

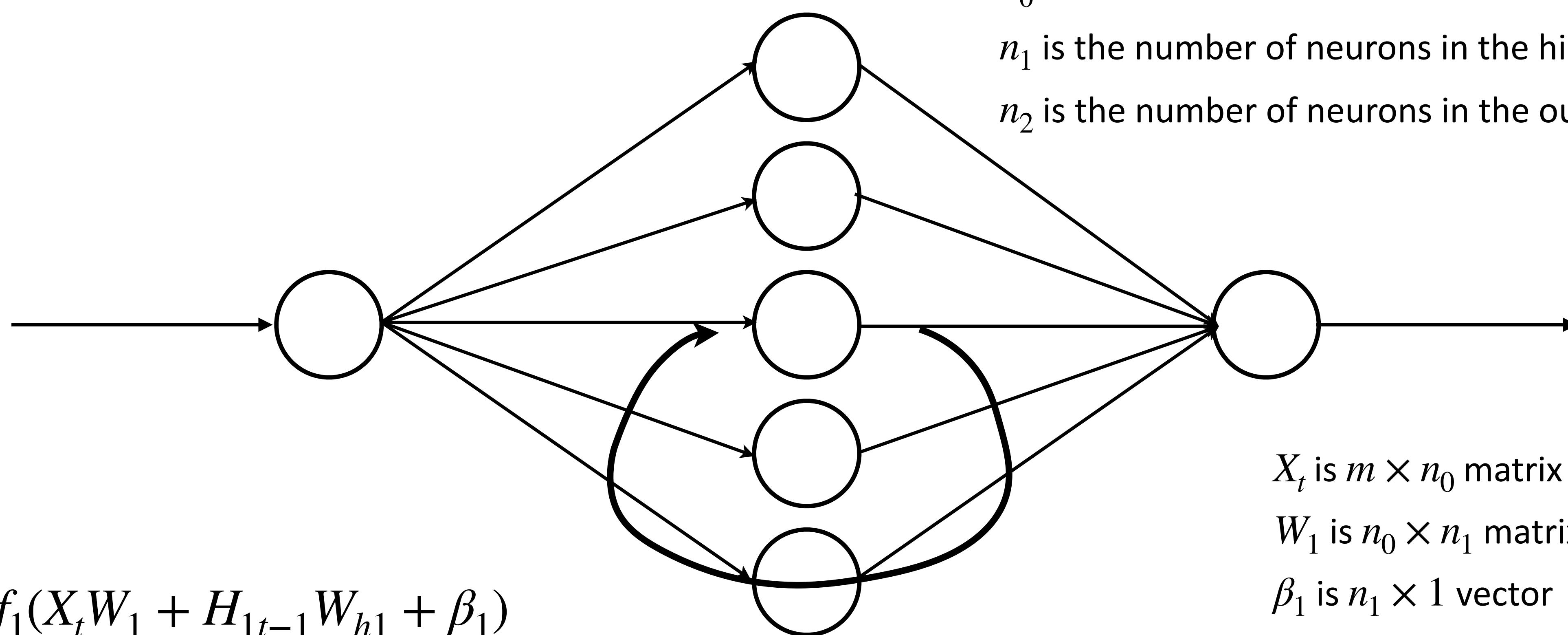
Recurrent Neural Networks

Training & Back Propagation Through Time

Rahul Singh
rsingh@arrsingh.com

How do we represent RNNs mathematically?

