Given a sequence of T random numbers, drawn from the set $\{0,1,2\dots9\}$, train an RNN to predict what the first element of the sequence was.

Example sequence over 8 time steps...

3, 7, 9, 4, 6, 8, 7, 5
 t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_7

The first element is 3

Question:

Can we train an RNN to predict the first element seen - in this case 3?

During training (BPTT) the derivative of any loss term L_t with respect to the recurrent parameter (β_1, W_1, W_{h1}) must chain backward through all previous hidden states.

$$\frac{\partial}{\partial \beta_1} L_t = \frac{\partial}{\partial H_{1t}} L_t \left[\sum_{k=0}^T \left(\prod_{j=k+1}^t \frac{\partial}{\partial H_{1j-1}} H_{1j} \right) \frac{\partial}{\partial \beta_1} H_{1k} \right]$$

Recurrent Neural Networks

Remember the First Element

Problem Statement: Given a sequence of T random numbers, drawn from the set $\{0,1,2\dots9\}$, train an RNN to predict what the first element of the sequence was.

Example sequence over 8 time steps...

3, 7, 9, 4, 6, 8, 7, 5
 t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_7

The first element is 3

Question:

Can we train an RNN to predict the first element seen - in this case 3?

During training (BPTT) the derivative of any loss term L_t with respect to the recurrent parameter (β_1, W_1, W_{h1}) must chain backward through all previous hidden states.

$$\frac{\partial}{\partial \beta_1} L_t = \frac{\partial}{\partial H_{1t}} L_t \left[\sum_{k=0}^T \left(\prod_{j=k+1}^t \frac{\partial}{\partial H_{1j-1}} H_{1j} \right) \frac{\partial}{\partial \beta_1} H_{1k} \right]$$

The $\frac{\partial}{\partial H_{1j-1}} H_{1j}$ terms (Jacobians) get multiplied repeatedly.

If the spectral norm (largest singular value) of each Jacobian is consistently < 1 then as sequence length increases the gradient converges to zero exponentially. If it's consistently > 1 then the gradient explodes exponentially.

Recurrent Neural Networks

Remember the First Element

Problem Statement: Given a sequence of T random numbers, drawn from the set $\{0,1,2\dots9\}$, train an RNN to predict what the first element of the sequence was.

Example sequence over 8 time steps...

3, 7, 9, 4, 6, 8, 7, 5
 t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_7

The first element is 3

Question:

Can we train an RNN to predict the first element seen - in this case 3?

During training (BPTT) the derivative of any loss term L_t with respect to the recurrent parameter (β_1, W_1, W_{h1}) must chain backward through all previous hidden states.

$$\frac{\partial}{\partial \beta_1} L_t = \frac{\partial}{\partial H_{1t}} L_t \left[\sum_{k=0}^T \left(\prod_{j=k+1}^t \frac{\partial}{\partial H_{1j-1}} H_{1j} \right) \frac{\partial}{\partial \beta_1} H_{1k} \right]$$

The $\frac{\partial}{\partial H_{1j-1}} H_{1j}$ terms (Jacobians) get multiplied repeatedly.

If the spectral norm (largest singular value) of each Jacobian is consistently < 1 then as sequence length increases the gradient converges to zero exponentially. If it's consistently > 1 then the gradient explodes exponentially.

In either case the training will fail

Recurrent Neural Networks

Remember the First Element

Problem Statement: Given a sequence of T random numbers, drawn from the set $\{0,1,2\dots9\}$, train an RNN to predict what the first element of the sequence was.

Example sequence over 8 time steps...

3, 7, 9, 4, 6, 8, 7, 5
 t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_7

The first element is 3

Question:

Can we train an RNN to predict the first element seen - in this case 3?

During training (BPTT) the derivative of any loss term L_t with respect to the recurrent parameter (β_1, W_1, W_{h1}) must chain backward through all previous hidden states.

When gradients converge to zero: Vanishing Gradient Problem

Training stalls because the gradients converge to zero and no signal reaches the early layers

When gradients explode to infinity: Exploding Gradient Problem

Training fails because loss becomes NaN and the training crashes

The $\frac{\partial}{\partial H_{1j-1}} H_{1j}$ terms (Jacobians) get multiplied repeatedly.

If the spectral norm (largest singular value) of each Jacobian is consistently < 1 then as sequence length increases the gradient converges to zero exponentially. If it's consistently > 1 then the gradient explodes exponentially.

In either case the training will fail

Recurrent Neural Networks

Remember the First Element

Problem Statement: Given a sequence of T random numbers, drawn from the set $\{0,1,2\dots9\}$, train an RNN to predict what the first element of the sequence was.

Example sequence over 8 time steps...

3, 7, 9, 4, 6, 8, 7, 5
 t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_7

The first element is 3

Question:

Can we train an RNN to predict the first element seen - in this case 3?

During training (BPTT) the derivative of any loss term L_t with respect to the recurrent parameter (β_1, W_1, W_{h1}) must chain backward through all previous hidden states.

Let's look at this problem in a bit more detail...

The $\frac{\partial}{\partial H_{1j-1}} H_{1j}$ terms (Jacobians) get multiplied repeatedly.

If the spectral norm (largest singular value) of each Jacobian is consistently < 1 then as sequence length increases the gradient converges to zero exponentially. If it's consistently > 1 then the gradient explodes exponentially.

In either case the training will fail

Sequence to Vector RNN over 3 Time Steps

Recurrent Neural Networks

Backpropagation Through Time (BPTT) over 3 time steps

Hidden layer gradients are derivatives of Loss from the final time step

For more details see the [Tutorial on RNN Training and BPTT](#)

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \frac{\partial}{\partial \beta_1} L_2$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial \beta_1} H_{12} +$$

$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial \beta_1} H_{11} +$$

$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \boxed{\frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11}} \frac{\partial}{\partial \beta_1} H_{10}$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \left[\frac{\partial}{\partial \beta_1} H_{12} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial \beta_1} H_{11} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial \beta_1} H_{10} \right]$$

Let's look at this problem in a bit more detail...

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$

$$\frac{\partial}{\partial W_{h1}} L \quad \frac{\partial}{\partial W_1} L \quad \frac{\partial}{\partial W_2} L \quad \frac{\partial}{\partial \beta_1} L \quad \frac{\partial}{\partial \beta_2} L$$

The $\frac{\partial}{\partial H_{1j-1}} H_{1j}$ terms (Jacobians) get multiplied repeatedly.

If the spectral norm (largest singular value) of each Jacobian is consistently < 1 then as sequence length increases the gradient converges to zero exponentially. If it's consistently > 1 then the gradient explodes exponentially.

Recurrent Neural Networks

Remember the First Element

Problem Statement: Given a sequence of T random numbers, drawn from the set $\{0,1,2\dots9\}$, train an RNN to predict what the first element of the sequence was.

3, 7, 9, 4, 6, 8, 7, 5 ?
 $t_0 \quad t_1 \quad t_2 \quad t_3 \quad t_4 \quad t_5 \quad t_6 \quad t_7$

In practice, this means that RNNs cannot “remember” elements earlier in the sequence as the sequence length increases

Question:

Can we train an RNN to predict the first element seen - in this case 3?

Answer:

For long sequences we cannot train an RNN to predict the first element seen. The training will fail because of the vanishing gradient problem

Let's look at this problem in a bit more detail...

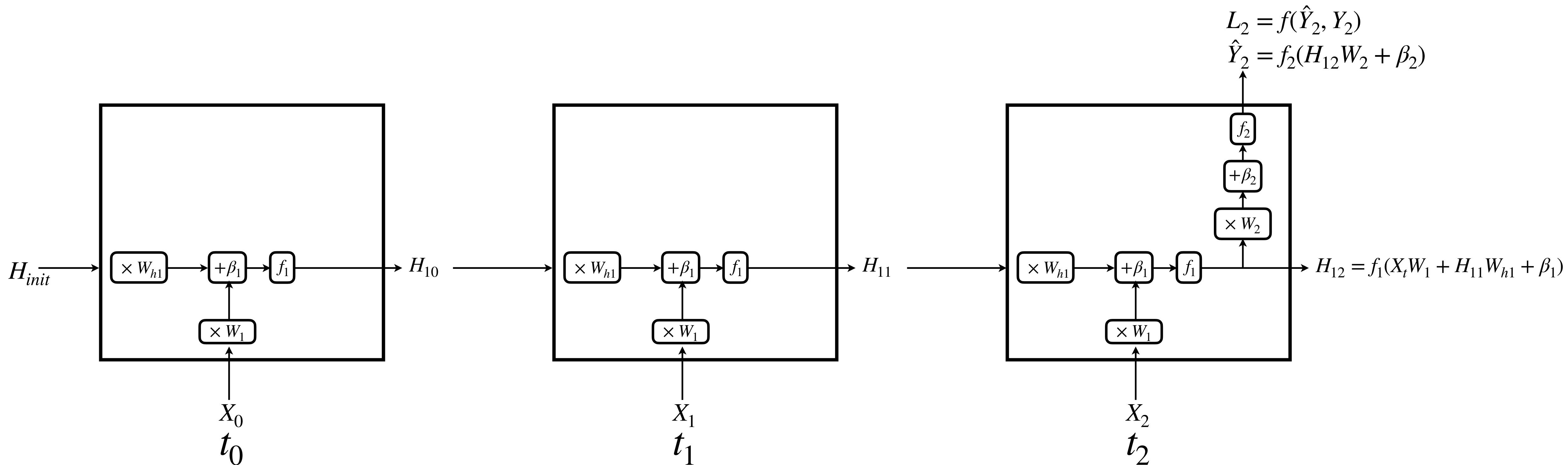
RNN cells store representations of input events over time via the hidden state.

Let's review an RNN unrolled over 3 time steps...

Recurrent Neural Networks

For the rest of the slides we'll assume a single hidden layer and drop the layer subscript to simplify the notation

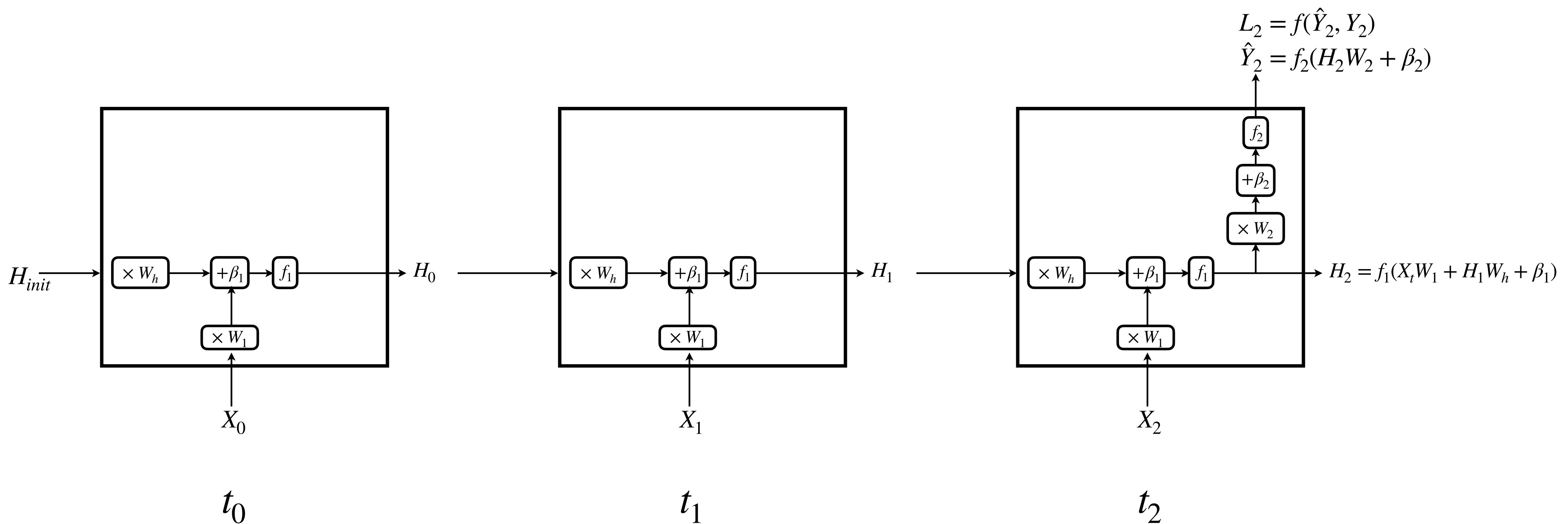
We'll replace H_{11} with H_1 and so on



Let's look at this problem in a bit more detail...

