
Rahul Singh	
rsingh@arrsingh.com

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Recurrent Neural Networks

1

Training & Back Propagation Through Time

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

Recurrent Neural NetworksHow do we represent RNNs mathematically?

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

Weights

 W2
n1 × n2

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

Weights

 W2
n1 × n2

Biases

 β2
n2 × 1

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

Weights

 W2
n1 × n2

Biases

 β2
n2 × 1

Outputs

 ̂Yt
m × n2

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

Weights

 W2
n1 × n2

Biases

 β2
n2 × 1

Outputs

 ̂Yt
m × n2

Weight

 Wh1
n1 × n1H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

Weights

 W2
n1 × n2

Biases

 β2
n2 × 1

Outputs

 ̂Yt
m × n2

Weight

 Wh1
n1 × n1H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

Output

 H1t
m × n1

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 3

Recurrent Neural NetworksHow do we represent RNNs mathematically?

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

Bias addition is via Broadcasting. Every element of the Bias vector
() is added to the corresponding column of f ().β1 XtW1 + H1t−1Wh1

Bias addition is via Broadcasting. Every
element of the Bias Vector () is added
to the corresponding column of ().

β2
H1tW2

L = f(̂Y, Y)
Loss is a function of Predicted vs Actual Output
Loss Function

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 3

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

Bias addition is via Broadcasting. Every element of the Bias vector
() is added to the corresponding column of f ().β1 XtW1 + H1t−1Wh1

Bias addition is via Broadcasting. Every
element of the Bias Vector () is added
to the corresponding column of ().

β2
H1tW2

L = f(̂Y, Y)
Loss is a function of Predicted vs Actual Output
Loss Function

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 3

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

Bias addition is via Broadcasting. Every element of the Bias vector
() is added to the corresponding column of f ().β1 XtW1 + H1t−1Wh1

Bias addition is via Broadcasting. Every
element of the Bias Vector () is added
to the corresponding column of ().

β2
H1tW2

L = f(̂Y, Y)
Loss is a function of Predicted vs Actual Output
Loss Function

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 3

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

Bias addition is via Broadcasting. Every element of the Bias vector
() is added to the corresponding column of f ().β1 XtW1 + H1t−1Wh1

Bias addition is via Broadcasting. Every
element of the Bias Vector () is added
to the corresponding column of ().

β2
H1tW2

L = f(̂Y, Y)
Loss is a function of Predicted vs Actual Output
Loss Function

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 3

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

Weights

 W2
n1 × n2

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

Bias addition is via Broadcasting. Every element of the Bias vector
() is added to the corresponding column of f ().β1 XtW1 + H1t−1Wh1

Bias addition is via Broadcasting. Every
element of the Bias Vector () is added
to the corresponding column of ().

β2
H1tW2

L = f(̂Y, Y)
Loss is a function of Predicted vs Actual Output
Loss Function

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 3

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

Weights

 W2
n1 × n2

Biases

 β2
n2 × 1

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

Bias addition is via Broadcasting. Every element of the Bias vector
() is added to the corresponding column of f ().β1 XtW1 + H1t−1Wh1

Bias addition is via Broadcasting. Every
element of the Bias Vector () is added
to the corresponding column of ().

β2
H1tW2

L = f(̂Y, Y)
Loss is a function of Predicted vs Actual Output
Loss Function

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 3

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

Weights

 W2
n1 × n2

Biases

 β2
n2 × 1

Outputs

 ̂Yt
m × n2

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

Bias addition is via Broadcasting. Every element of the Bias vector
() is added to the corresponding column of f ().β1 XtW1 + H1t−1Wh1

Bias addition is via Broadcasting. Every
element of the Bias Vector () is added
to the corresponding column of ().

β2
H1tW2

L = f(̂Y, Y)
Loss is a function of Predicted vs Actual Output
Loss Function

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 3

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

Weights

 W2
n1 × n2

Biases

 β2
n2 × 1

Outputs

 ̂Yt
m × n2

Weight

 Wh1
n1 × n1H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

Bias addition is via Broadcasting. Every element of the Bias vector
() is added to the corresponding column of f ().β1 XtW1 + H1t−1Wh1

Bias addition is via Broadcasting. Every
element of the Bias Vector () is added
to the corresponding column of ().

