
Rahul Singh	
rsingh@arrsingh.com

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

LSTM Networks

1

Fundamentals

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

Recurrent Neural Networks
Recurrent Neural Networks can model inputs
that have a temporal dependency and ordering

The structure of an RNN is similar to that of
a FeedForward Network (input layer, hidden
layers and an output layer) with one
additional nuance…

In an RNN, since the inputs have a temporal
dependency, the inputs are fed to the
network and processed one at a time.

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 3

Recurrent Neural Networks
Recurrent Neural Networks can model inputs
that have a temporal dependency and ordering

In an RNN, since the inputs have a temporal
dependency, the inputs are fed to the
network and processed one at a time.

The structure of an RNN is similar to that of
a FeedForward Network (input layer, hidden
layers and an output layer) with one
additional nuance…

… the output from the hidden layer at time ,
is fed back as input to the hidden layer at
time along with the input at time

t

t + 1 t + 1

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 4

Recurrent Neural Networks
Simple Example: Network Traffic Prediction

Problem Statement: We have a network service (http) and we want to predict
the traffic every hour (for capacity planning). We want to scale up the service
(add capacity) if we predict that the traffic is going to increase, and we want to
scale down the service (release capacity) if we predict the traffic is going to
decrease.

Here are the observations of traffic (Requests Per Hour) for the past 8 hours:

Hour Traffic

10:00 PM 530
11:00 PM 645
12:00 AM 732
1:00 AM 845
2:00 AM 865
3:00 AM 720
4:00 AM 485
5:00 AM 366

Question: 	
Can we predict the traffic at 6:00 AM?
Should we add capacity or reduce it?

We can model this as a Recurrent
Neural Network?

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 5

Recurrent Neural Networks
Simple Example: Network Traffic Prediction

Problem Statement: We have a network service (http) and we want to predict
the traffic every hour (for capacity planning). We want to scale up the service
(add capacity) if we predict that the traffic is going to increase, and we want to
scale down the service (release capacity) if we predict the traffic is going to
decrease.

Given a sequence (traffic) over 8 time steps…

Question: 	
Can we predict the traffic at (6:00 AM)?
Should we add capacity or reduce it?

t8

530,
t0

645,
t1

732,
t2

845,
t3

865,
t4

720,
t5

485,
t6

366
t7

?
t8

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 6

Recurrent Neural Networks

Lets take another example…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 7

Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of random numbers, drawn from the set
, train an RNN to predict what the first element of the sequence was.

T
{0,1,2...9}

Example sequence over 8 time steps…

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

?

Question: 	
Can we train an RNN to predict the
first element seen - in this case 3?

The first element is 3

During training (BPTT) the derivative of any loss term with respect to
the recurrent parameter () must chain backward through all
previous hidden states.

Lt
β1, W1, Wh1

∂
∂β1

Lt =
∂

∂H1t
Lt

T

∑
k=0

t

∏
j=k+1

∂
∂H1j−1

H1j
∂

∂β1
H1k

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 8

Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of random numbers, drawn from the set
, train an RNN to predict what the first element of the sequence was.

T
{0,1,2...9}

Example sequence over 8 time steps…

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

?

Question: 	
Can we train an RNN to predict the
first element seen - in this case 3?

The first element is 3

During training (BPTT) the derivative of any loss term with respect to
the recurrent parameter () must chain backward through all
previous hidden states.

Lt
β1, W1, Wh1

∂
∂β1

Lt =
∂

∂H1t
Lt

T

∑
k=0

t

∏
j=k+1

∂
∂H1j−1

H1j
∂

∂β1
H1k

The terms (Jacobians) get multiplied repeatedly. 	

	
If the spectral norm (largest singular value) of each Jacobian is
consistently < 1 then as sequence length increases the gradient converges
to zero exponentially. If it’s consistently > 1 then the gradient explodes
exponentially.

∂
∂H1j−1

H1j

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 9

Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of random numbers, drawn from the set
, train an RNN to predict what the first element of the sequence was.

T
{0,1,2...9}

Example sequence over 8 time steps…

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

?