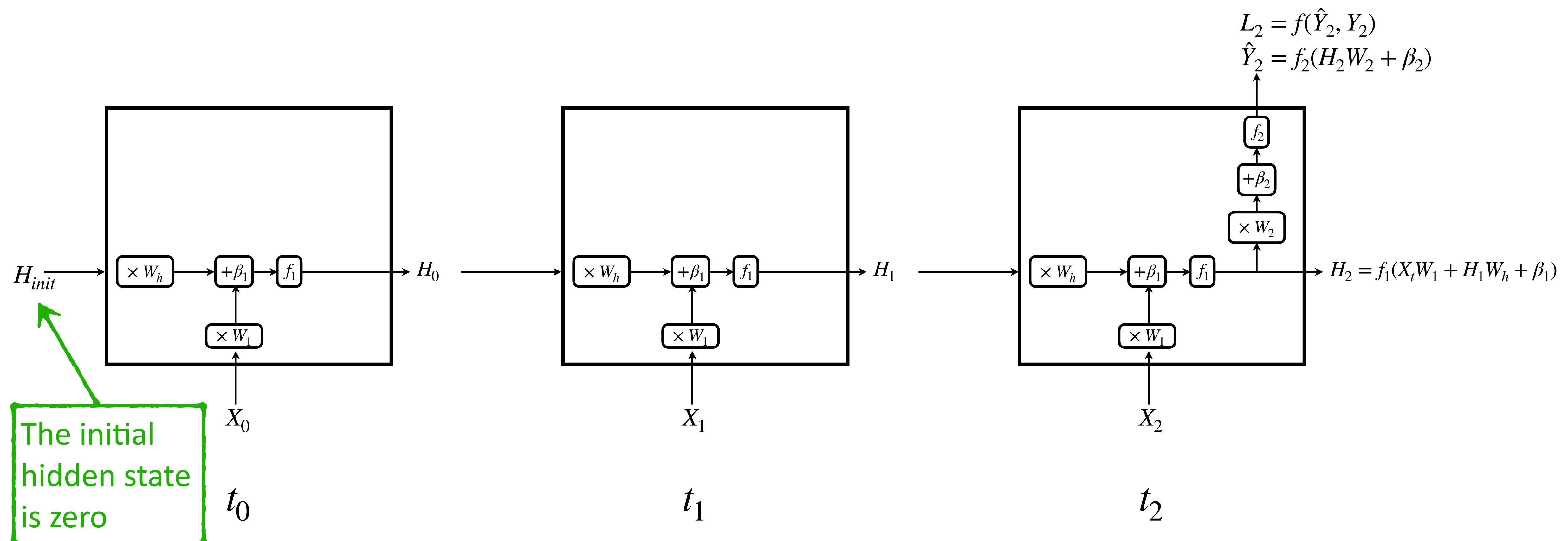
RNN cells store representations of input events over time via the hidden state.

Recurrent Neural Networks



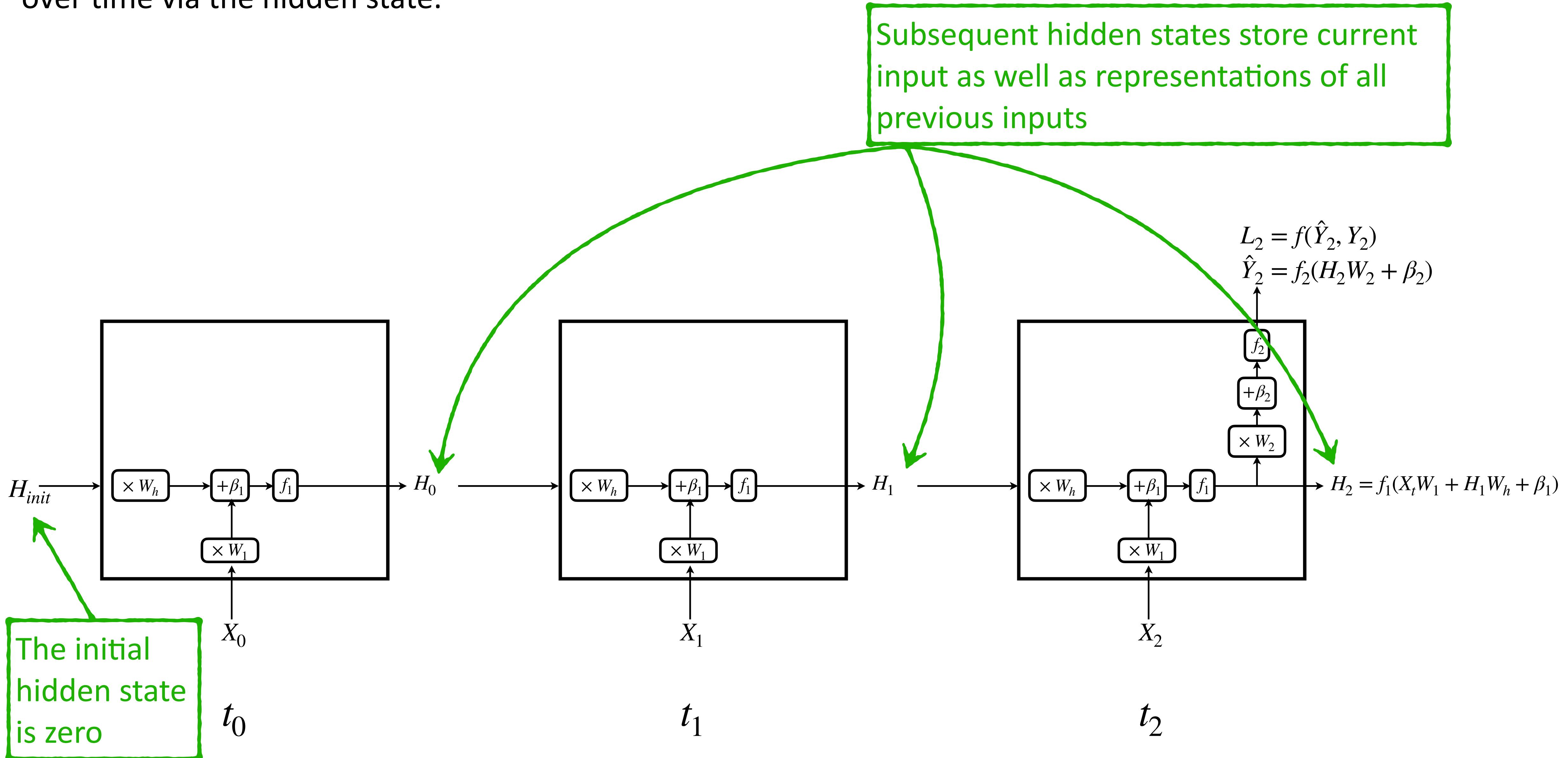
RNN cells store representations of input events over time via the hidden state.

Recurrent Neural Networks



RNN cells store representations of input events over time via the hidden state.

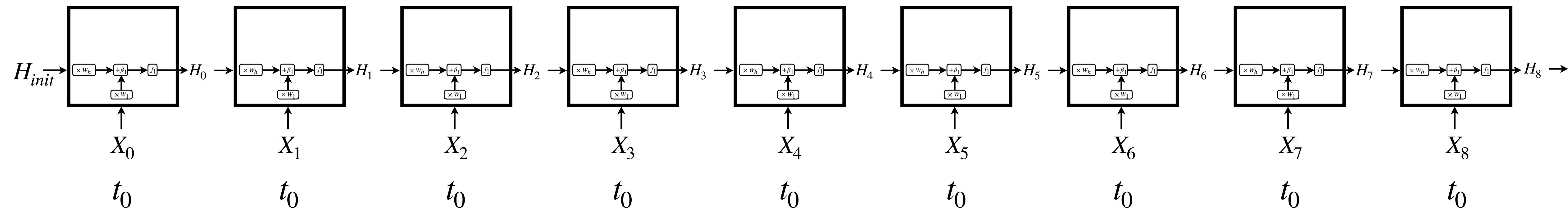
Recurrent Neural Networks



RNN cells store representations of input events over time via the hidden state.

Recurrent Neural Networks

As the sequence length increases, the earlier inputs get “washed out” over time

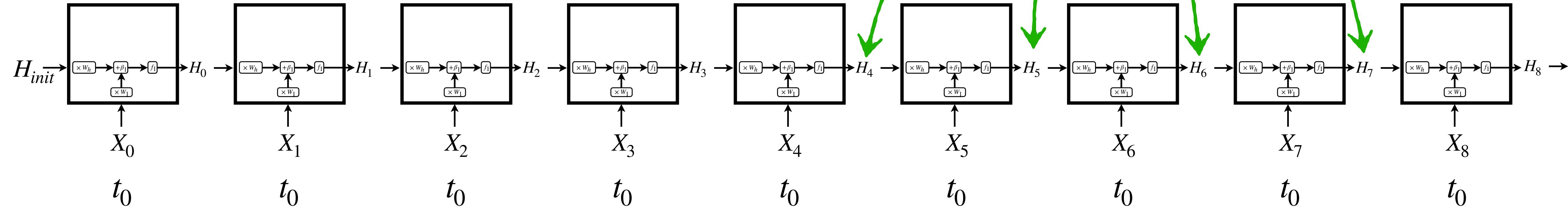


RNN cells store representations of input events over time via the hidden state.

Recurrent Neural Networks

As the sequence length increases, the earlier inputs get “washed out” over time

Recent inputs dominate the hidden state...



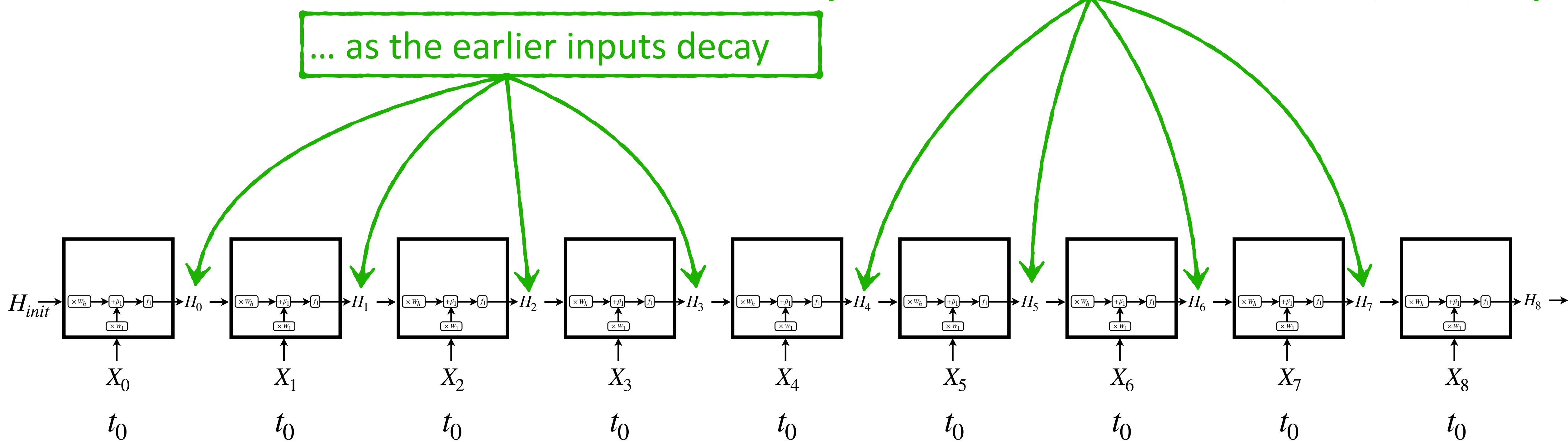
RNN cells store representations of input events over time via the hidden state.