β2
H1tW2

L = f(̂Y, Y)
Loss is a function of Predicted vs Actual Output
Loss Function

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 3

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Inputs

 Xt
m × n0

Weights

 W1
n0 × n1

Biases

 β1
n1 × 1

Weights

 W2
n1 × n2

Biases

 β2
n2 × 1

Outputs

 ̂Yt
m × n2

Weight

 Wh1
n1 × n1H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)
 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically for
classification, or / for regression)
f2 L2 softmax

ReLU Identity

 is matrixXt m × n0

 is the number of features in the input datan0

 is matrixW1 n0 × n1

 is the number of neurons in the hidden layer n1 L1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of neurons in the output layer n2 L2

Output

 H1t
m × n1

Bias addition is via Broadcasting. Every element of the Bias vector
() is added to the corresponding column of f ().β1 XtW1 + H1t−1Wh1

Bias addition is via Broadcasting. Every
element of the Bias Vector () is added
to the corresponding column of ().

β2
H1tW2

L = f(̂Y, Y)
Loss is a function of Predicted vs Actual Output
Loss Function

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 4

Recurrent Neural NetworksHow do we represent RNNs mathematically?

Xt

H1t−1
× Wh1

× W1

+β1 H1t = f1(XtW1 + H1t−1Wh1 + β1)

× W2

f1

f2

+β2

̂Yt = f2(H1tW2 + β2)
Inputs

 Xt
m × n0

Weights
 W1

n0 × n1

Biases
 β1

n1 × 1

Weights
 W2

n1 × n2

Biases
 β2

n2 × 1

Outputs
 ̂Yt

m × n2

Weight
 Wh1

n1 × n1

Output
 H1t

m × n1

 is matrixXt m × n0

 is matrixW1 n0 × n1

 is vectorβ1 n1 × 1
 is matrixWh1 n1 × n1

 is matrixH1t m × n1

 is matrixW2 n1 × n2

 is vectorβ2 n2 × 1
 is matrix̂Yt m × n2

 is the number of features in the input datan0
 is the number of neurons in the hidden layer n1 L1
 is the number of neurons in the output layer n2 L2

A Single RNN Layer

Lt = f(̂Yt, Yt)
Loss is a function of Predicted vs Actual Output
Loss FunctionIn General the Total Loss is the

sum of Losses over all time steps:	

L =
T

∑
t=0

Lt

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 5

Recurrent Neural Networks

Lets look at training a Sequence to Vector RNN unrolled over 3 time steps

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 6

Recurrent Neural NetworksSequence to Vector RNN over 3 Time Steps

X0

Hinit

× W1

H10× Wh1 +β1 f1

̂Y0

X1

× W1

H11

̂Y1

X2

× W1

H12

̂Y2 = f2(H12W2 + β2)

t0 t1 t2

× Wh1 +β1 f1 × Wh1 +β1 f1

× W2

+β2

f2

Outputs at time steps
and are not computed

t0
t1

The RNN only produces an
output at the last time step

The initial
hidden state
is zero

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 7

Recurrent Neural NetworksSequence to Vector RNN over 3 Time Steps

X0

Hinit

× W1

H10× Wh1 +β1 f1

̂Y0

X1

× W1

H11

̂Y1

X2

× W1

H12

̂Y2 = f2(H12W2 + β2)

t0 t1 t2

× Wh1 +β1 f1 × Wh1 +β1 f1

× W2

+β2

f2

Loss at time steps and
 are not computed

t0
t1

The loss is only computed
at the last time step

The initial
hidden state
is zero

L0 = f(̂Y0, Y0) L1 = f(̂Y1, Y1) L2 = f(̂Y2, Y2)