Recurrent Neural Networks



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

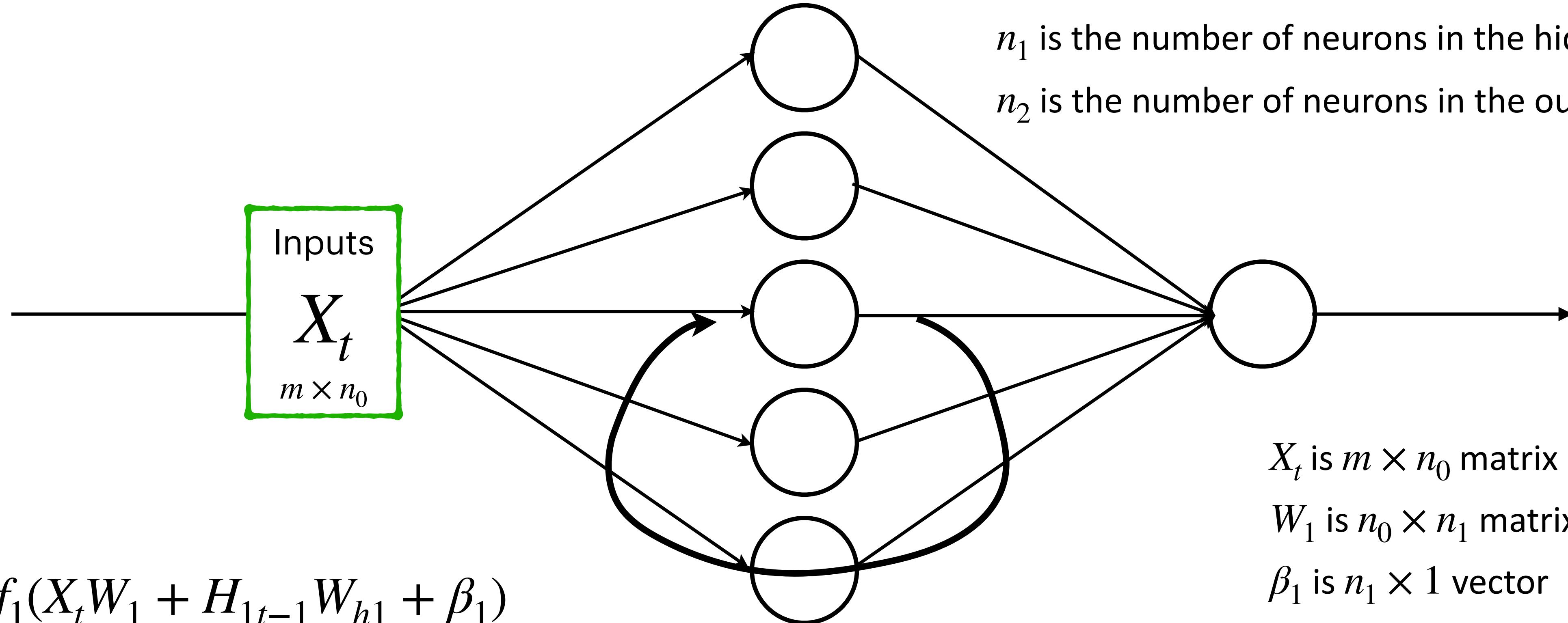
W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

How do we represent RNNs mathematically?