Recurrent Neural Networks

As the sequence length increases, the earlier inputs get “washed out” over time

Recent inputs dominate the hidden state...

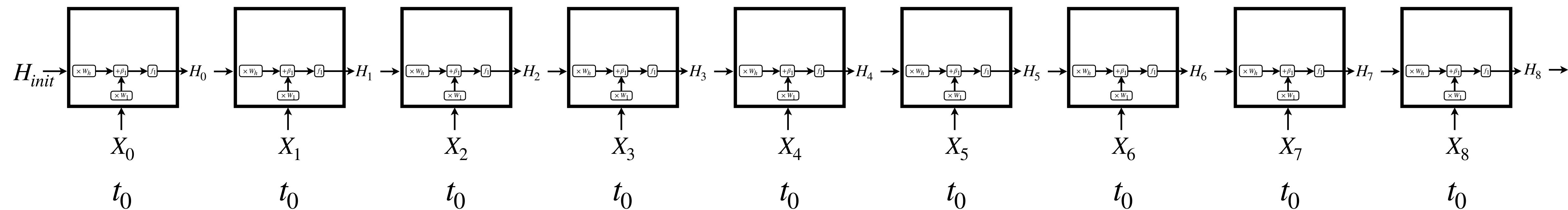
... as the earlier inputs decay



RNN cells store representations of input events over time via the hidden state.

Recurrent Neural Networks

The RNN has “Short Term Memory”

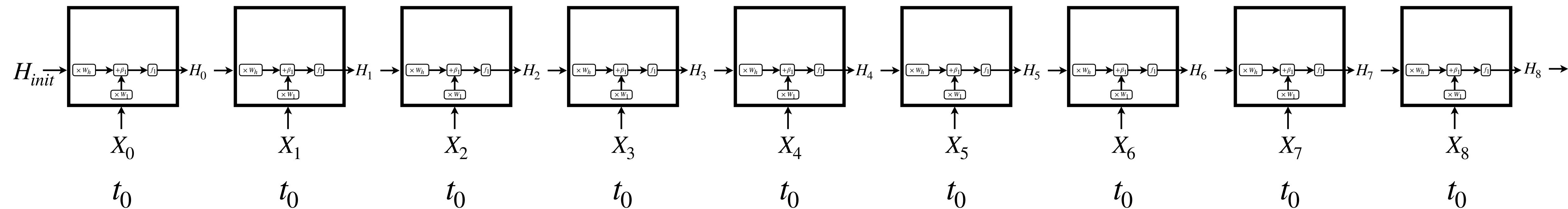


Recurrent Neural Networks

RNN cells store representations of input events over time via the hidden state.

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier in the sequence as the sequence length increases



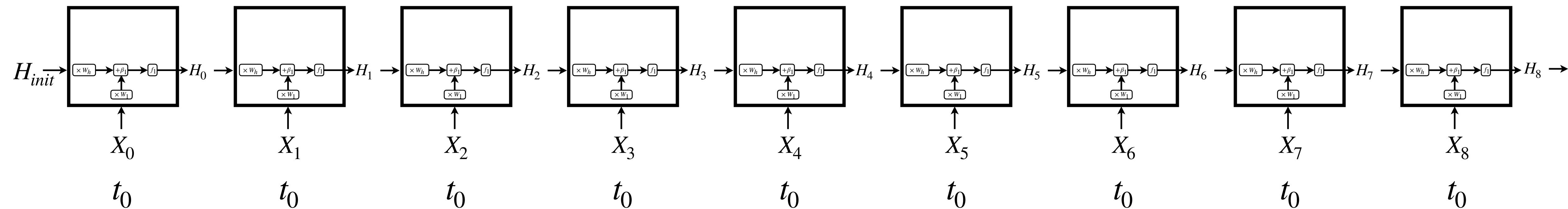
Recurrent Neural Networks

RNN cells store representations of input events over time via the hidden state.

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier in the sequence as the sequence length increases

Question: Can we extend the RNN architecture to solve this problem?



RNN cells store representations of input events over time via the hidden state.

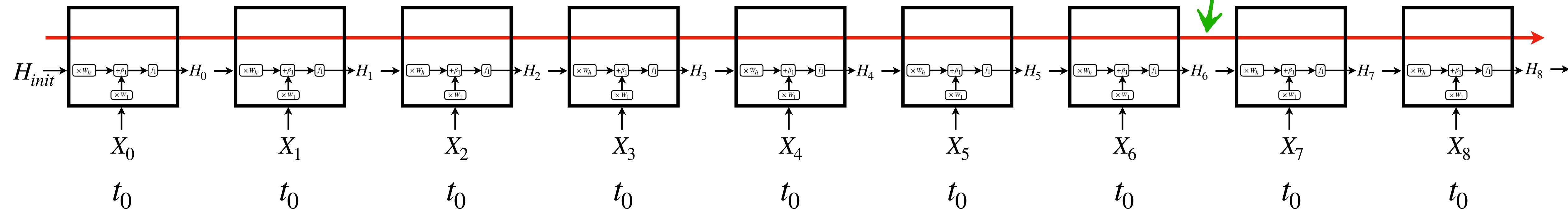
Recurrent Neural Networks

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier in the sequence as the sequence length increases

What if we add a second state that preserves earlier inputs without decay?

Question: Can we extend the RNN architecture to solve this problem?



RNN cells store representations of input events over time via the hidden state.

Recurrent Neural Networks

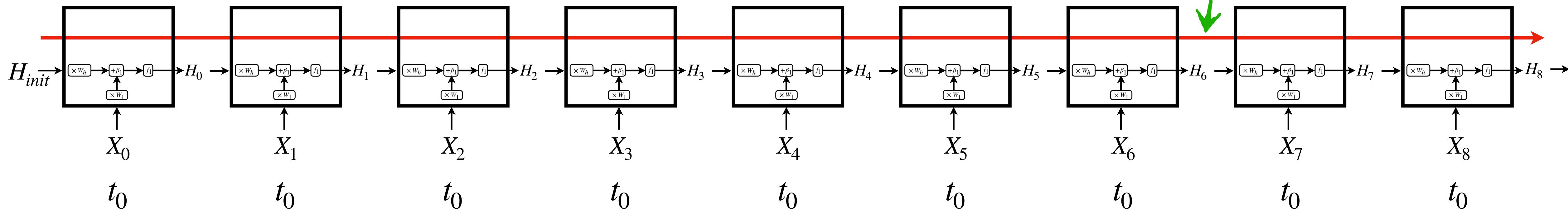
The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier in the sequence as the sequence length increases

What if we add a second state that preserves earlier inputs without decay?

Question: Can we extend the RNN architecture to solve this problem?

We’ll call it “Long Term Memory”



RNN cells store representations of input events over time via the hidden state.

Recurrent Neural Networks

The RNN has “Short Term Memory”

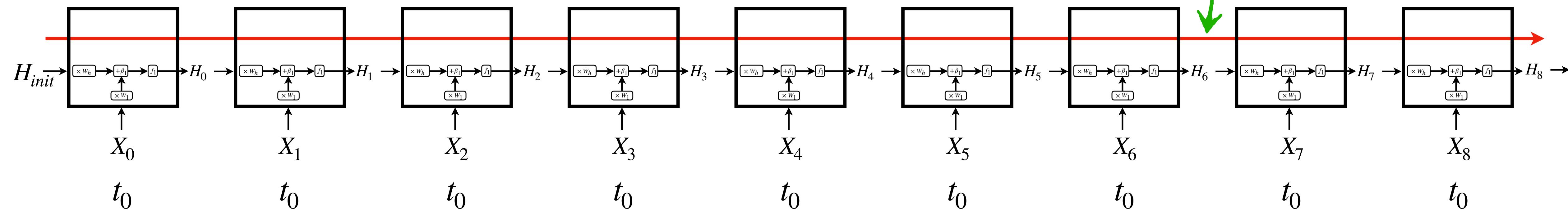
Result: RNNs cannot “remember” elements earlier in the sequence as the sequence length increases

Question: Can we extend the RNN architecture to solve this problem?

What if we add a second state that preserves earlier inputs without decay?

We’ll call it “Long Term Memory”

However its important to be selective. We need mechanisms to decide what to keep, what to forget, and what to add.



Recurrent Neural Networks

RNN cells store representations of input events over time via the hidden state.

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier in the sequence as the sequence length increases

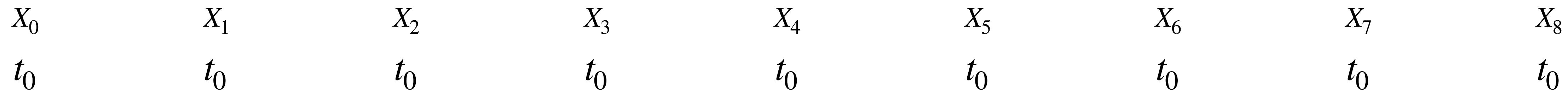
Question: Can we extend the RNN architecture to solve this problem?

What if we add a second state that preserves earlier inputs without decay?

We’ll call it “Long Term Memory”

However its important to be selective. We need mechanisms to decide what to keep, what to forget, and what to add.