Question: 	
Can we train an RNN to predict the
first element seen - in this case 3?

The first element is 3

During training (BPTT) the derivative of any loss term with respect to
the recurrent parameter () must chain backward through all
previous hidden states.

Lt
β1, W1, Wh1

∂
∂β1

Lt =
∂

∂H1t
Lt

T

∑
k=0

t

∏
j=k+1

∂
∂H1j−1

H1j
∂

∂β1
H1k

In either case the training will fail

The terms (Jacobians) get multiplied repeatedly. 	

	
If the spectral norm (largest singular value) of each Jacobian is
consistently < 1 then as sequence length increases the gradient converges
to zero exponentially. If it’s consistently > 1 then the gradient explodes
exponentially.

∂
∂H1j−1

H1j

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 10

Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of random numbers, drawn from the set
, train an RNN to predict what the first element of the sequence was.

T
{0,1,2...9}

Example sequence over 8 time steps…

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

?

Question: 	
Can we train an RNN to predict the
first element seen - in this case 3?

The first element is 3

During training (BPTT) the derivative of any loss term with respect to
the recurrent parameter () must chain backward through all
previous hidden states.

Lt
β1, W1, Wh1

When gradients converge to zero: Vanishing Gradient Problem	
Training stalls because the gradients converge to zero and no signal reaches the early layers

When gradients explode to infinity: Exploding Gradient Problem	
Training fails because loss becomes NaN and the training crashes

In either case the training will fail

The terms (Jacobians) get multiplied repeatedly. 	

	
If the spectral norm (largest singular value) of each Jacobian is
consistently < 1 then as sequence length increases the gradient converges
to zero exponentially. If it’s consistently > 1 then the gradient explodes
exponentially.

∂
∂H1j−1

H1j

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 11

Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of random numbers, drawn from the set
, train an RNN to predict what the first element of the sequence was.

T
{0,1,2...9}

Example sequence over 8 time steps…

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

?

Question: 	
Can we train an RNN to predict the
first element seen - in this case 3?

The first element is 3

During training (BPTT) the derivative of any loss term with respect to
the recurrent parameter () must chain backward through all
previous hidden states.

Lt
β1, W1, Wh1

In either case the training will fail

The terms (Jacobians) get multiplied repeatedly. 	

	
If the spectral norm (largest singular value) of each Jacobian is
consistently < 1 then as sequence length increases the gradient converges
to zero exponentially. If it’s consistently > 1 then the gradient explodes
exponentially.

∂
∂H1j−1

H1j

Let’s look at this problem in a bit more detail…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 12

Recurrent Neural Networks

The terms (Jacobians) get multiplied repeatedly. 	

	
If the spectral norm (largest singular value) of each Jacobian is
consistently < 1 then as sequence length increases the gradient converges
to zero exponentially. If it’s consistently > 1 then the gradient explodes
exponentially.

∂
∂H1j−1

H1j

Sequence to Vector RNN over 3 Time Steps

For backpropagation we have to calculate
the partial derivative of the Loss function
w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

Backpropagation Through Time (BPTT) over 3 time steps	
Hidden layer gradients are derivatives of Loss from the final time step

⇒
∂

∂β1
L =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2 [∂
∂β1

H12 +
∂

∂H11
H12

∂
∂β1

H11 +
∂

∂H11
H12

∂
∂H10

H11
∂

∂β1
H10]

⇒
∂

∂β1
L =

∂
∂β1

L2

⇒
∂

∂β1
L =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂β1
H12+

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂β1

H11+

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂H10

H11
∂

∂β1
H10

Jacobians

Let’s look at this problem in a bit more detail…

For more details see the Tutorial on RNN Training and BPTT

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://cdn.arrsingh.com/ai-tutorials/51-rnn-training-and-bptt.pdf

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 13

Recurrent Neural Networks
Remember the First Element

Problem Statement: Given a sequence of random numbers, drawn from the set
, train an RNN to predict what the first element of the sequence was.

