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Recurrent Neural Networks
Recurrent Neural Networks can model inputs 
that have a temporal dependency and ordering

The structure of an RNN is similar to that of 
a FeedForward Network (input layer, hidden 
layers and an output layer) with one 
additional nuance…

In an RNN, since the inputs have a temporal 
dependency, the inputs are fed to the 
network and processed one at a time.  
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Recurrent Neural Networks
Recurrent Neural Networks can model inputs 
that have a temporal dependency and ordering

In an RNN, since the inputs have a temporal 
dependency, the inputs are fed to the 
network and processed one at a time.  

The structure of an RNN is similar to that of 
a FeedForward Network (input layer, hidden 
layers and an output layer) with one 
additional nuance…

… the output from the hidden layer at time , 
is fed back as input to the hidden layer at 
time  along with the input at time 

t

t + 1 t + 1
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Recurrent Neural Networks
Simple Example: Network Traffic Prediction

Problem Statement: We have a network service (http) and we want to predict 
the traffic every hour (for capacity planning). We want to scale up the service 
(add capacity) if we predict that the traffic is going to increase, and we want to 
scale down the service (release capacity) if we predict the traffic is going to 
decrease.

Here are the observations of traffic (Requests Per Hour) for the past 8 hours:

Hour Traffic

10:00 PM 530
11:00 PM 645
12:00 AM 732
1:00 AM 845
2:00 AM 865
3:00 AM 720
4:00 AM 485
5:00 AM 366

Question: 	
Can we predict the traffic at 6:00 AM? 
Should we add capacity or reduce it?

We can model this as a Recurrent 
Neural Network?
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Recurrent Neural Networks
Simple Example: Network Traffic Prediction

Problem Statement: We have a network service (http) and we want to predict 
the traffic every hour (for capacity planning). We want to scale up the service 
(add capacity) if we predict that the traffic is going to increase, and we want to 
scale down the service (release capacity) if we predict the traffic is going to 
decrease.

Given a sequence (traffic) over 8 time steps…

Question: 	
Can we predict the traffic at  (6:00 AM)? 
Should we add capacity or reduce it?

t8

530,
t0

645,
t1

732,
t2

845,
t3

865,
t4

720,
t5

485,
t6

366
t7

?
t8
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Recurrent Neural Networks

Lets take another example…
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Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of  random numbers, drawn from the set  
, train an RNN to predict what the first element of the sequence was. 

T
{0,1,2...9}

Example sequence over 8 time steps…

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

?

Question: 	
Can we train an RNN to predict the 
first element seen - in this case 3?

The first element is 3

During training (BPTT) the derivative of any loss term   with respect to 
the recurrent parameter ( ) must chain backward through all 
previous hidden states.

Lt
β1, W1, Wh1

∂
∂β1

Lt =
∂

∂H1t
Lt

T

∑
k=0

t

∏
j=k+1

∂
∂H1j−1

H1j
∂

∂β1
H1k
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Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of  random numbers, drawn from the set  
, train an RNN to predict what the first element of the sequence was. 

T
{0,1,2...9}

Example sequence over 8 time steps…

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

?

Question: 	
Can we train an RNN to predict the 
first element seen - in this case 3?

The first element is 3

During training (BPTT) the derivative of any loss term   with respect to 
the recurrent parameter ( ) must chain backward through all 
previous hidden states.

Lt
β1, W1, Wh1

∂
∂β1

Lt =
∂

∂H1t
Lt

T

∑
k=0

t

∏
j=k+1

∂
∂H1j−1

H1j
∂

∂β1
H1k

The  terms (Jacobians) get multiplied repeatedly. 	

	
If the spectral norm (largest singular value) of each Jacobian is 
consistently < 1 then as sequence length increases the gradient converges 
to zero exponentially. If it’s consistently > 1 then the gradient explodes 
exponentially.

∂
∂H1j−1

H1j
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Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of  random numbers, drawn from the set  
, train an RNN to predict what the first element of the sequence was. 

T
{0,1,2...9}

Example sequence over 8 time steps…

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

?