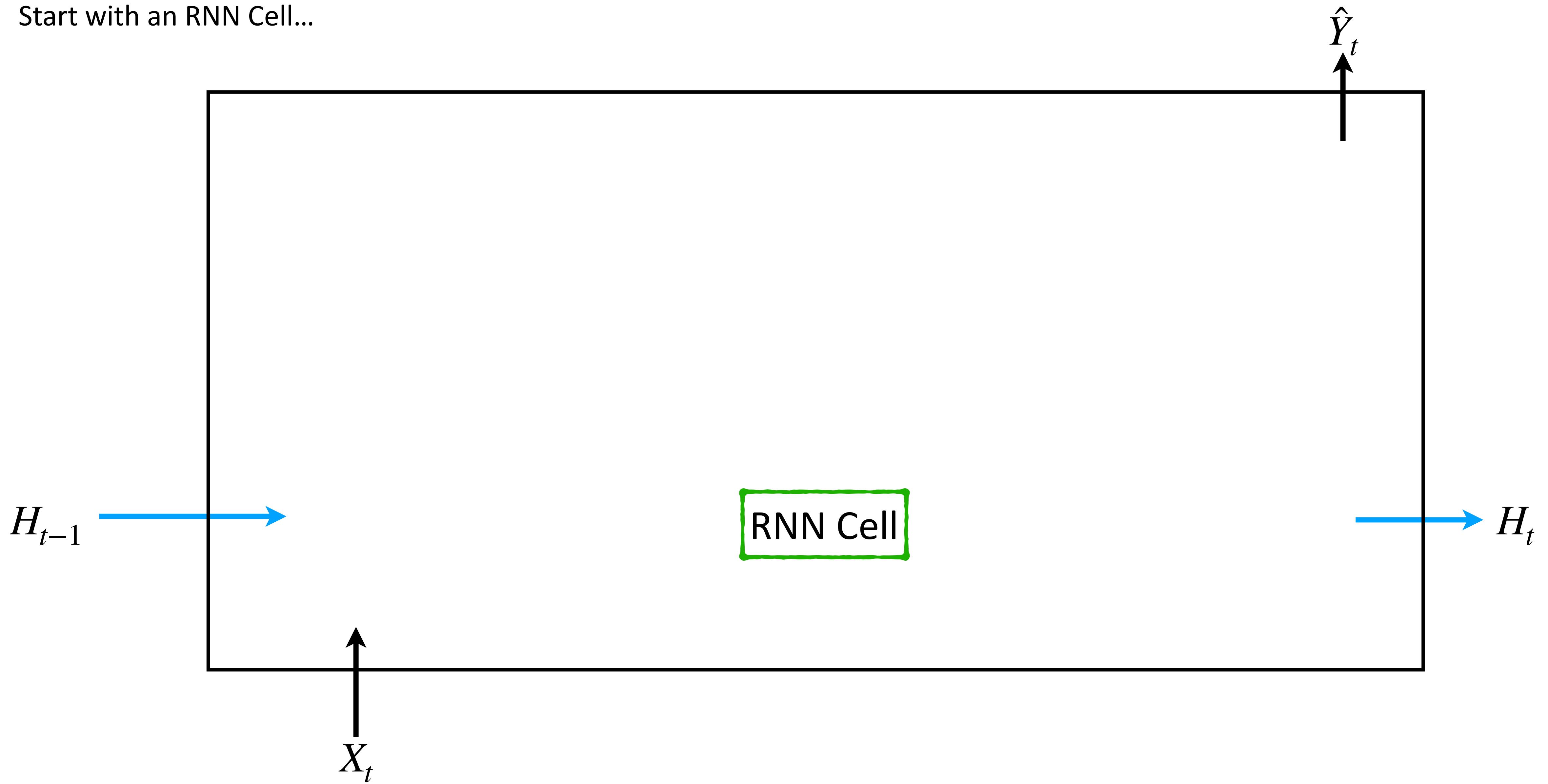
Let’s look at the Cell in a bit more detail



Extending the RNN Architecture for Long Term Memory

Start with an RNN Cell...

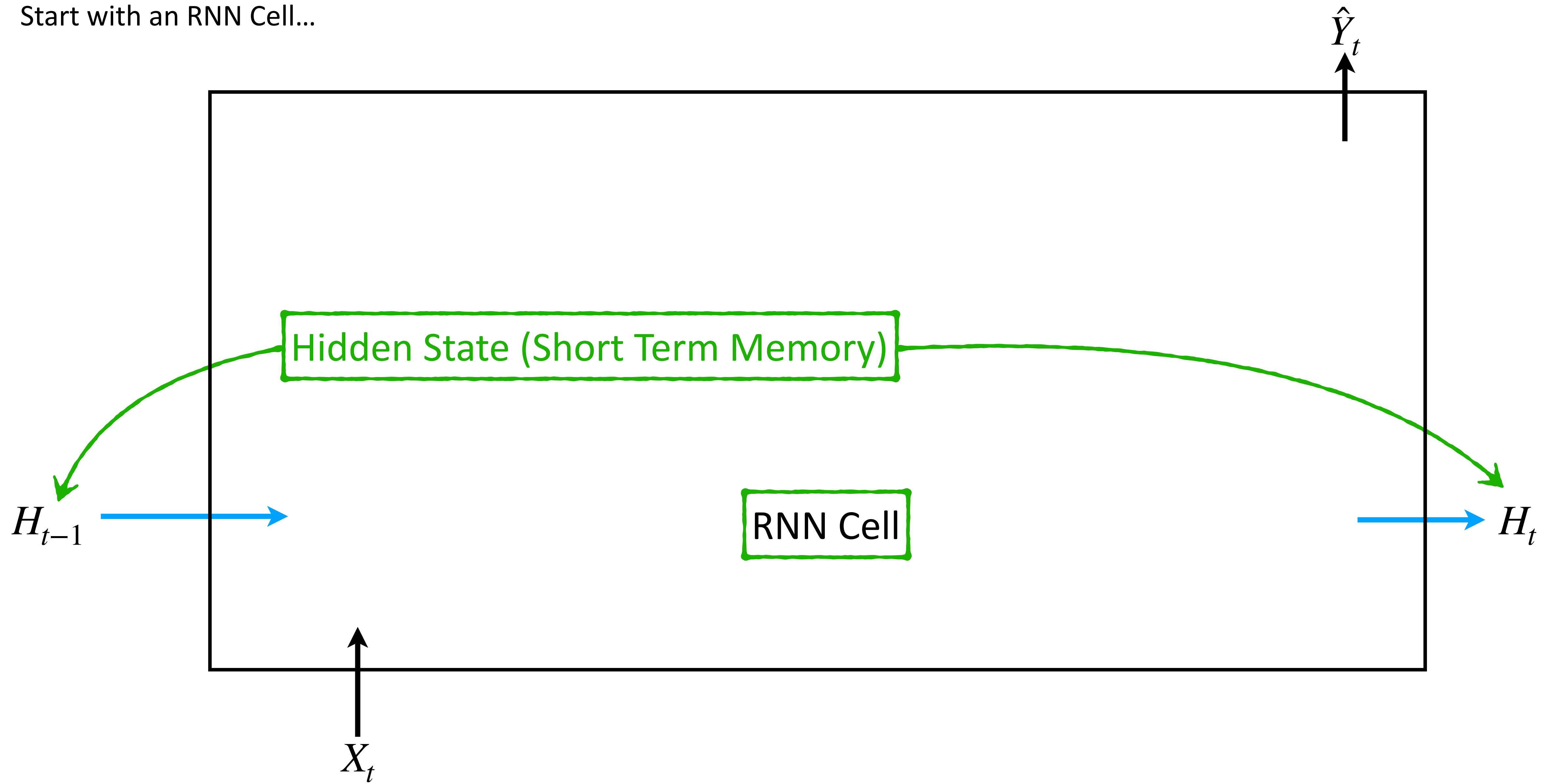
LSTM Networks



Extending the RNN Architecture for Long Term Memory

Start with an RNN Cell...

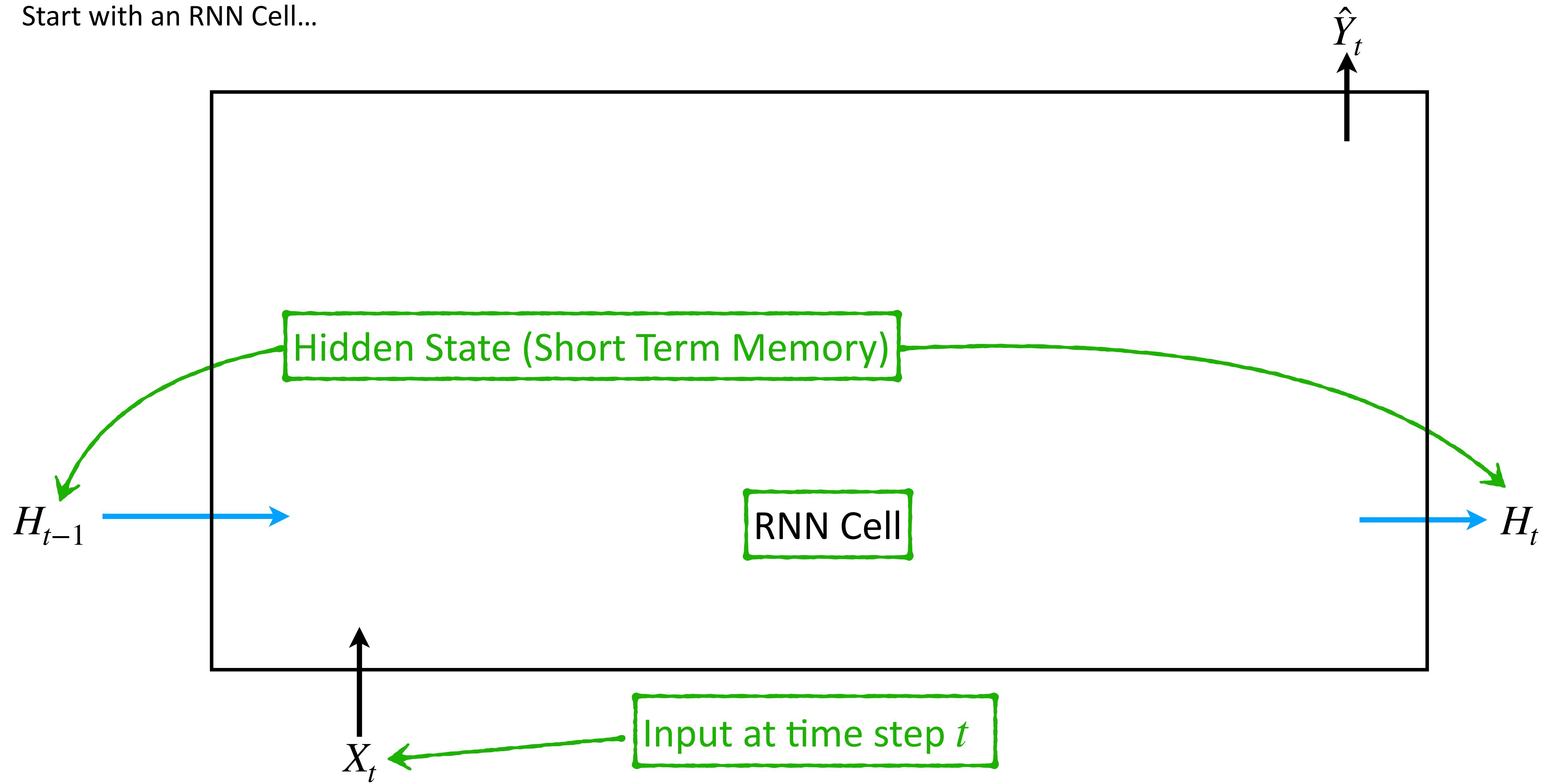
LSTM Networks



Extending the RNN Architecture for Long Term Memory

Start with an RNN Cell...