T
{0,1,2...9}

3,
t0

7,
t1

9,
t2

4,
t3

6,
t4

8,
t5

7,
t6

5
t7

? Question: 	
Can we train an RNN to predict the
first element seen - in this case 3?

In practice, this means that RNNs cannot “remember” elements
earlier in the sequence as the sequence length increases Answer: 	

For long sequences we cannot train
an RNN to predict the first element
seen. The training will fail because
of the vanishing gradient problem

Let’s look at this problem in a bit more detail…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 14

Recurrent Neural Networks

X0

Hinit

× W1

H10× Wh1 +β1 f1

X1

× W1

H11

X2

× W1

H12 = f1(XtW1 + H11Wh1 + β1)

̂Y2 = f2(H12W2 + β2)

t0 t1 t2

× Wh1 +β1 f1 × Wh1 +β1 f1

× W2

+β2

f2

L2 = f(̂Y2, Y2)

RNN cells store representations of input events
over time via the hidden state.

Let’s review an RNN unrolled over 3 time steps…

Let’s look at this problem in a bit more detail…

For the rest of the slides we’ll assume a single hidden
layer and drop the layer subscript to simplify the notation

We’ll replace with and so onH11 H1

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 15

Recurrent Neural Networks

X0

Hinit

× W1

H0× Wh +β1 f1

X1

× W1

H1

X2

× W1

̂Y2 = f2(H2W2 + β2)

t0 t1 t2

× Wh +β1 f1 × Wh +β1 f1

× W2

+β2

f2

L2 = f(̂Y2, Y2)

RNN cells store representations of input events
over time via the hidden state.

H2 = f1(XtW1 + H1Wh + β1)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 15

Recurrent Neural Networks

X0

Hinit

× W1

H0× Wh +β1 f1

X1

× W1

H1

X2

× W1

̂Y2 = f2(H2W2 + β2)

t0 t1 t2

× Wh +β1 f1 × Wh +β1 f1

× W2

+β2

f2

The initial
hidden state
is zero

L2 = f(̂Y2, Y2)

RNN cells store representations of input events
over time via the hidden state.

H2 = f1(XtW1 + H1Wh + β1)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 15

Recurrent Neural Networks

X0

Hinit

× W1

H0× Wh +β1 f1

X1

× W1

H1

X2

× W1

̂Y2 = f2(H2W2 + β2)

t0 t1 t2

× Wh +β1 f1 × Wh +β1 f1

× W2

+β2

f2

The initial
hidden state
is zero

L2 = f(̂Y2, Y2)

RNN cells store representations of input events
over time via the hidden state.

Subsequent hidden states store current
input as well as representations of all
previous inputs

H2 = f1(XtW1 + H1Wh + β1)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 16

Recurrent Neural NetworksRNN cells store representations of input events
over time via the hidden state.

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

As the sequence length increases, the
earlier inputs get “washed out” over time

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 16

Recurrent Neural NetworksRNN cells store representations of input events
over time via the hidden state.

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

As the sequence length increases, the
earlier inputs get “washed out” over time

Recent inputs dominate the hidden state…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 16

Recurrent Neural NetworksRNN cells store representations of input events
over time via the hidden state.

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

As the sequence length increases, the
earlier inputs get “washed out” over time

… as the earlier inputs decay

Recent inputs dominate the hidden state…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 17

Recurrent Neural NetworksRNN cells store representations of input events
over time via the hidden state.

The RNN has “Short Term Memory”

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 17

Recurrent Neural NetworksRNN cells store representations of input events
over time via the hidden state.

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier
in the sequence as the sequence length increases

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 17

Recurrent Neural NetworksRNN cells store representations of input events
over time via the hidden state.

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier
in the sequence as the sequence length increases

Question: Can we extend the RNN
architecture to solve this problem?

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 18

Recurrent Neural NetworksRNN cells store representations of input events
over time via the hidden state.

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier
in the sequence as the sequence length increases

What if we add a second state that
preserves earlier inputs without decay?

Question: Can we extend the RNN
architecture to solve this problem?

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 18

Recurrent Neural NetworksRNN cells store representations of input events
over time via the hidden state.