Question: 	
Can we train an RNN to predict the 
first element seen - in this case 3?

The first element is 3

During training (BPTT) the derivative of any loss term   with respect to 
the recurrent parameter ( ) must chain backward through all 
previous hidden states.

Lt
β1, W1, Wh1

∂
∂β1

Lt =
∂

∂H1t
Lt

T

∑
k=0

t

∏
j=k+1

∂
∂H1j−1

H1j
∂

∂β1
H1k

In either case the training will fail

The  terms (Jacobians) get multiplied repeatedly. 	

	
If the spectral norm (largest singular value) of each Jacobian is 
consistently < 1 then as sequence length increases the gradient converges 
to zero exponentially. If it’s consistently > 1 then the gradient explodes 
exponentially.

∂
∂H1j−1

H1j
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Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of  random numbers, drawn from the set  
, train an RNN to predict what the first element of the sequence was. 

T
{0,1,2...9}

Example sequence over 8 time steps…

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

?

Question: 	
Can we train an RNN to predict the 
first element seen - in this case 3?

The first element is 3

During training (BPTT) the derivative of any loss term   with respect to 
the recurrent parameter ( ) must chain backward through all 
previous hidden states.

Lt
β1, W1, Wh1

When gradients converge to zero: Vanishing Gradient Problem	
Training stalls because the gradients converge to zero and no signal reaches the early layers

When gradients explode to infinity: Exploding Gradient Problem	
Training fails because loss becomes NaN and the training crashes

In either case the training will fail

The  terms (Jacobians) get multiplied repeatedly. 	

	
If the spectral norm (largest singular value) of each Jacobian is 
consistently < 1 then as sequence length increases the gradient converges 
to zero exponentially. If it’s consistently > 1 then the gradient explodes 
exponentially.

∂
∂H1j−1

H1j
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Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of  random numbers, drawn from the set  
, train an RNN to predict what the first element of the sequence was. 

T
{0,1,2...9}

Example sequence over 8 time steps…

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

?

Question: 	
Can we train an RNN to predict the 
first element seen - in this case 3?

The first element is 3

During training (BPTT) the derivative of any loss term   with respect to 
the recurrent parameter ( ) must chain backward through all 
previous hidden states.

Lt
β1, W1, Wh1

In either case the training will fail

The  terms (Jacobians) get multiplied repeatedly. 	

	
If the spectral norm (largest singular value) of each Jacobian is 
consistently < 1 then as sequence length increases the gradient converges 
to zero exponentially. If it’s consistently > 1 then the gradient explodes 
exponentially.

∂
∂H1j−1

H1j

Let’s look at this problem in a bit more detail…
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Recurrent Neural Networks

The  terms (Jacobians) get multiplied repeatedly. 	

	
If the spectral norm (largest singular value) of each Jacobian is 
consistently < 1 then as sequence length increases the gradient converges 
to zero exponentially. If it’s consistently > 1 then the gradient explodes 
exponentially.

∂
∂H1j−1

H1j

Sequence to Vector RNN over 3 Time Steps

For backpropagation we have to calculate 
the partial derivative of the Loss function 
w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

Backpropagation Through Time (BPTT) over 3 time steps	
Hidden layer gradients are derivatives of Loss from the final time step

⇒
∂

∂β1
L =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2 [ ∂
∂β1

H12 +
∂

∂H11
H12

∂
∂β1

H11 +
∂

∂H11
H12

∂
∂H10

H11
∂

∂β1
H10]

⇒
∂

∂β1
L =

∂
∂β1

L2

⇒
∂

∂β1
L =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂β1
H12+

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂β1

H11+

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂H10

H11
∂

∂β1
H10

Jacobians

Let’s look at this problem in a bit more detail…

For more details see the Tutorial on RNN Training and BPTT
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Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of  random numbers, drawn from the set  
, train an RNN to predict what the first element of the sequence was. 

T
{0,1,2...9}

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

? Question: 	
Can we train an RNN to predict the 
first element seen - in this case 3?