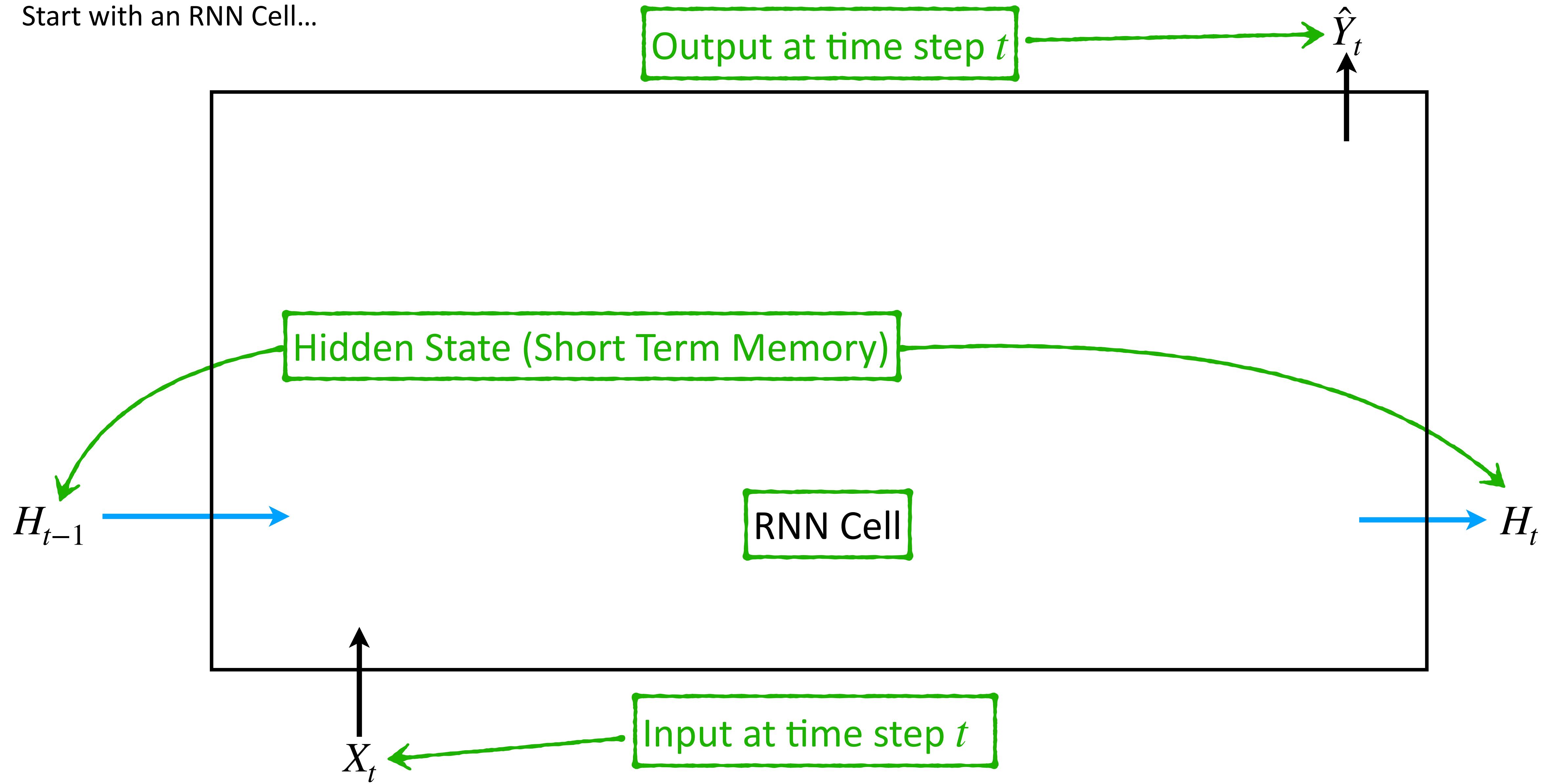
LSTM Networks



Extending the RNN Architecture for Long Term Memory

Start with an RNN Cell...

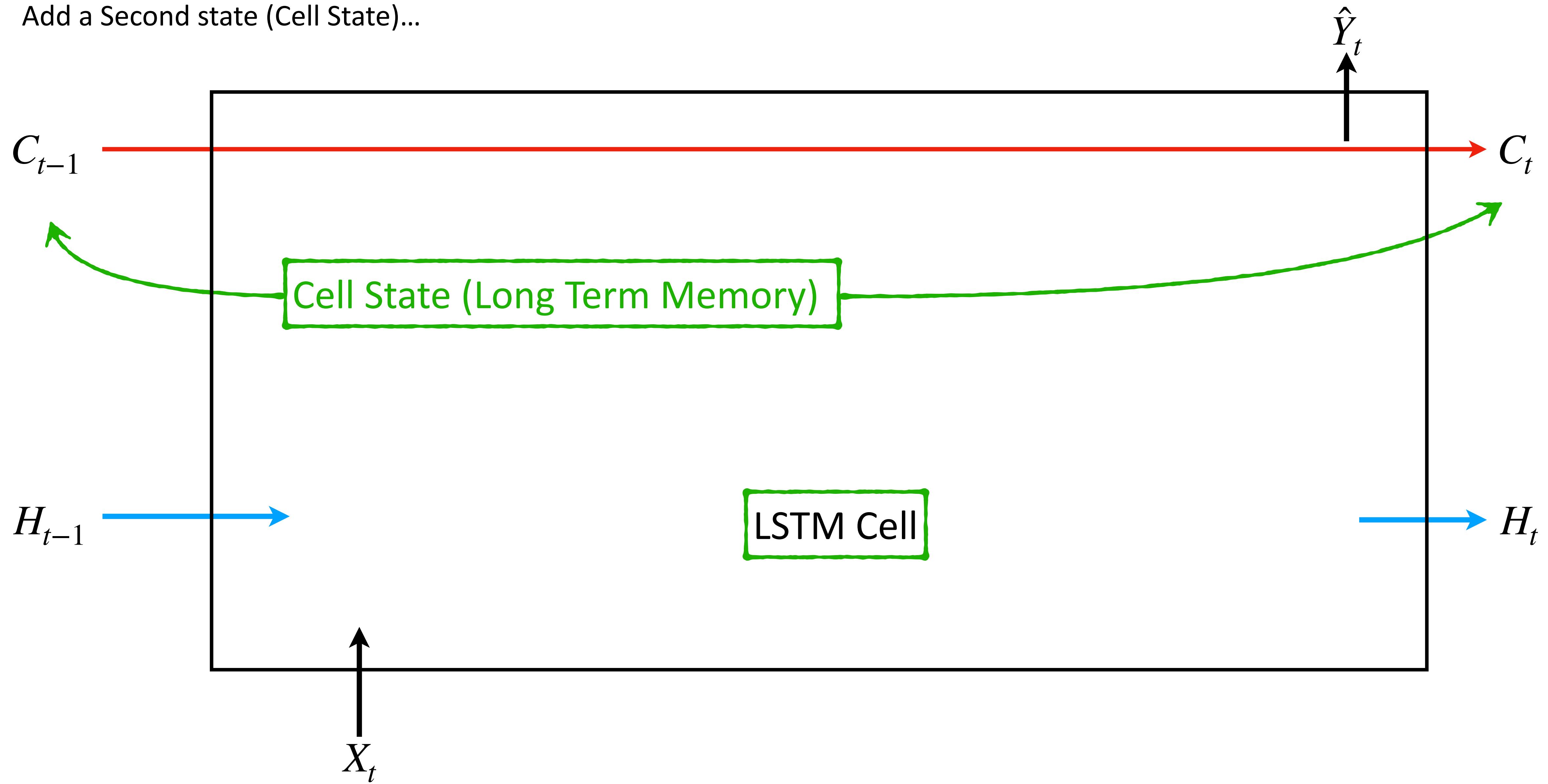
LSTM Networks



Extending the RNN Architecture for Long Term Memory

Add a Second state (Cell State)...