L = L0 + L1 + L2

⇒ L = L2

Total Loss

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 8

Recurrent Neural NetworksSequence to Vector RNN over 3 Time Steps

X0

Hinit

× W1

H10× Wh1 +β1 f1

̂Y0

X1

× W1

H11

̂Y1

X2

× W1

H12

̂Y2 = f2(H12W2 + β2)

t0 t1 t2

× Wh1 +β1 f1 × Wh1 +β1 f1

× W2

+β2

f2

Let’s walk through how we train this
RNN unrolled over 3 time steps
Training via Gradient Descent involves a

Forward Pass, Computing the Cost Function,
Backpropagation and Parameter Updates
Backpropagation in an RNN must be done over multiple time steps. The

algorithm is called Backpropagation Through Time (BPTT)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 9

Recurrent Neural NetworksSequence to Vector RNN over 3 Time Steps

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)

 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically
for classification, or / for regression)
f2 L2 softmax

ReLU Identity

̂Y2 = f2(H12W2 + β2)

A Sequence to Vector RNN (many-to-one) only
produces an output and Loss at the last time step.

Forward Propagation
Only computes the output at the last time step

L2 = f(̂Y2, Y2)

Loss Function
Loss function can be Categorical Cross Entropy or Binary Cross Entropy

L = −
K

∑
j=1

yj loge ̂yj

L = − [y loge ̂y + (1 − y) loge(1 − ̂y)]

Example Loss Functions
Binary Cross Entropy

Categorical Cross Entropy

L2 = f(̂Y2, Y2)

L = L2
Total Loss is the loss
at the last time step

H12 = f1(X2W1 + H11Wh1 + β1)

H11 = f1(X1W1 + H10Wh1 + β1)

H10 = f1(X0W1 + HinitWh1 + β1)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 10

Recurrent Neural NetworksSequence to Vector RNN over 3 Time Steps

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)

 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically
for classification, or / for regression)
f2 L2 softmax

ReLU Identity

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

Backpropagation	
Output layer gradients are only from the final time step

⇒
∂

∂β2
L =

∂
∂β2

L2

⇒
∂

∂W2
L =

∂
∂W2

L2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 11

Recurrent Neural NetworksSequence to Vector RNN over 3 Time Steps

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)

 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically
for classification, or / for regression)
f2 L2 softmax

ReLU Identity

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

Backpropagation Through Time (BPTT)	
Hidden layer gradients are derivatives of Loss from the final time step

⇒
∂

∂β1
L =

∂
∂β1

L2

⇒
∂

∂β1
L =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂β1
H12+

Chain Rule.
depends on

H12
β1

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂β1

H11+

Chain Rule.
depends on

H12
H11

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂H10

H11
∂

∂β1
H10

Chain Rule.
depends on

H11
H10

⇒
∂

∂β1
L =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2 [∂
∂β1

H12 +
∂

∂H11
H12

∂
∂β1

H11 +
∂

∂H11
H12

∂
∂H10

H11
∂

∂β1
H10]

BPTT sums the derivatives
over all the time steps

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 12

Recurrent Neural NetworksSequence to Vector RNN over 3 Time Steps

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)

 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically
for classification, or / for regression)
f2 L2 softmax

ReLU Identity

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

Backpropagation Through Time (BPTT)	
Hidden layer gradients are derivatives of Loss from the final time step

⇒
∂

∂W1
L =

∂
∂W1

L2

⇒
∂

∂W1
L =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂W1
H12+

Chain Rule.
depends on

H12
W1

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂W1

H11+

Chain Rule.
depends on

H12
H11

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂H10

H11
∂

∂W1
H10

Chain Rule.
depends on

H11
H10

⇒
∂

∂W1
L =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2 [∂
∂W1

H12 +
∂

∂H11
H12

∂
∂W1

H11 +
∂

∂H11
H12

∂
∂H10

H11
∂

∂W1
H10]

BPTT sums the derivatives
over all the time steps

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 13

Recurrent Neural NetworksSequence to Vector RNN over 3 Time Steps

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)