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier
in the sequence as the sequence length increases

What if we add a second state that
preserves earlier inputs without decay?

Question: Can we extend the RNN
architecture to solve this problem?

We’ll call it “Long Term Memory”

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 18

Recurrent Neural NetworksRNN cells store representations of input events
over time via the hidden state.

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier
in the sequence as the sequence length increases

What if we add a second state that
preserves earlier inputs without decay?

Question: Can we extend the RNN
architecture to solve this problem?

We’ll call it “Long Term Memory”

However its important to be selective. We
need mechanisms to decide what to keep,
what to forget, and what to add.

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

X0

t0

Hinit
× W1

× Wh +β1 f1 H0 H1 H2 H3 H4 H5 H6 H7 H8
× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

× W1

× Wh +β1 f1

X1

t0

X2

t0

X3

t0

X4

t0

X5

t0

X6

t0

X7

t0

X8

t0

19

Recurrent Neural NetworksRNN cells store representations of input events
over time via the hidden state.

The RNN has “Short Term Memory”

Result: RNNs cannot “remember” elements earlier
in the sequence as the sequence length increases

What if we add a second state that
preserves earlier inputs without decay?

Question: Can we extend the RNN
architecture to solve this problem?

We’ll call it “Long Term Memory”

However its important to be selective. We
need mechanisms to decide what to keep,
what to forget, and what to add.

Let’s look at the Cell in a bit more detail

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 20

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

̂Yt

RNN Cell

Start with an RNN Cell…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 20

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Hidden State (Short Term Memory)

̂Yt

RNN Cell

Start with an RNN Cell…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 20

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Hidden State (Short Term Memory)

Input at time step t

̂Yt

RNN Cell

Start with an RNN Cell…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 20

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Hidden State (Short Term Memory)

Input at time step t

̂YtOutput at time step t

RNN Cell

Start with an RNN Cell…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 21

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 HtLSTM Cell

Cell State (Long Term Memory)

Ct−1 Ct

̂Yt
Add a Second state (Cell State)…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 22

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Add a Forget Gate…

× Whf

× Wxf

+βf

Ft

̂Yt

A Forget Gate removes (forgets) information from the
Long Term Memory. A Gate is simply another neural
network layer with neurons, weights, biases and an
activation function.

Ft = σ(XtWxf + Ht−1Whf + βf)

Weights for the Input and Hidden state
as well as bias specific to this gate

The activation function is a σ (sigmoid) that controls how much
information to retain — from 0 (none) to 1 (all)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 23

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Add an Input Gate…

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It
An Input Gate adds information to the Long Term
Memory. A Gate is simply another neural network layer
with neurons, weights, biases and an activation function.

It = σ(XtWxi + Ht−1Whi + βi)

The activation function is a σ (sigmoid) that controls how much new
information to add — from 0 (none) to 1 (all)

Weights for the Input and Hidden state
as well as bias specific to this gate

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 24

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Add an Input Gate and the candidate input…

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It

+

× Whc

× Wxc

+βc

C̃t

C̃t = tanh(XtWxc + Ht−1Whc + βc)

The candidate (C̃) uses tanh to
generate potential new values
(from -1 to 1) that the input
gate may add to long-term
memory

The input gate uses the σ (sigmoid) activation
function to control how much new information
to add — from 0 (none) to 1 (all)

It = σ(XtWxi + Ht−1Whi + βi)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 25

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It

+

× Whc

× Wxc

+βc

C̃t

C̃t = tanh(XtWxc + Ht−1Whc + βc)

The candidate (C̃) uses tanh to
generate potential new values
(from -1 to 1) that the input
gate may add to long-term
memory

Gates use the sigmoid activation function to
output values from 0 to 1, controlling how
much information passes through.	

The candidate uses tanh to output values from
-1 to 1, allowing it to increase or decrease cell
state values.