In practice, this means that RNNs cannot “remember” elements 
earlier in the sequence as the sequence length increases Answer: 	

For long sequences we cannot train 
an RNN to predict the first element 
seen. The training will fail because 
of the vanishing gradient problem

Let’s look at this problem in a bit more detail…
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Recurrent Neural Networks

X0

Hinit

× W1

H10× Wh1 +β1 f1

X1

× W1

H11

X2

× W1

H12 = f1(XtW1 + H11Wh1 + β1)

̂Y2 = f2(H12W2 + β2)

t0 t1 t2

× Wh1 +β1 f1 × Wh1 +β1 f1

× W2

+β2

f2

L2 = f( ̂Y2, Y2)

RNN cells store representations of input events 
over time via the hidden state. 

Let’s review an RNN unrolled over 3 time steps… 

Let’s look at this problem in a bit more detail…

For the rest of the slides we’ll assume a single hidden 
layer and drop the layer subscript to simplify the notation

We’ll replace  with  and so onH11 H1
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Recurrent Neural Networks

X0

Hinit

× W1

H0× Wh +β1 f1

X1

× W1

H1

X2

× W1

̂Y2 = f2(H2W2 + β2)

t0 t1 t2

× Wh +β1 f1 × Wh +β1 f1

× W2

+β2

f2

L2 = f( ̂Y2, Y2)

RNN cells store representations of input events 
over time via the hidden state. 

H2 = f1(XtW1 + H1Wh + β1)
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Recurrent Neural Networks

X0

Hinit

× W1

H0× Wh +β1 f1

X1

× W1

H1

X2

× W1

̂Y2 = f2(H2W2 + β2)

t0 t1 t2

× Wh +β1 f1 × Wh +β1 f1

× W2

+β2

f2

The initial 
hidden state 
is zero

L2 = f( ̂Y2, Y2)

RNN cells store representations of input events 
over time via the hidden state. 

H2 = f1(XtW1 + H1Wh + β1)
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Recurrent Neural Networks

X0

Hinit

× W1

H0× Wh +β1 f1

X1

× W1

H1

X2

× W1

̂Y2 = f2(H2W2 + β2)

t0 t1 t2

× Wh +β1 f1 × Wh +β1 f1

× W2

+β2

f2

The initial 
hidden state 
is zero

L2 = f( ̂Y2, Y2)

RNN cells store representations of input events 
over time via the hidden state. 

Subsequent hidden states store current 
input as well as representations of all 
previous inputs

H2 = f1(XtW1 + H1Wh + β1)
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Recurrent Neural NetworksRNN cells store representations of input events 
over time via the hidden state. 

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

As the sequence length increases, the 
earlier inputs get “washed out” over time
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Recurrent Neural NetworksRNN cells store representations of input events 
over time via the hidden state. 

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

As the sequence length increases, the 
earlier inputs get “washed out” over time

Recent inputs dominate the hidden state…
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Recurrent Neural NetworksRNN cells store representations of input events 
over time via the hidden state. 

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

As the sequence length increases, the 
earlier inputs get “washed out” over time

… as the earlier inputs decay

Recent inputs dominate the hidden state…
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Recurrent Neural NetworksRNN cells store representations of input events 
over time via the hidden state. 

The RNN has “Short Term Memory”

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1
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× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/


Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 17

Recurrent Neural NetworksRNN cells store representations of input events 
over time via the hidden state. 

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier 
in the sequence as the sequence length increases
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Recurrent Neural NetworksRNN cells store representations of input events 
over time via the hidden state. 

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier 
in the sequence as the sequence length increases

Question: Can we extend the RNN 
architecture to solve this problem?
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Recurrent Neural NetworksRNN cells store representations of input events 
over time via the hidden state. 

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier 
in the sequence as the sequence length increases

What if we add a second state that 
preserves earlier inputs without decay?

Question: Can we extend the RNN 
architecture to solve this problem?
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Recurrent Neural NetworksRNN cells store representations of input events 
over time via the hidden state. 

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier 
in the sequence as the sequence length increases

What if we add a second state that 
preserves earlier inputs without decay?

Question: Can we extend the RNN 
architecture to solve this problem?