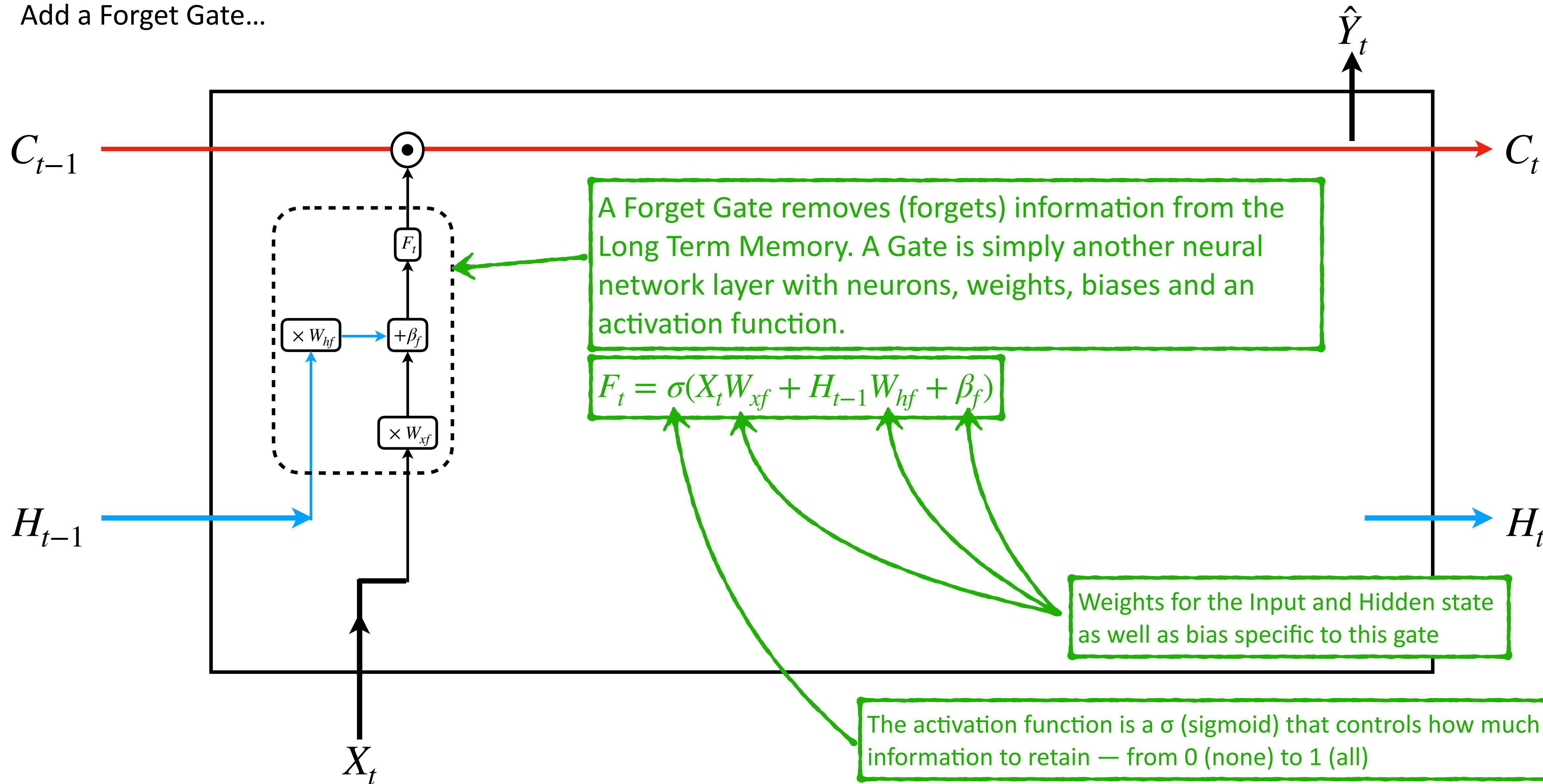
LSTM Networks



Extending the RNN Architecture for Long Term Memory

LSTM Networks

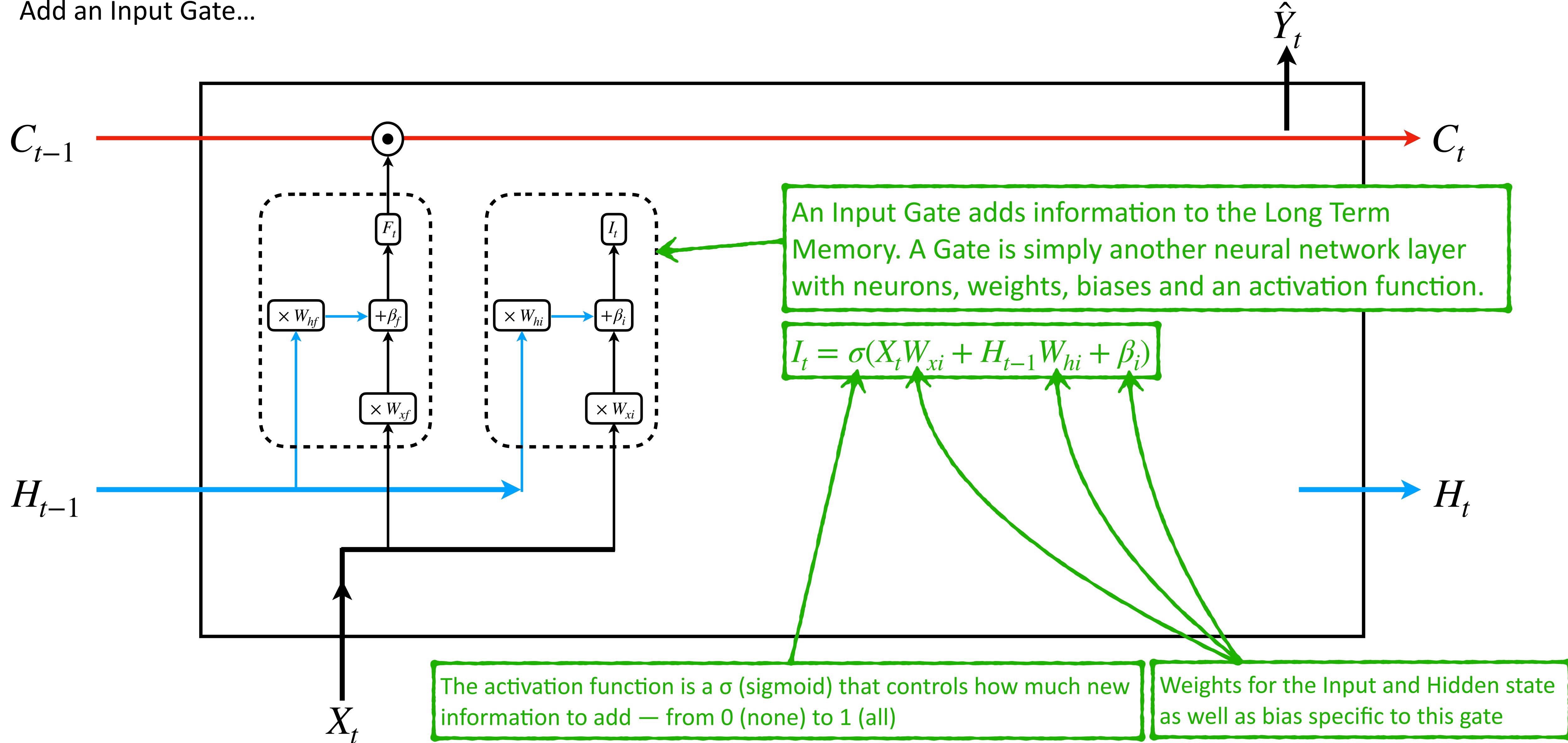
Add a Forget Gate...



Extending the RNN Architecture for Long Term Memory

LSTM Networks

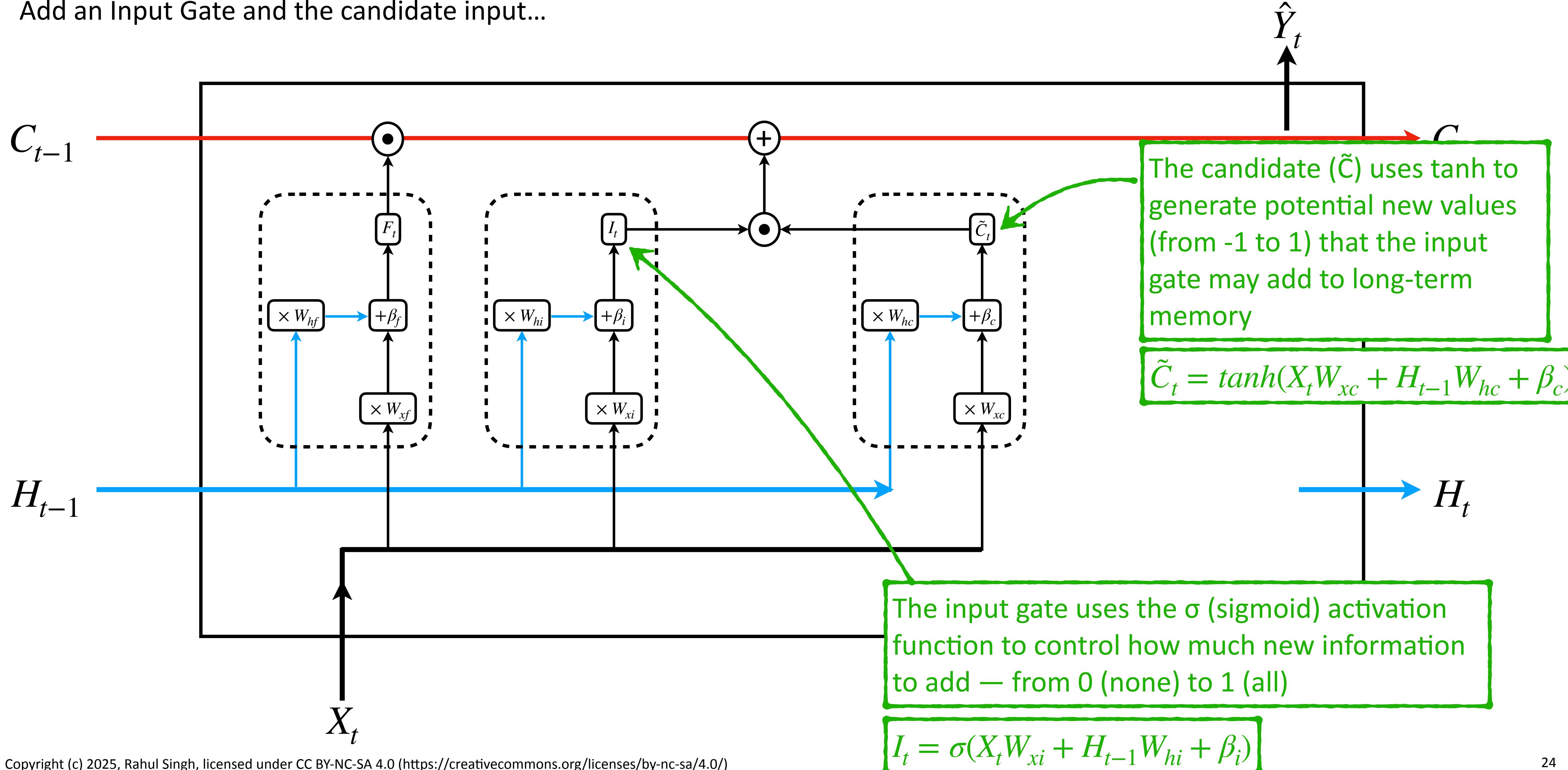
Add an Input Gate...



Extending the RNN Architecture for Long Term Memory

LSTM Networks

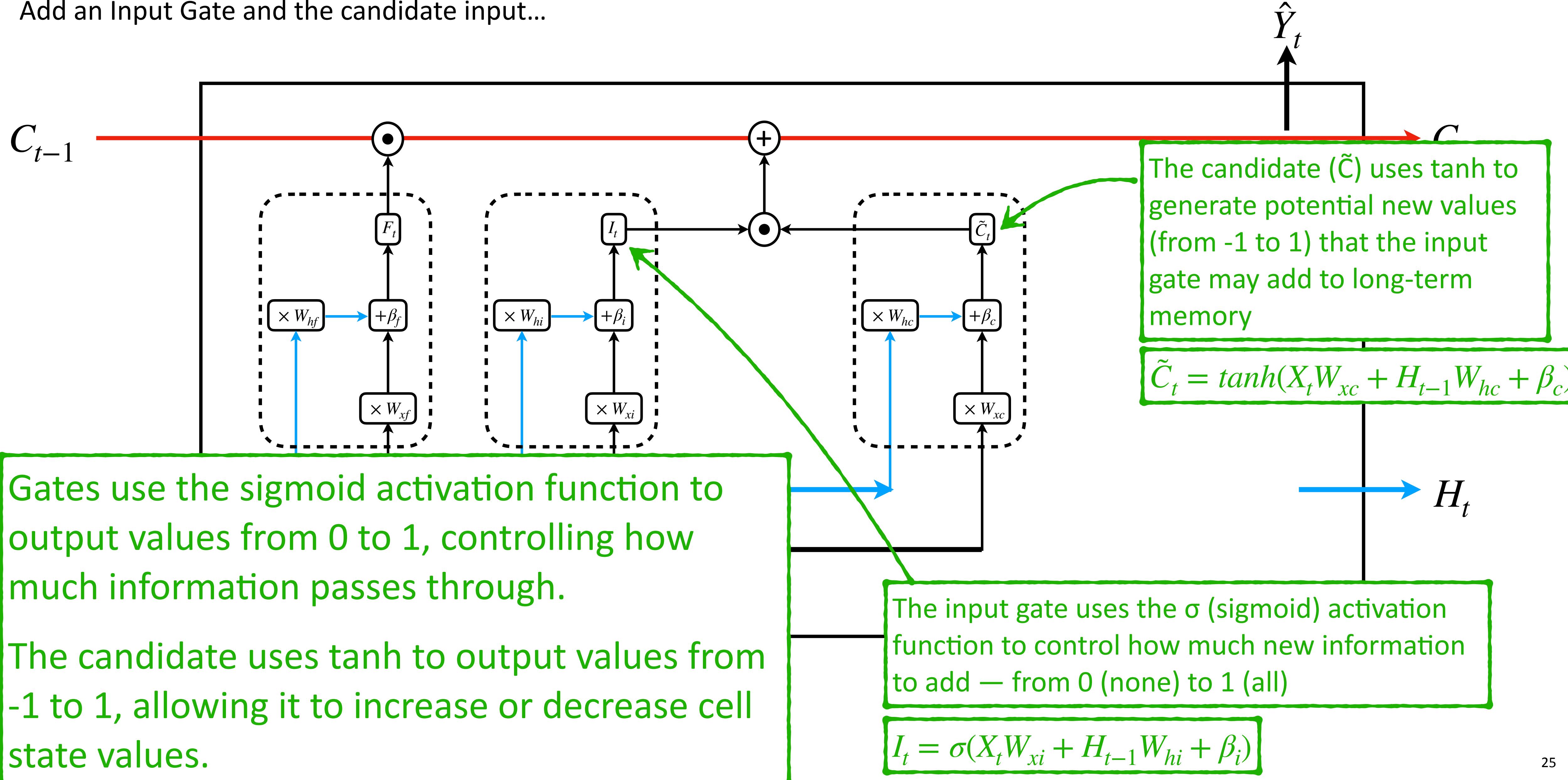
Add an Input Gate and the candidate input...