 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically
for classification, or / for regression)
f2 L2 softmax

ReLU Identity

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

Backpropagation Through Time (BPTT)	
Hidden layer gradients are derivatives of Loss from the final time step

⇒
∂

∂Wh1
L =

∂
∂Wh1

L2

⇒
∂

∂Wh1
L =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂Wh1
H12+

Chain Rule.
depends on

H12
Wh1

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂Wh1

H11+

Chain Rule.
depends on

H12
H11

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂H10

H11
∂

∂Wh1
H10

Chain Rule.
depends on

H11
H10

⇒
∂

∂Wh1
L =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2 [∂
∂Wh1

H12 +
∂

∂H11
H12

∂
∂Wh1

H11 +
∂

∂H11
H12

∂
∂H10

H11
∂

∂Wh1
H10]

BPTT sums the derivatives
over all the time steps

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 14

Recurrent Neural NetworksSequence to Vector RNN over 3 Time Steps

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)

 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically
for classification, or / for regression)
f2 L2 softmax

ReLU Identity

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

Parameter Updates

β2 = β2 − (∂
∂β2

L) × learning_rate

W2 = W2 − (∂
∂W2

L) × learning_rate

β1 = β1 − (∂
∂β1

L) × learning_rate

W1 = W1 − (∂
∂W1

L) × learning_rate

Wh1 = Wh1 − (∂
∂Wh1

L) × learning_rate

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 15

Recurrent Neural NetworksSequence to Vector RNN over 3 Time Steps

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)

 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically
for classification, or / for regression)
f2 L2 softmax

ReLU Identity

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

Gradient Descent for Sequence to Vector RNN

Step 1: Start with initial values for W1, W2, Wh1, β1, β2

Step 2: Forward Propagation…

Step 3: Backpropagation Through Time

Step 4: Parameter Updates

Step 5: Go to step 2 and repeat

L2 = f(̂Y2, Y2)

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

β2 = β2 − (∂
∂β2

L) × learning_rate

W2 = W2 − (∂
∂W2

L) × learning_rateβ1 = β1 − (∂
∂β1

L) × learning_rate

W1 = W1 − (∂
∂W1

L) × learning_rate Wh1 = Wh1 − (∂
∂Wh1

L) × learning_rate

̂Y2 = f2(H12W2 + β2)

H12 = f1(X2W1 + H11Wh1 + β1)

H11 = f1(X1W1 + H10Wh1 + β1)

H10 = f1(X0W1 + HinitWh1 + β1)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 16

Recurrent Neural Networks

Lets look at training a Sequence to Sequence RNN unrolled over 3 time steps

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 17

Recurrent Neural NetworksSequence to Sequence RNN over 3 Time Steps

X0

Hinit

× W1

H10× Wh1 +β1 f1

̂Y0 = f2(H10W2 + β2)

X1

× W1

H11

̂Y1 = f2(H11W2 + β2)

X2

× W1

H12

̂Y2 = f2(H12W2 + β2)

t0 t1 t2

× Wh1 +β1 f1 × Wh1 +β1 f1

× W2

+β2

f2

Outputs are computed
at each time step

The initial
hidden state
is zero

× W2

+β2

f2

× W2

+β2

f2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 18

Recurrent Neural Networks

X0

Hinit

× W1

H10× Wh1 +β1 f1

X1

× W1

H11

X2

× W1

H12

̂Y2 = f2(H12W2 + β2)

t0 t1 t2

× Wh1 +β1 f1 × Wh1 +β1 f1

× W2

+β2

f2

Loss is computed at
each time step

The initial
hidden state
is zero

L0 = f(̂Y0, Y0) L1 = f(̂Y1, Y1) L2 = f(̂Y2, Y2)

L = L0 + L1 + L2

Total Loss

Sequence to Sequence RNN over 3 Time Steps

̂Y0 = f2(H10W2 + β2) ̂Y1 = f2(H11W2 + β2)