The input gate uses the σ (sigmoid) activation
function to control how much new information
to add — from 0 (none) to 1 (all)

It = σ(XtWxi + Ht−1Whi + βi)

Add an Input Gate and the candidate input…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 26

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Compute the cell state at time …t

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It

+

× Whc

× Wxc

+βc

C̃t

The Cell state at time step ,
is the sum of the Hadamard
(element wise) products

t

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 27

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Add an Output gate…

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It

+

× Whc

× Wxc

+βc

C̃t

× Who

× Wxo

+βo

Ot

tanh

The Output Gate controls how much of the cell state to output as
the new hidden state. A Gate is simply another neural network
layer with neurons, weights, biases and an activation function.

Ot = σ(XtWxo + Ht−1Who + βo)

Ht = Ot ⊙ tanh(Ct)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 28

LSTM NetworksExtending the RNN Architecture for Long Term Memory

Xt

Ht−1 Ht

Ct−1 Ct

Add an Output gate…

× Whf

× Wxf

+βf

Ft

̂Yt

× Whi

× Wxi

+βi

It

+

× Whc

× Wxc

+βc

C̃t

× Who

× Wxo

+βo

Ot

tanh

The Output Gate controls how much of the cell state to output as
the new hidden state. A Gate is simply another neural network
layer with neurons, weights, biases and an activation function.

Ot = σ(XtWxo + Ht−1Who + βo)

Ht = Ot ⊙ tanh(Ct)

 can be unbounded. bounds the cell
state to a value between -1 and +1 before the
output gate controls what to expose via the
hidden state (used for the current output (
and for the next time step)

Ct tanh

̂Y

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 29

X0

Hinit
H0

X1

H1

X2

H2

t0 t1 t2
L2 = f(̂Y2, Y2)

Let’s review an LSTM unrolled over 3 time steps…

Cinit
C0 C1 C2

F0 = σ(X0Wxf + HinitWhf + βf)
I0 = σ(X0Wxi + HinitWhi + βi)
O0 = σ(X0Wxo + HinitWho + βo)
C̃0 = tanh(X0Wxc + HinitWhc + βc)
C0 = F0 ⊙ Cinit + I0 ⊙ C̃0
H0 = O0 ⊙ tanh(C0)

̂Y1 = f(H1W2 + β2)̂Y0 = f(H0W2 + β2)

F1 = σ(X1Wxf + H0Whf + βf)
I1 = σ(X1Wxi + H0Whi + βi)
O1 = σ(X1Wxo + H0Who + βo)
C̃1 = tanh(X1Wxc + H0Whc + βc)
C1 = F1 ⊙ C0 + I1 ⊙ C̃1
H1 = O1 ⊙ tanh(C1)

̂Y2 = f(H2W2 + β2)

F2 = σ(X2Wxf + H1Whf + βf)
I2 = σ(X2Wxi + H1Whi + βi)
O2 = σ(X2Wxo + H1Who + βo)
C̃2 = tanh(X2Wxc + H1Whc + βc)
C2 = F2 ⊙ C1 + I2 ⊙ C̃2
H2 = O2 ⊙ tanh(C2)

LSTM Networks

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 30

LSTM unrolled over 3 Time Steps LSTM Networks

Let’s walk through how we train this
LSTM unrolled over 3 time steps
Training via Gradient Descent involves a

Forward Pass, Computing the Cost Function,
Backpropagation and Parameter Updates
Training an LSTM uses Backpropagation Through Time (BPTT), computing
gradients through each gate (Forget, Input, Output) and the Candidate

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 31

For backpropagation we have to calculate the partial
derivative of the Loss function w.r.t the parameters
Wh1, W1, W2, Wxf, Wxi, Wxo, Whf, Whi, Who, Wxc, Whc, β1, β2, βf, βi, βo, βc