Extending the RNN Architecture for Long Term Memory

LSTM Networks

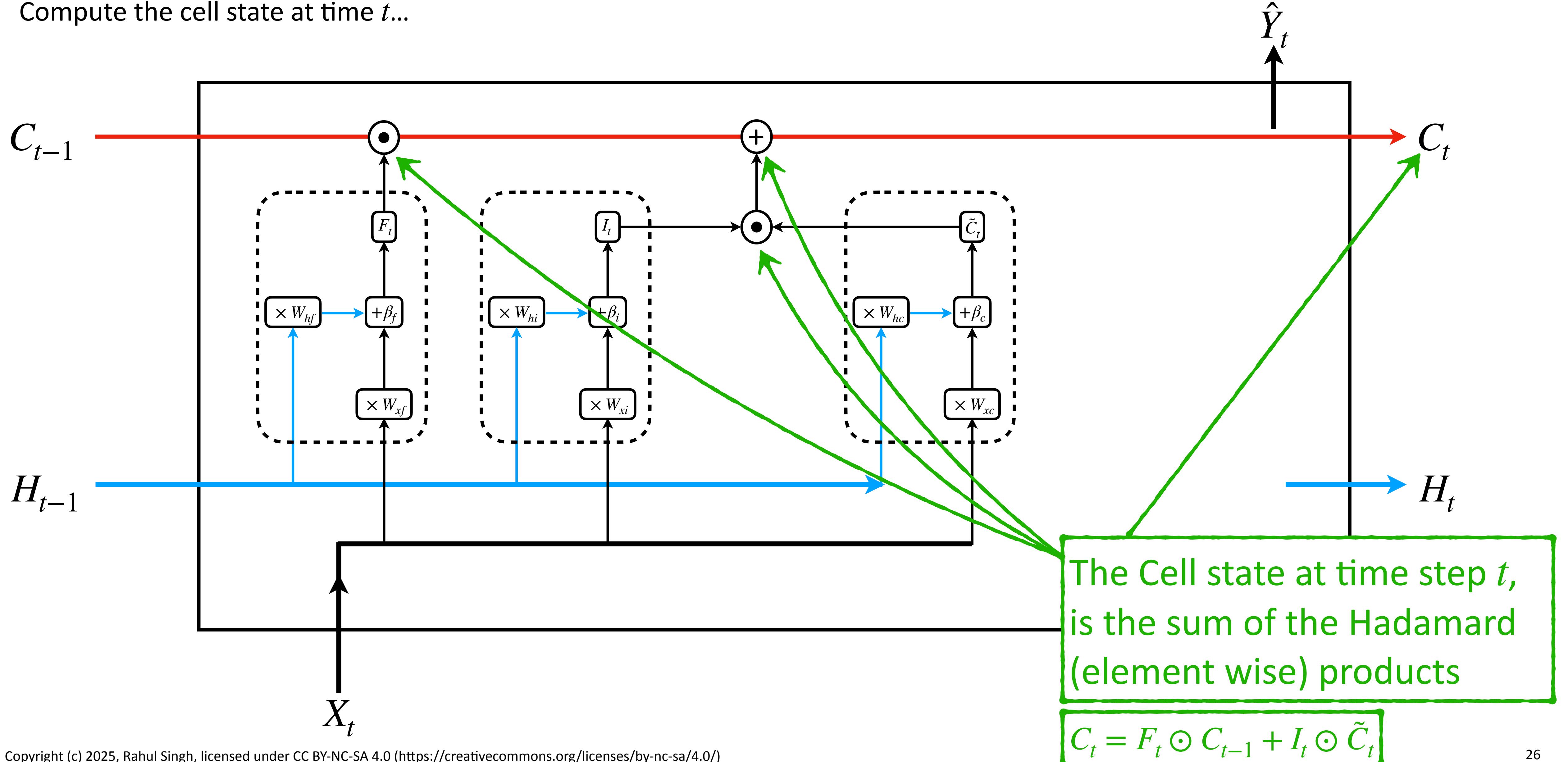
Add an Input Gate and the candidate input...



Extending the RNN Architecture for Long Term Memory

LSTM Networks

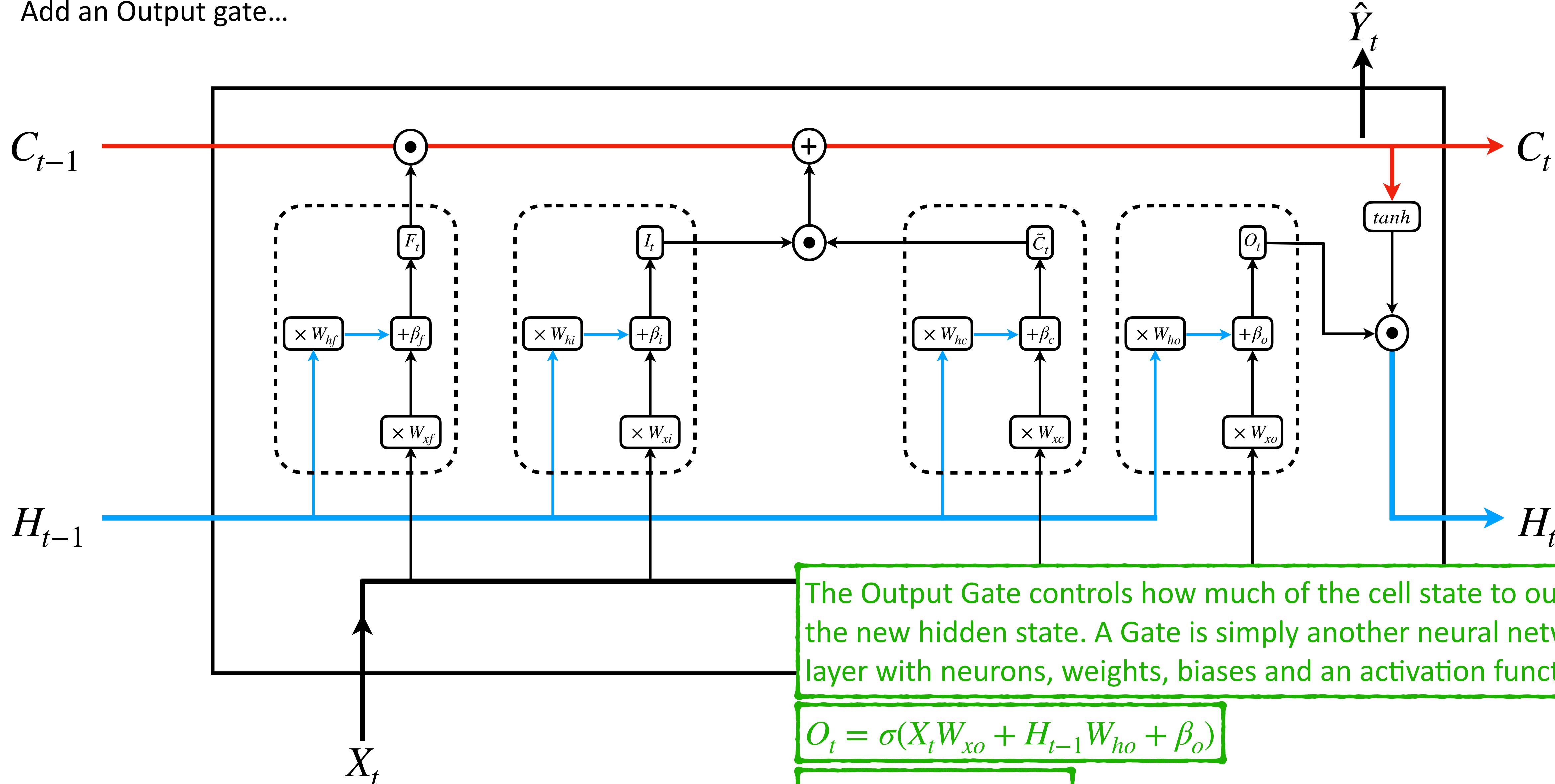
Compute the cell state at time t ...



Extending the RNN Architecture for Long Term Memory

LSTM Networks

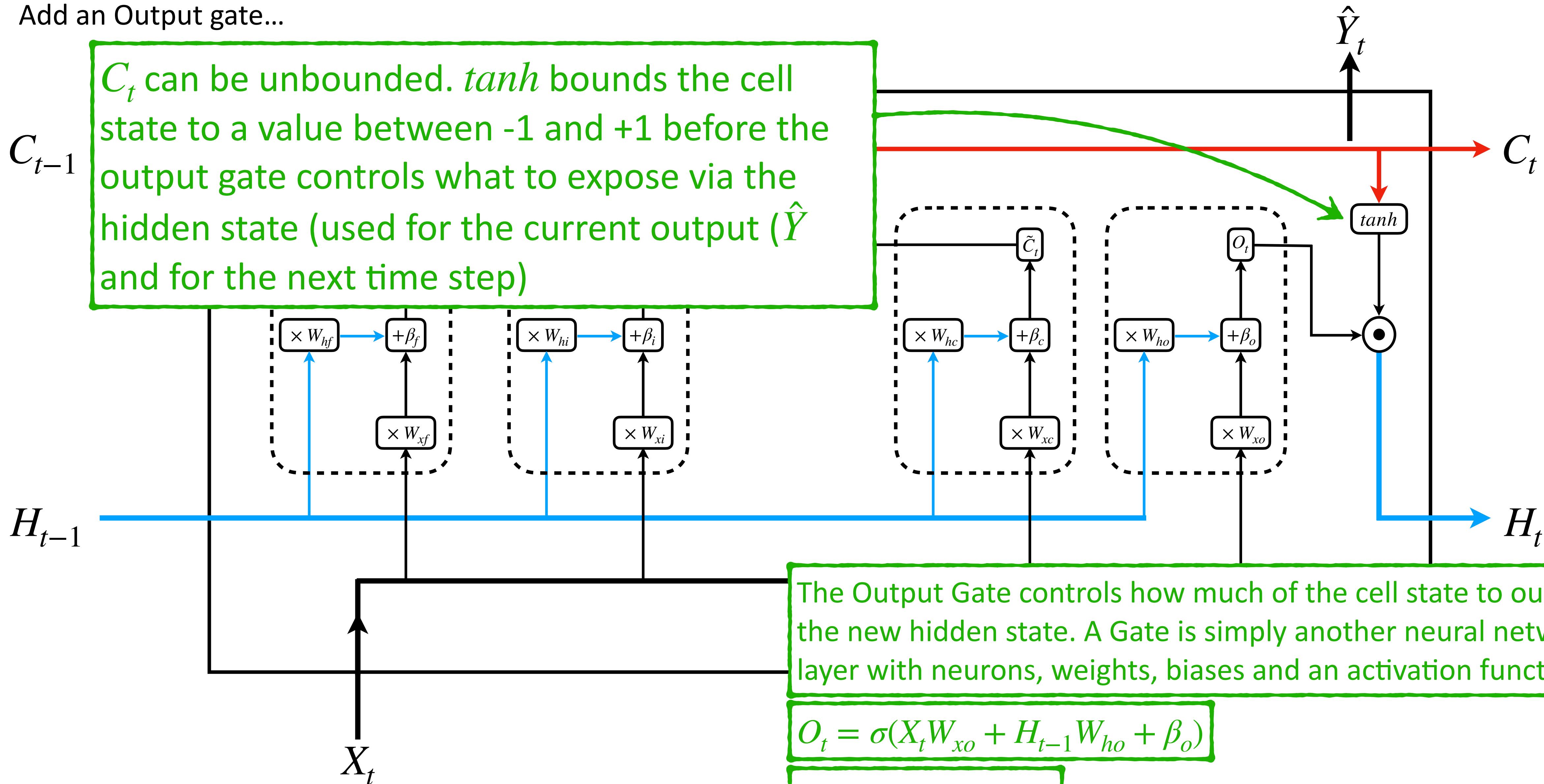
Add an Output gate...



Extending the RNN Architecture for Long Term Memory

LSTM Networks

Add an Output gate...