Recurrent Neural Networks



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

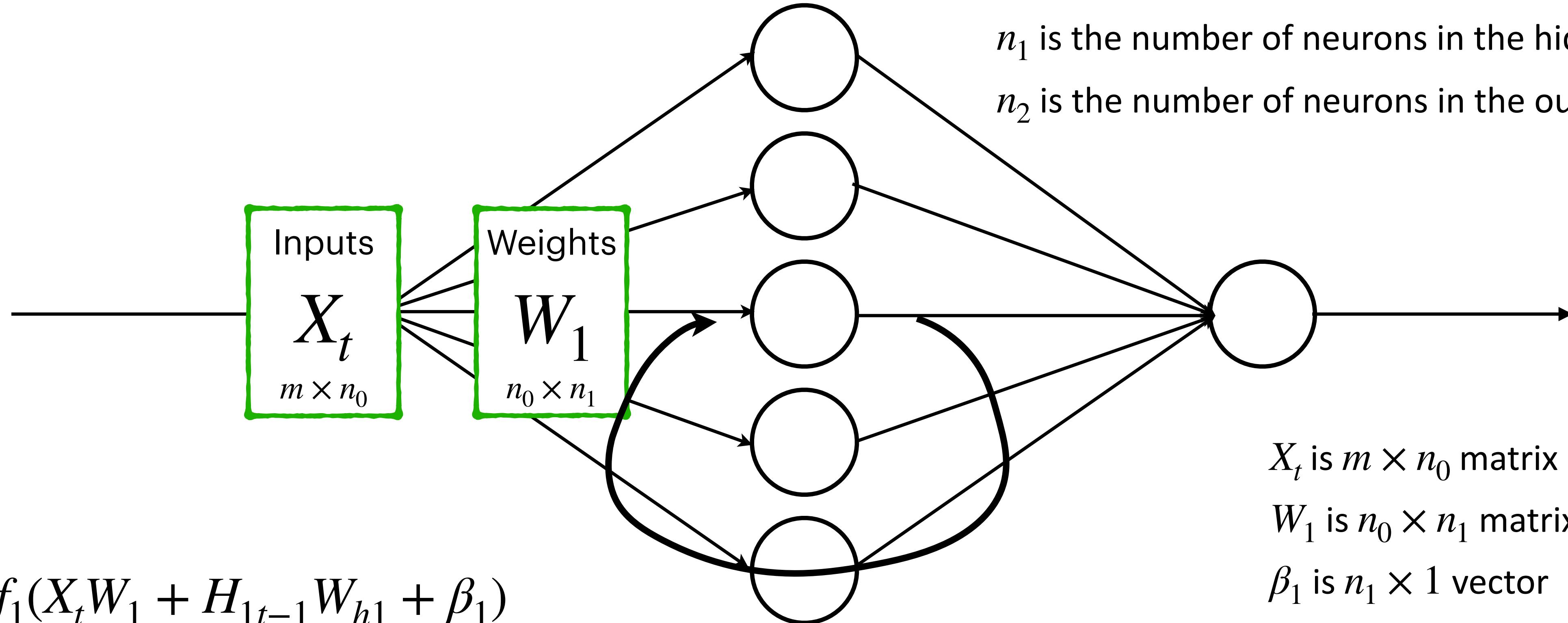
W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

How do we represent RNNs mathematically?

Recurrent Neural Networks



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

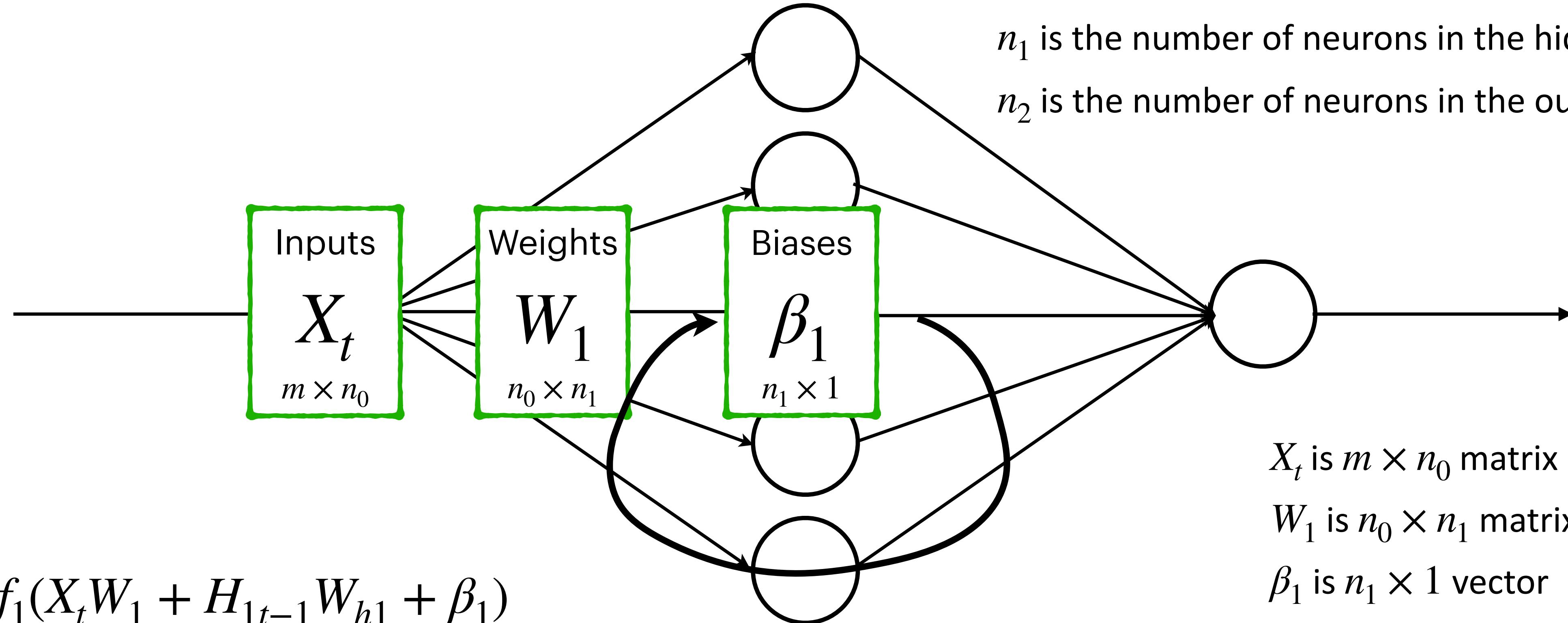
W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