× W2

+β2

f2

× W2

+β2

f2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 19

Recurrent Neural Networks

X0

Hinit

× W1

H10× Wh1 +β1 f1

̂Y0

X1

× W1

H11

̂Y1

X2

× W1

H12

̂Y2 = f2(H12W2 + β2)

t0 t1 t2

× Wh1 +β1 f1 × Wh1 +β1 f1

× W2

+β2

f2

Let’s walk through how we train this
RNN unrolled over 3 time steps
Training via Gradient Descent involves a

Forward Pass, Computing the Cost Function,
Backpropagation and Parameter Updates
Backpropagation in an RNN must be done over multiple time steps. The

algorithm is called Backpropagation Through Time (BPTT)

Sequence to Sequence RNN over 3 Time Steps

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 20

Recurrent Neural Networks

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

H1t = f1(XtW1 + H1t−1Wh1 + β1)

̂Yt = f2(H1tW2 + β2)

 is an activation function on Layer (typically) f1 L1 tanh

 is an activation function on Layer (typically
for classification, or / for regression)
f2 L2 softmax

ReLU Identity

A Sequence to Sequence RNN (many-to-many)
produces an output and Loss at every time step.

Forward Propagation
Computes the output at every time step

L2 = f(̂Y2, Y2)

Loss Function
Loss function can be Categorical Cross Entropy or Binary Cross Entropy

L = −
K

∑
j=1

yj loge ̂yj

L = − [y loge ̂y + (1 − y) loge(1 − ̂y)]

Example Loss Functions
Binary Cross Entropy

Categorical Cross Entropy

L2 = f(̂Y2, Y2)

L = L0 + L1 + L2 Total Loss is the sum of the
losses at each time step

̂Y2 = f2(H12W2 + β2)H12 = f1(X2W1 + H11Wh1 + β1)

Sequence to Sequence RNN over 3 Time Steps

̂Y1

L1 = f(̂Y1, Y1)
̂Y0

L0 = f(̂Y0, Y0)
H11 = f1(X1W1 + H10Wh1 + β1) ̂Y1 = f2(H11W2 + β2)

H10 = f1(X0W1 + HinitWh1 + β1) ̂Y0 = f2(H10W2 + β2)

L1 = f(̂Y1, Y1)L0 = f(̂Y0, Y0)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 21

Recurrent Neural Networks

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

Backpropagation	
Output layer gradients are summed from each time step

⇒
∂

∂β2
L =

∂
∂β2

L0 +
∂

∂β2
L1 +

∂
∂β2

L2

⇒
∂

∂W2
L =

∂
∂W2

L0 +
∂

∂W2
L1 +

∂
∂W2

L2+

Sequence to Sequence RNN over 3 Time Steps

̂Y1

L1 = f(̂Y1, Y1)
̂Y0

L0 = f(̂Y0, Y0)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 22

Recurrent Neural Networks

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

⇒
∂

∂β1
L =

∂
∂β1

L0 +
∂

∂β1
L1 +

∂
∂β1

L2

⇒
∂

∂β1
L2 =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂β1
H12+

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂β1

H11+

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂H10

H11
∂

∂β1
H10

Chain Rule.
depends on

H12
β1

Chain Rule.
depends on

H12
H11

Chain Rule.
depends on

H11
H10

⇒
∂

∂β1
L2 =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2 [∂
∂β1

H12 +
∂

∂H11
H12

∂
∂β1

H11 +
∂

∂H11
H12

∂
∂H10

H11
∂

∂β1
H10]

Sequence to Sequence RNN over 3 Time Steps

̂Y1

L1 = f(̂Y1, Y1)
̂Y0

L0 = f(̂Y0, Y0) ⇒
∂

∂β1
L1 =

∂
∂ ̂Y1

L1
∂

∂H11

̂Y1
∂

∂β1
H11+

∂
∂ ̂Y1

L1
∂

∂H11

̂Y1
∂

∂H10
H11

∂
∂β1

H10+

⇒
∂

∂β1
L1 =

∂
∂ ̂Y1

L1
∂

∂H11

̂Y1 [∂
∂β1

H11 +
∂

∂H10
H11

∂
∂β1

H10+]