We’ll call it “Long Term Memory”

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/


Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 18

Recurrent Neural NetworksRNN cells store representations of input events 
over time via the hidden state. 

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier 
in the sequence as the sequence length increases

What if we add a second state that 
preserves earlier inputs without decay?

Question: Can we extend the RNN 
architecture to solve this problem?

We’ll call it “Long Term Memory”

However its important to be selective. We 
need mechanisms to decide what to keep, 
what to forget, and what to add.
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Recurrent Neural NetworksRNN cells store representations of input events 
over time via the hidden state. 

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier 
in the sequence as the sequence length increases

What if we add a second state that 
preserves earlier inputs without decay?

Question: Can we extend the RNN 
architecture to solve this problem?

We’ll call it “Long Term Memory”

However its important to be selective. We 
need mechanisms to decide what to keep, 
what to forget, and what to add.

Let’s look at the Cell in a bit more detail

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/


Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 20

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

̂Yt

RNN Cell

Start with an RNN Cell…
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LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Hidden State (Short Term Memory)

̂Yt

RNN Cell

Start with an RNN Cell…
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LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Hidden State (Short Term Memory)

Input at time step t

̂Yt

RNN Cell

Start with an RNN Cell…
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LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Hidden State (Short Term Memory)

Input at time step t

̂YtOutput at time step t

RNN Cell

Start with an RNN Cell…
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LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 HtLSTM Cell

Cell State (Long Term Memory)

Ct−1 Ct

̂Yt
Add a Second state (Cell State)…
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LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Add a Forget Gate…

× Whf

× Wxf

+βf

Ft

̂Yt

A Forget Gate removes (forgets) information from the 
Long Term Memory. A Gate is simply another neural 
network layer with neurons, weights, biases and an 
activation function.

Ft = σ(XtWxf + Ht−1Whf + βf )

Weights for the Input and Hidden state 
as well as bias specific to this gate

The activation function is a σ (sigmoid) that controls how much 
information to retain — from 0 (none) to 1 (all)
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LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Add an Input Gate…

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It
An Input Gate adds information to the Long Term 
Memory. A Gate is simply another neural network layer 
with neurons, weights, biases and an activation function.

It = σ(XtWxi + Ht−1Whi + βi)

The activation function is a σ (sigmoid) that controls how much new 
information to add — from 0 (none) to 1 (all)

Weights for the Input and Hidden state 
as well as bias specific to this gate
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LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Add an Input Gate and the candidate input…

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It

+

× Whc

× Wxc

+βc

C̃t

C̃t = tanh(XtWxc + Ht−1Whc + βc)

The candidate (C̃) uses tanh to 
generate potential new values 
(from -1 to 1) that the input 
gate may add to long-term 
memory

The input gate uses the σ (sigmoid) activation 
function to control how much new information 
to add — from 0 (none) to 1 (all)

It = σ(XtWxi + Ht−1Whi + βi)
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LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It

+

× Whc

× Wxc

+βc

C̃t

C̃t = tanh(XtWxc + Ht−1Whc + βc)

The candidate (C̃) uses tanh to 
generate potential new values 
(from -1 to 1) that the input 
gate may add to long-term 
memory

Gates use the sigmoid activation function to 
output values from 0 to 1, controlling how 
much information passes through.	

The candidate uses tanh to output values from 
-1 to 1, allowing it to increase or decrease cell 
state values.

The input gate uses the σ (sigmoid) activation 
function to control how much new information 
to add — from 0 (none) to 1 (all)

It = σ(XtWxi + Ht−1Whi + βi)

Add an Input Gate and the candidate input…
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LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Compute the cell state at time …t

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It

+

× Whc

× Wxc

+βc

C̃t

The Cell state at time step , 
is the sum of the Hadamard 
(element wise) products

t

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t
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LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Add an Output gate…

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It

+

× Whc

× Wxc

+βc

C̃t

× Who

× Wxo

+βo

Ot

tanh

The Output Gate controls how much of the cell state to output as 
the new hidden state. A Gate is simply another neural network 
layer with neurons, weights, biases and an activation function.