How do we represent RNNs mathematically?

Recurrent Neural Networks



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

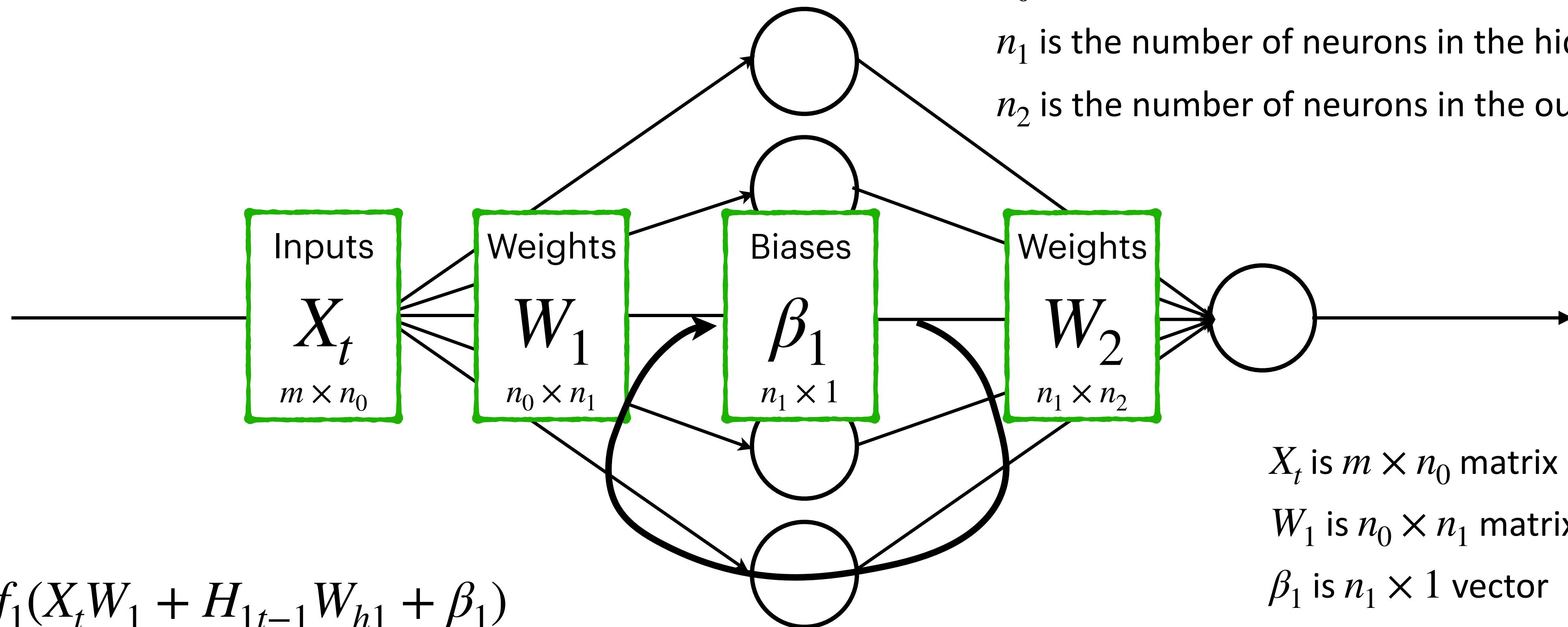
W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

How do we represent RNNs mathematically?