⇒
∂

∂β1
L0 =

∂
∂ ̂Y0

L0
∂

∂H10

̂Y0
∂

∂β1
H10+

Chain Rule.
depends on

H11
β1

Chain Rule.
depends on

H11
H10

Chain Rule.
depends on

H10
β1

Backpropagation Through Time (BPTT)	
Hidden layer gradients are the sum of the derivatives of Loss from each time step

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 23

Recurrent Neural Networks

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

Backpropagation Through Time (BPTT)	
Hidden layer gradients are the sum of the derivatives of Loss from each time step

Sequence to Sequence RNN over 3 Time Steps

⇒
∂

∂W1
L =

∂
∂W1

L0 +
∂

∂W1
L1 +

∂
∂W1

L2

⇒
∂

∂W1
L2 =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂W1
H12+

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂W1

H11+

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂H10

H11
∂

∂W1
H10

Chain Rule.
depends on

H12
W1

Chain Rule.
depends on

H12
H11

Chain Rule.
depends on

H11
H10

⇒
∂

∂W1
L2 =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2 [∂
∂W1

H12 +
∂

∂H11
H12

∂
∂W1

H11 +
∂

∂H11
H12

∂
∂H10

H11
∂

∂W1
H10]

⇒
∂

∂W1
L1 =

∂
∂ ̂Y1

L1
∂

∂H11

̂Y1
∂

∂W1
H11+

∂
∂ ̂Y1

L1
∂

∂H11

̂Y1
∂

∂H10
H11

∂
∂W1

H10+

⇒
∂

∂W1
L1 =

∂
∂ ̂Y1

L1
∂

∂H11

̂Y1 [∂
∂W1

H11 +
∂

∂H10
H11

∂
∂W1

H10+]

⇒
∂

∂W1
L0 =

∂
∂ ̂Y0

L0
∂

∂H10

̂Y0
∂

∂W1
H10+

Chain Rule.
depends on

H11
W1

Chain Rule.
depends on

H11
H10

Chain Rule.
depends on

H10
W1

23

̂Y1

L1 = f(̂Y1, Y1)
̂Y0

L0 = f(̂Y0, Y0)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 24

Recurrent Neural Networks

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

Sequence to Sequence RNN over 3 Time Steps

̂Y1

L1 = f(̂Y1, Y1)
̂Y0

L0 = f(̂Y0, Y0)

⇒
∂

∂Wh1
L =

∂
∂Wh1

L0 +
∂

∂Wh1
L1 +

∂
∂Wh1

L2

⇒
∂

∂Wh1
L2 =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂Wh1
H12+

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂Wh1

H11+

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2
∂

∂H11
H12

∂
∂H10

H11
∂

∂Wh1
H10

Chain Rule.
depends on

H12
Wh1

Chain Rule.
depends on

H12
H11

Chain Rule.
depends on

H11
H10

⇒
∂

∂Wh1
L2 =

∂
∂ ̂Y2

L2
∂

∂H12

̂Y2 [∂
∂Wh1

H12 +
∂

∂H11
H12

∂
∂Wh1

H11 +
∂

∂H11
H12

∂
∂H10

H11
∂

∂Wh1
H10]

⇒
∂

∂Wh1
L1 =

∂
∂ ̂Y1

L1
∂

∂H11

̂Y1
∂

∂Wh1
H11+

∂
∂ ̂Y1

L1
∂

∂H11

̂Y1
∂

∂H10
H11

∂
∂Wh1

H10+

⇒
∂

∂Wh1
L1 =

∂
∂ ̂Y1

L1
∂

∂H11

̂Y1 [∂
∂Wh1

H11 +
∂

∂H10
H11

∂
∂Wh1

H10+]