LSTM Networks

Let's review an LSTM unrolled over 3 time steps...

$$F_0 = \sigma(X_0 W_{xf} + H_{init} W_{hf} + \beta_f)$$

$$I_0 = \sigma(X_0 W_{xi} + H_{init} W_{hi} + \beta_i)$$

$$O_0 = \sigma(X_0 W_{xo} + H_{init} W_{ho} + \beta_o)$$

$$\tilde{C}_0 = \tanh(X_0 W_{xc} + H_{init} W_{hc} + \beta_c)$$

$$C_0 = F_0 \odot C_{init} + I_0 \odot \tilde{C}_0$$

$$H_0 = O_0 \odot \tanh(C_0)$$

$$F_1 = \sigma(X_1 W_{xf} + H_0 W_{hf} + \beta_f)$$

$$I_1 = \sigma(X_1 W_{xi} + H_0 W_{hi} + \beta_i)$$

$$O_1 = \sigma(X_1 W_{xo} + H_0 W_{ho} + \beta_o)$$

$$\tilde{C}_1 = \tanh(X_1 W_{xc} + H_0 W_{hc} + \beta_c)$$

$$C_1 = F_1 \odot C_0 + I_1 \odot \tilde{C}_1$$

$$H_1 = O_1 \odot \tanh(C_1)$$

$$F_2 = \sigma(X_2 W_{xf} + H_1 W_{hf} + \beta_f)$$

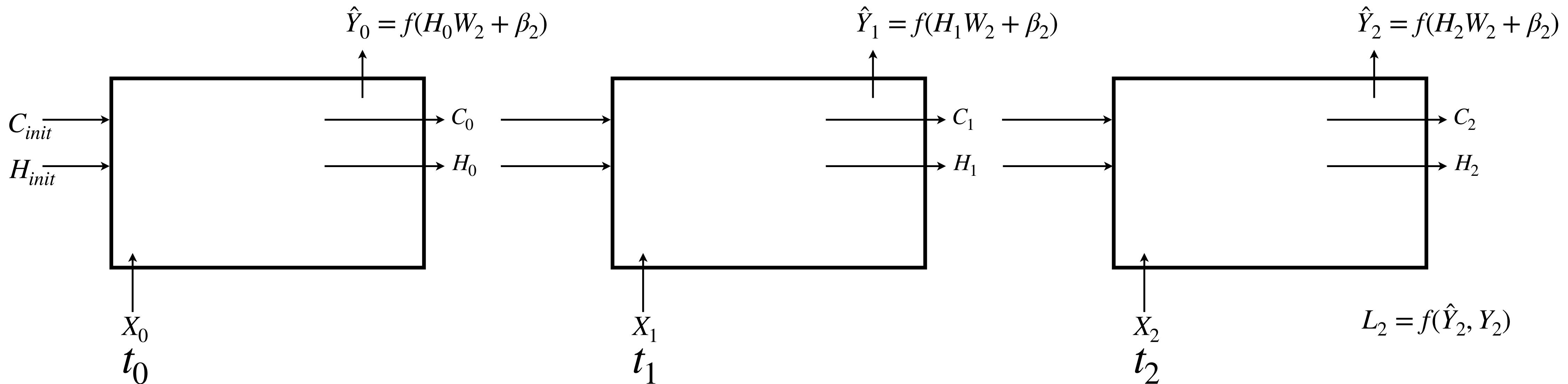
$$I_2 = \sigma(X_2 W_{xi} + H_1 W_{hi} + \beta_i)$$

$$O_2 = \sigma(X_2 W_{xo} + H_1 W_{ho} + \beta_o)$$

$$\tilde{C}_2 = \tanh(X_2 W_{xc} + H_1 W_{hc} + \beta_c)$$

$$C_2 = F_2 \odot C_1 + I_2 \odot \tilde{C}_2$$

$$H_2 = O_2 \odot \tanh(C_2)$$



Let's walk through how we train this

LSTM unrolled over 3 time steps

Training via Gradient Descent involves a

Forward Pass, Computing the Cost Function,

Backpropagation and Parameter Updates

Training an LSTM uses Backpropagation Through Time (BPTT), computing gradients through each gate (Forget, Input, Output) and the Candidate

LSTM unrolled over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters

$$W_{h1}, W_1, W_2, W_{xf}, W_{xi}, W_{xo}, W_{hf}, W_{hi}, W_{ho}, W_{xc}, W_{hc}, \beta_1, \beta_2, \beta_f, \beta_i, \beta_o, \beta_c$$

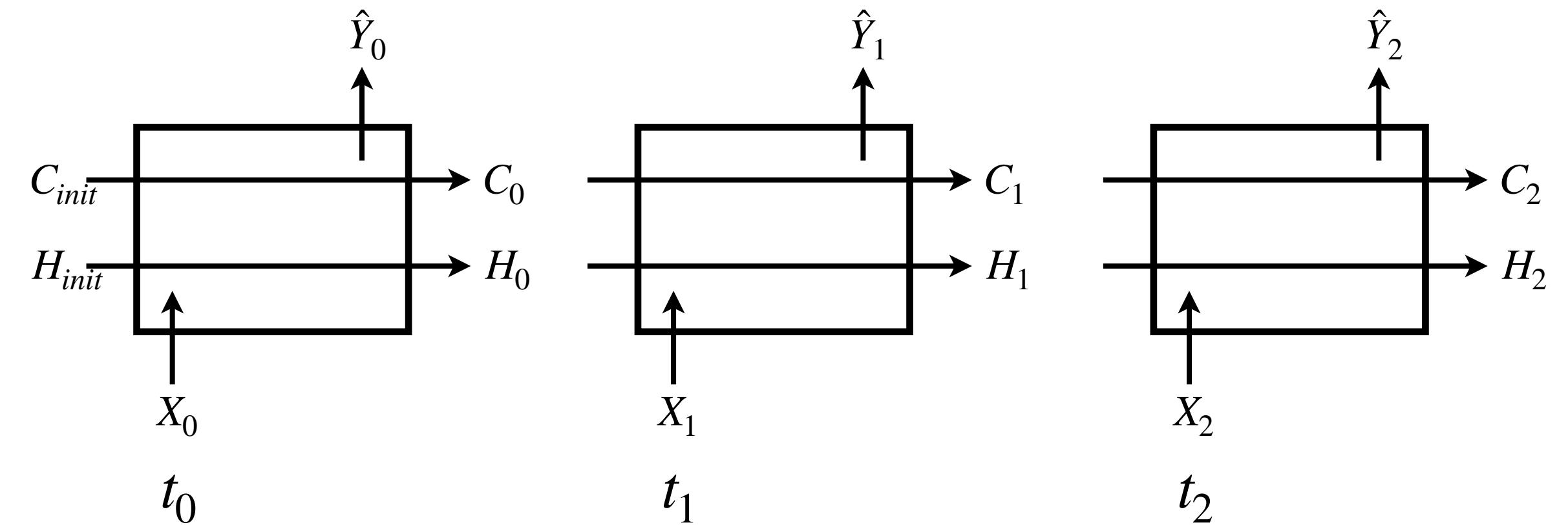
$$\frac{\partial}{\partial W_{h1}} L, \frac{\partial}{\partial W_1} L, \frac{\partial}{\partial W_2} L$$

$$\frac{\partial}{\partial W_{xf}} L, \frac{\partial}{\partial W_{xi}} L, \frac{\partial}{\partial W_{xo}} L,$$

$$\frac{\partial}{\partial W_{hf}} L, \frac{\partial}{\partial W_{hi}} L, \frac{\partial}{\partial W_{ho}} L,$$

$$\frac{\partial}{\partial W_{xc}} L, \frac{\partial}{\partial W_{hc}} L$$

$$\frac{\partial}{\partial \beta_1} L, \frac{\partial}{\partial \beta_2} L, \frac{\partial}{\partial \beta_f} L, \frac{\partial}{\partial \beta_i} L, \frac{\partial}{\partial \beta_o} L, \frac{\partial}{\partial \beta_c} L$$



LSTM Networks

Gradient Descent for LSTM

Step 1: Start with initial values for the Parameters

$$W_{h1}, W_1, W_2, W_{xf}, W_{xi}, W_{xo}, W_{hf}, W_{hi}, W_{ho}, W_{xc}, W_{hc}, \beta_1, \beta_2, \beta_f, \beta_i, \beta_o, \beta_c$$

Step 2: Forward Propagation (compute)...

$$F_0, I_0, O_0, \tilde{C}_0, C_0, H_0, \hat{Y}_0 \quad F_2, I_2, O_2, \tilde{C}_2, C_2, H_2, \hat{Y}_2$$

$$F_1, I_1, O_1, \tilde{C}_1, C_1, H_1, \hat{Y}_1 \quad L = L_0 + L_1 + L_2$$

Step 3: Backpropagation Through Time

$$\frac{\partial}{\partial W_{h1}} L, \frac{\partial}{\partial W_1} L, \frac{\partial}{\partial W_2} L, \frac{\partial}{\partial W_{hf}} L, \frac{\partial}{\partial W_{hi}} L, \frac{\partial}{\partial W_{ho}} L, \frac{\partial}{\partial W_{xc}} L, \frac{\partial}{\partial W_{hc}} L$$

$$\frac{\partial}{\partial W_{xf}} L, \frac{\partial}{\partial W_{xi}} L, \frac{\partial}{\partial W_{xo}} L, \frac{\partial}{\partial \beta_1} L, \frac{\partial}{\partial \beta_2} L, \frac{\partial}{\partial \beta_f} L, \frac{\partial}{\partial \beta_i} L, \frac{\partial}{\partial \beta_o} L, \frac{\partial}{\partial \beta_c} L$$

Step 4: Parameter Updates

$$\beta_2 = \beta_2 - \left(\frac{\partial}{\partial \beta_2} L \right) \times lr \quad \beta_o = \beta_o - \left(\frac{\partial}{\partial \beta_o} L \right) \times lr \quad W_{hf} = W_{hf} - \left(\frac{\partial}{\partial W_{hf}} L \right) \times lr \quad W_{xi} = W_{xi} - \left(\frac{\partial}{\partial W_{xi}} L \right) \times lr$$

$$\beta_1 = \beta_1 - \left(\frac{\partial}{\partial \beta_1} L \right) \times lr \quad W_{h1} = W_{h1} - \left(\frac{\partial}{\partial W_{h1}} L \right) \times lr \quad W_{hi} = W_{hi} - \left(\frac{\partial}{\partial W_{hi}} L \right) \times lr \quad W_{xo} = W_{xo} - \left(\frac{\partial}{\partial W_{xo}} L \right) \times lr$$

$$\beta_f = \beta_f - \left(\frac{\partial}{\partial \beta_f} L \right) \times lr \quad W_1 = W_1 - \left(\frac{\partial}{\partial W_1} L \right) \times lr \quad W_{ho} = W_{ho} - \left(\frac{\partial}{\partial W_{ho}} L \right) \times lr \quad W_{xc} = W_{xc} - \left(\frac{\partial}{\partial W_{xc}} L \right) \times lr$$

$$\beta_i = \beta_i - \left(\frac{\partial}{\partial \beta_i} L \right) \times lr \quad W_2 = W_2 - \left(\frac{\partial}{\partial W_2} L \right) \times lr \quad W_{xf} = W_{xf} - \left(\frac{\partial}{\partial W_{xf}} L \right) \times lr \quad W_{hc} = W_{hc} - \left(\frac{\partial}{\partial W_{hc}} L \right) \times lr$$

$$\beta_c = \beta_c - \left(\frac{\partial}{\partial \beta_c} L \right) \times lr$$

Step 5: Go to step 2 and repeat

Related Tutorials & Textbooks

Neural Networks ↗

An introduction to Neural Networks starting from a foundation of linear regression, logistic classification and multi class classification models along with the matrix representation of a neural network generalized to l layers with n neurons

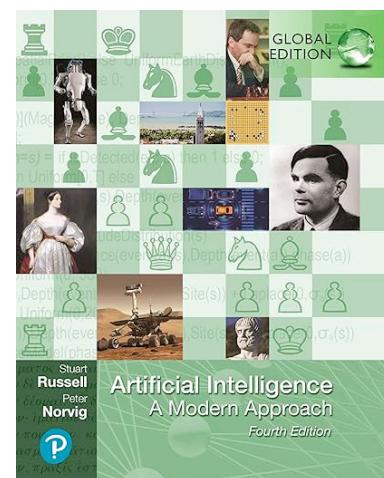
Forward and Back Propagation in Neural Networks ↗

A deep dive into how Neural Networks are trained using Gradient Descent. Output predictions, are compared to observations to calculate loss and Backward propagation then computes gradients by working backward through the network

Gradient Descent for Multiple Regression ↗

Gradient Descent algorithm for multiple regression and how it can be used to optimize $k + 1$ parameters for a Linear model in multiple dimensions.

Recommended Textbooks



Artificial Intelligence: A Modern Approach

by Peter Norvig, Stuart Russell

For a complete list of tutorials see:
<https://arrsingh.com/ai-tutorials>