Ot = σ(XtWxo + Ht−1Who + βo)

Ht = Ot ⊙ tanh(Ct)
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LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Add an Output gate…

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It

+

× Whc

× Wxc

+βc

C̃t

× Who

× Wxo

+βo

Ot

tanh

The Output Gate controls how much of the cell state to output as 
the new hidden state. A Gate is simply another neural network 
layer with neurons, weights, biases and an activation function.

Ot = σ(XtWxo + Ht−1Who + βo)

Ht = Ot ⊙ tanh(Ct)

 can be unbounded.  bounds the cell 
state to a value between -1 and +1 before the 
output gate controls what to expose via the 
hidden state (used for the current output (  
and for the next time step)

Ct tanh

̂Y
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X0

Hinit
H0

X1

H1

X2

H2

t0 t1 t2
L2 = f( ̂Y2, Y2)

Let’s review an LSTM unrolled over 3 time steps… 

Cinit
C0 C1 C2

F0 = σ(X0Wxf + HinitWhf + βf )
I0 = σ(X0Wxi + HinitWhi + βi)
O0 = σ(X0Wxo + HinitWho + βo)
C̃0 = tanh(X0Wxc + HinitWhc + βc)
C0 = F0 ⊙ Cinit + I0 ⊙ C̃0
H0 = O0 ⊙ tanh(C0)

̂Y1 = f(H1W2 + β2)̂Y0 = f(H0W2 + β2)

F1 = σ(X1Wxf + H0Whf + βf )
I1 = σ(X1Wxi + H0Whi + βi)
O1 = σ(X1Wxo + H0Who + βo)
C̃1 = tanh(X1Wxc + H0Whc + βc)
C1 = F1 ⊙ C0 + I1 ⊙ C̃1
H1 = O1 ⊙ tanh(C1)

̂Y2 = f(H2W2 + β2)

F2 = σ(X2Wxf + H1Whf + βf )
I2 = σ(X2Wxi + H1Whi + βi)
O2 = σ(X2Wxo + H1Who + βo)
C̃2 = tanh(X2Wxc + H1Whc + βc)
C2 = F2 ⊙ C1 + I2 ⊙ C̃2
H2 = O2 ⊙ tanh(C2)

LSTM Networks
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LSTM unrolled over 3 Time Steps LSTM Networks

Let’s walk through how we train this 
LSTM unrolled over 3 time steps
Training via Gradient Descent involves a 

Forward Pass, Computing the Cost Function, 
Backpropagation and Parameter Updates
Training an LSTM uses Backpropagation Through Time (BPTT), computing 
gradients through each gate (Forget, Input, Output) and the Candidate
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For backpropagation we have to calculate the partial 
derivative of the Loss function w.r.t the parameters 
Wh1, W1, W2, Wxf, Wxi, Wxo, Whf, Whi, Who, Wxc, Whc, β1, β2, βf, βi, βo, βc

∂
∂β1

L,
∂

∂β2
L,

∂
∂βf

L,
∂

∂βi
L,

∂
∂βo

L,
∂

∂βc
L

Gradient Descent for LSTM
Step 1: Start with initial values for the Parameters

Step 2: Forward Propagation (compute)… 

Step 3: Backpropagation Through Time

Step 4: Parameter Updates

Step 5: Go to step 2 and repeat

L = L0 + L1 + L2

LSTM NetworksLSTM unrolled over 3 Time Steps
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Related Tutorials & Textbooks

For a complete list of tutorials see:	
https://arrsingh.com/ai-tutorials

Neural Networks
An introduction to Neural Networks starting from a foundation of linear regression, logistic classification and multi class 
classification models along with the matrix representation of a neural network generalized to l layers with n neurons

Gradient Descent for Multiple Regression
Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear 
model in multiple dimensions.

Recommended Textbooks

Artificial Intelligence: A Modern Approach	
by Peter Norvig, Stuart Russell	

Forward and Back Propagation in Neural Networks
A deep dive into how Neural Networks are trained using Gradient Descent. Output predictions, are compared to observations to 
calculate loss and Backward propagation then computes gradients by working backward through the network
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