⇒
∂

∂Wh1
L0 =

∂
∂ ̂Y0

L0
∂

∂H10

̂Y0
∂

∂Wh1
H10+

Chain Rule.
depends on

H11
Wh1

Chain Rule.
depends on

H11
H10

Chain Rule.
depends on

H10
Wh1

2424

Backpropagation Through Time (BPTT)	
Hidden layer gradients are the sum of the derivatives of Loss from each time step

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 25

Recurrent Neural Networks

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

Parameter Updates

β2 = β2 − (∂
∂β2

L) × learning_rate

W2 = W2 − (∂
∂W2

L) × learning_rate

β1 = β1 − (∂
∂β1

L) × learning_rate

W1 = W1 − (∂
∂W1

L) × learning_rate

Wh1 = Wh1 − (∂
∂Wh1

L) × learning_rate

Sequence to Sequence RNN over 3 Time Steps

̂Y1

L1 = f(̂Y1, Y1)
̂Y0

L0 = f(̂Y0, Y0)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 26

Recurrent Neural Networks

t1

H11

X1

H12

t2

̂Y2

X2

Hinit

t0

X0

H10

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters Wh1, W1, W2, β1, β2

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

L2 = f(̂Y2, Y2)

Gradient Descent for Sequence to Sequence RNN

Step 1: Start with initial values for W1, W2, Wh1, β1, β2

Step 2: Forward Propagation…

Step 3: Backpropagation Through Time

Step 4: Parameter Updates

Step 5: Go to step 2 and repeat

∂
∂Wh1

L
∂

∂W1
L

∂
∂W2

L
∂

∂β1
L

∂
∂β2

L

β2 = β2 − (∂
∂β2

L) × learning_rate

W2 = W2 − (∂
∂W2

L) × learning_rateβ1 = β1 − (∂
∂β1

L) × learning_rate

W1 = W1 − (∂
∂W1

L) × learning_rate Wh1 = Wh1 − (∂
∂Wh1

L) × learning_rate

Sequence to Sequence RNN over 3 Time Steps

̂Y1

L1 = f(̂Y1, Y1)
̂Y0

L0 = f(̂Y0, Y0) H12 = f1(X2W1 + H11Wh1 + β1)

H11 = f1(X1W1 + H10Wh1 + β1) ̂Y1 = f2(H11W2 + β2)

H10 = f1(X0W1 + HinitWh1 + β1) ̂Y0 = f2(H10W2 + β2)

̂Y2 = f2(H12W2 + β2)

L = L0 + L1 + L2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 27

Related Tutorials & Textbooks

For a complete list of tutorials see:	
https://arrsingh.com/ai-tutorials

Neural Networks
An introduction to Neural Networks starting from a foundation of linear regression, logistic classification and multi class
classification models along with the matrix representation of a neural network generalized to l layers with n neurons

Gradient Descent for Multiple Regression
Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear
model in multiple dimensions.

Recommended Textbooks

Artificial Intelligence: A Modern Approach	
by Peter Norvig, Stuart Russell	

Forward and Back Propagation in Neural Networks
A deep dive into how Neural Networks are trained using Gradient Descent. Output predictions, are compared to observations to
calculate loss and Backward propagation then computes gradients by working backward through the network

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://arrsingh.com/ai-tutorials
https://cdn.arrsingh.com/ai-tutorials/40-neural-networks.pdf
https://cdn.arrsingh.com/21-gradient-descent-multiple-regression.pdf
https://www.amazon.com/Artificial-Intelligence-Modern-Approach-Global/dp/1292401133/145-7835510-0841302?pd_rd_w=iH9vD&content-id=amzn1.sym.4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_p=4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_r=HSCJ76PVENF07RXN137F&pd_rd_wg=8U3PC&pd_rd_r=1c660f60-a0d2-443c-b802-7f2e0720c983&pd_rd_i=1292401133&psc=1&linkCode=ll1&tag=arrsingh-20&linkId=213326aa44c97c9f0b4240fe1e56d1a2&language=en_US&ref_=as_li_ss_tl
https://cdn.arrsingh.com/ai-tutorials/41-forward-back-propagation-neural-networks.pdf