Recurrent Neural Networks



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

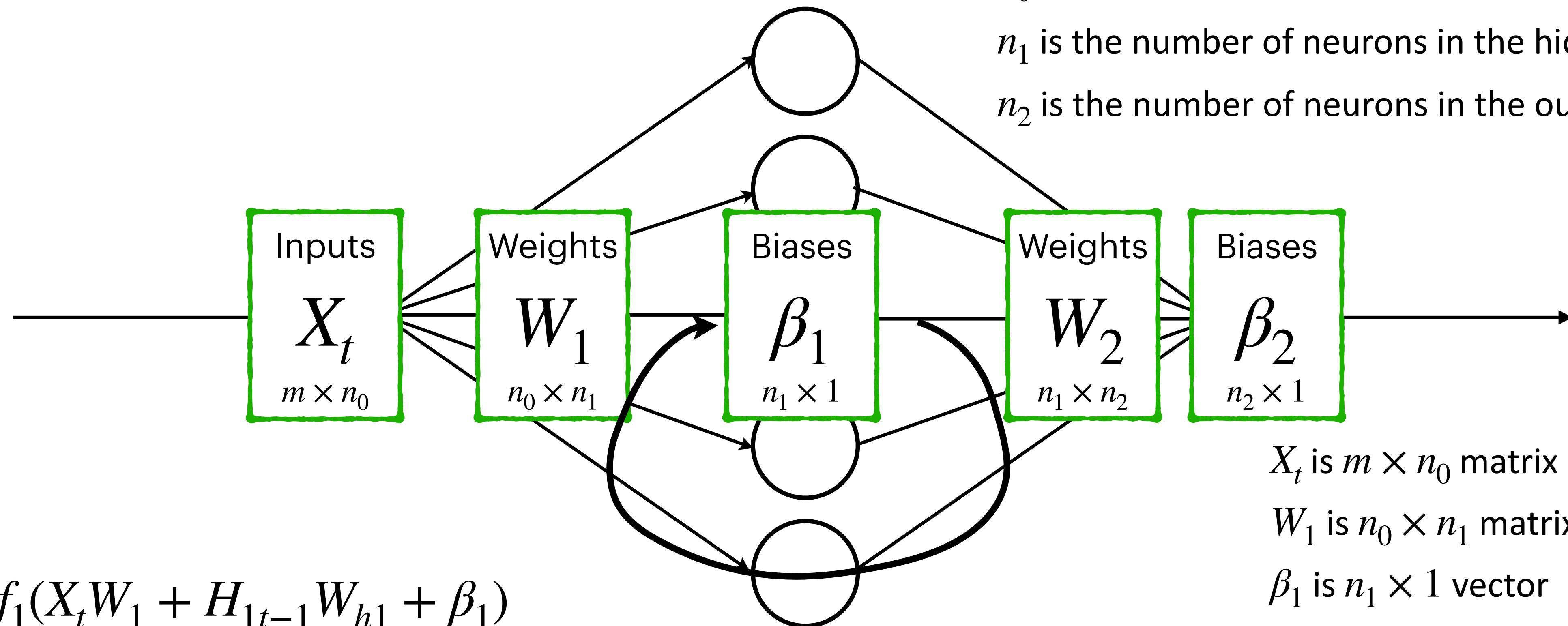
W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

How do we represent RNNs mathematically?