∂
∂β1

L,
∂

∂β2
L,

∂
∂βf

L,
∂

∂βi
L,

∂
∂βo

L,
∂

∂βc
L

Gradient Descent for LSTM
Step 1: Start with initial values for the Parameters

Step 2: Forward Propagation (compute)…

Step 3: Backpropagation Through Time

Step 4: Parameter Updates

Step 5: Go to step 2 and repeat

L = L0 + L1 + L2

LSTM NetworksLSTM unrolled over 3 Time Steps

Hinit

Cinit C0

H0

̂Y0

X0

t0

C1

H1

̂Y1

X1

t1

C2

H2

̂Y2

X2

t2

∂
∂Wh1

L,
∂

∂W1
L,

∂
∂W2

L

∂
∂Wxf

L,
∂

∂Wxi
L,

∂
∂Wxo

L,

∂
∂Wxc

L,
∂

∂Whc
L

∂
∂Whf

L,
∂

∂Whi
L,

∂
∂Who

L,

Wh1, W1, W2, Wxf , Wxi, Wxo, Whf , Whi, Who, Wxc, Whc, β1, β2, βf , βi, βo, βc

F0, I0, O0, C̃0, C0, H0, ̂Y0

F1, I1, O1, C̃1, C1, H1, ̂Y1

F2, I2, O2, C̃2, C2, H2, ̂Y2

∂
∂Wh1

L,
∂

∂W1
L,

∂
∂W2

L,

∂
∂Wxf

L,
∂

∂Wxi
L,

∂
∂Wxo

L,

∂
∂Whf

L,
∂

∂Whi
L,

∂
∂Who

L,
∂

∂Wxc
L,

∂
∂Whc

L

∂
∂β1

L,
∂

∂β2
L,

∂
∂βf

L,
∂

∂βi
L,

∂
∂βo

L,
∂

∂βc
L

β2 = β2 − (∂
∂β2

L) × lr βo = βo − (∂
∂βo

L) × lr Whf = Whf − (∂
∂Whf

L) × lr Wxi = Wxi − (∂
∂Wxi

L) × lr

β1 = β1 − (∂
∂β1

L) × lr Wh1 = Wh1 − (∂
∂Wh1

L) × lr Whi = Whi − (∂
∂Whi

L) × lr Wxo = Wxo − (∂
∂Wxo

L) × lr

βf = βf − (∂
∂βf

L) × lr W1 = W1 − (∂
∂W1

L) × lr Who = Who − (∂
∂Who

L) × lr Wxc = Wxc − (∂
∂Wxc

L) × lr

βi = βi − (∂
∂βi

L) × lr W2 = W2 − (∂
∂W2

L) × lr Wxf = Wxf − (∂
∂Wxf

L) × lr Whc = Whc − (∂
∂Whc

L) × lr

βc = βc − (∂
∂βc

L) × lr

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 32

Related Tutorials & Textbooks

For a complete list of tutorials see:	
https://arrsingh.com/ai-tutorials

Neural Networks
An introduction to Neural Networks starting from a foundation of linear regression, logistic classification and multi class
classification models along with the matrix representation of a neural network generalized to l layers with n neurons

Gradient Descent for Multiple Regression
Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear
model in multiple dimensions.

Recommended Textbooks

Artificial Intelligence: A Modern Approach	
by Peter Norvig, Stuart Russell	

Forward and Back Propagation in Neural Networks
A deep dive into how Neural Networks are trained using Gradient Descent. Output predictions, are compared to observations to
calculate loss and Backward propagation then computes gradients by working backward through the network

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://arrsingh.com/ai-tutorials
https://cdn.arrsingh.com/ai-tutorials/40-neural-networks.pdf
https://cdn.arrsingh.com/21-gradient-descent-multiple-regression.pdf
https://www.amazon.com/Artificial-Intelligence-Modern-Approach-Global/dp/1292401133/145-7835510-0841302?pd_rd_w=iH9vD&content-id=amzn1.sym.4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_p=4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_r=HSCJ76PVENF07RXN137F&pd_rd_wg=8U3PC&pd_rd_r=1c660f60-a0d2-443c-b802-7f2e0720c983&pd_rd_i=1292401133&psc=1&linkCode=ll1&tag=arrsingh-20&linkId=213326aa44c97c9f0b4240fe1e56d1a2&language=en_US&ref_=as_li_ss_tl
https://cdn.arrsingh.com/ai-tutorials/41-forward-back-propagation-neural-networks.pdf