Recurrent Neural Networks



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

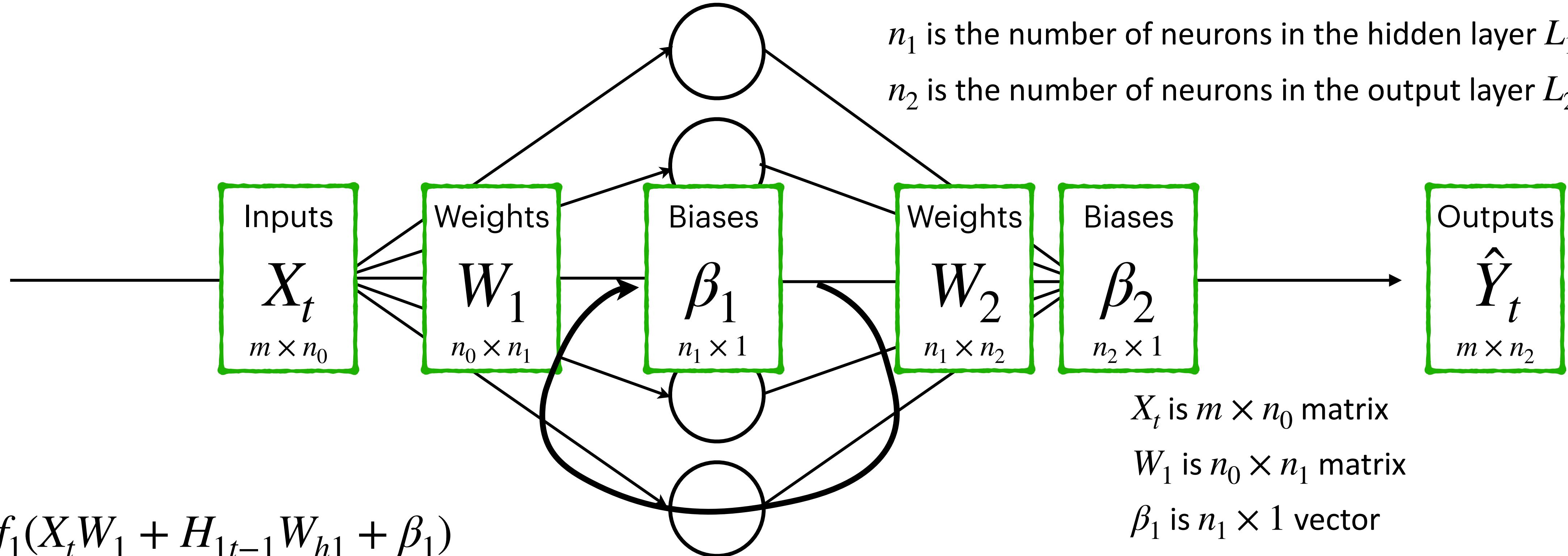
W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

How do we represent RNNs mathematically?

Recurrent Neural Networks



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

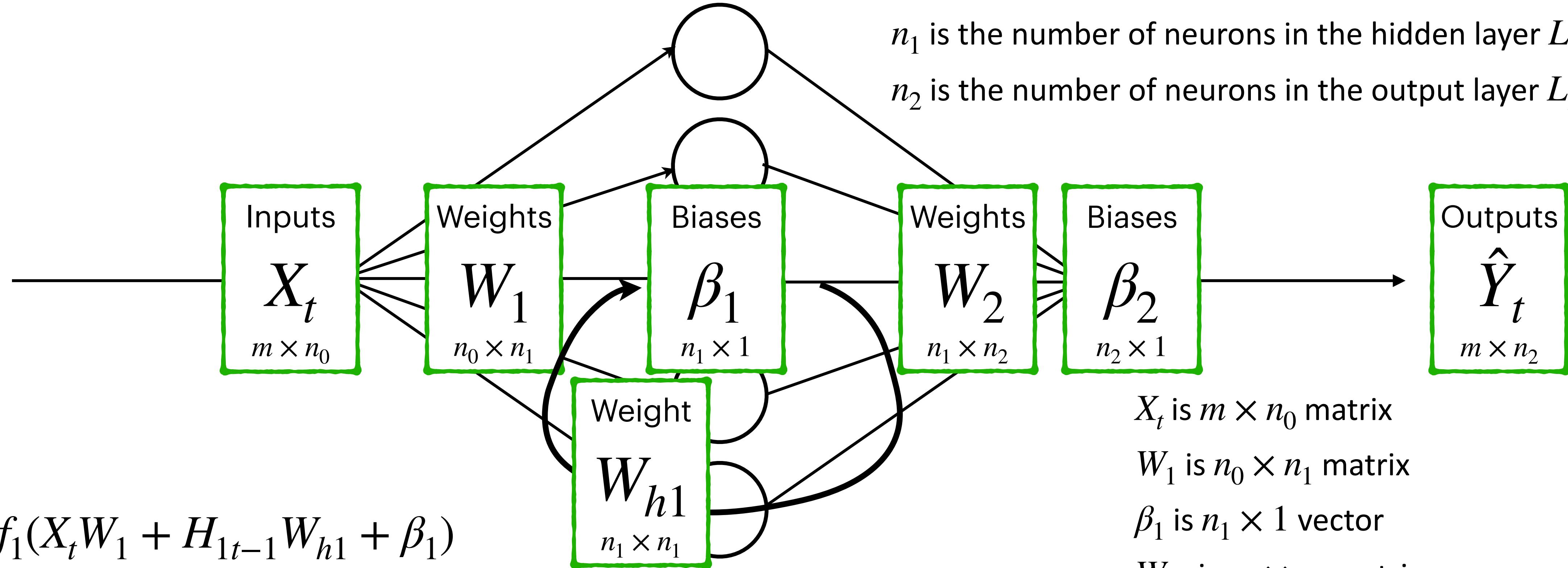
W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

How do we represent RNNs mathematically?

Recurrent Neural Networks



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

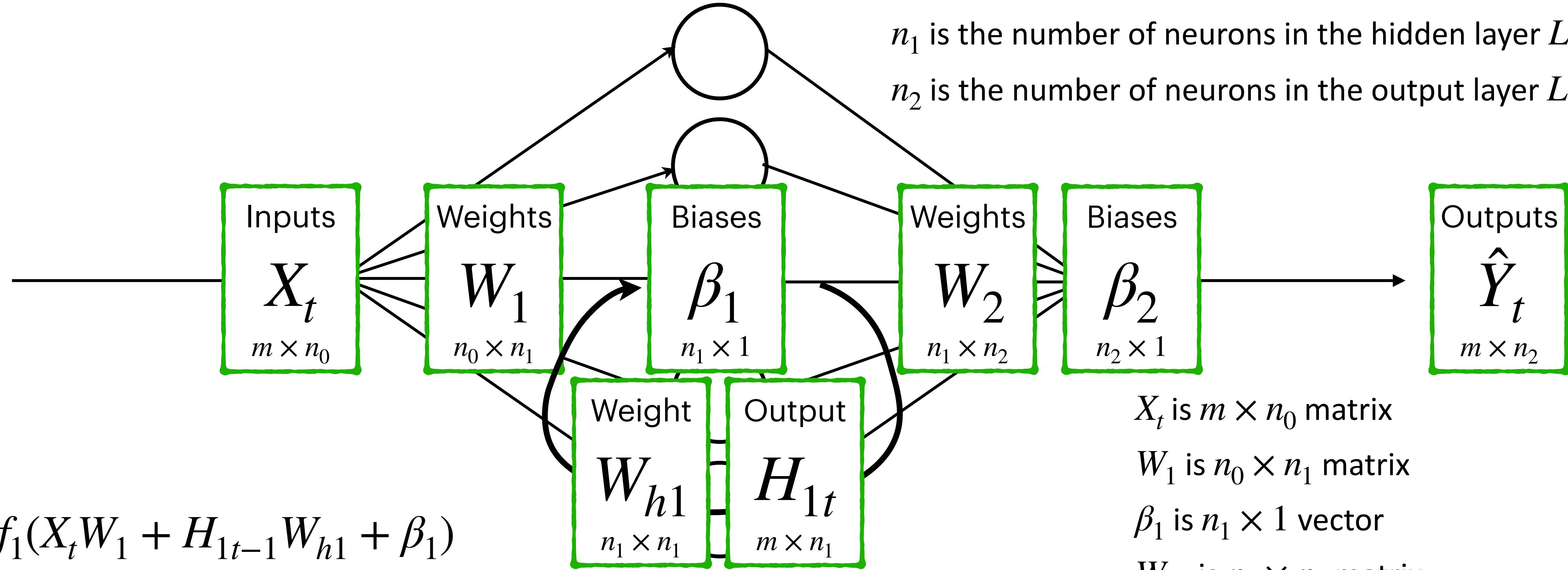
W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

How do we represent RNNs mathematically?

Recurrent Neural Networks



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

How do we represent RNNs mathematically?

Loss Function

Loss is a function of Predicted vs Actual Output

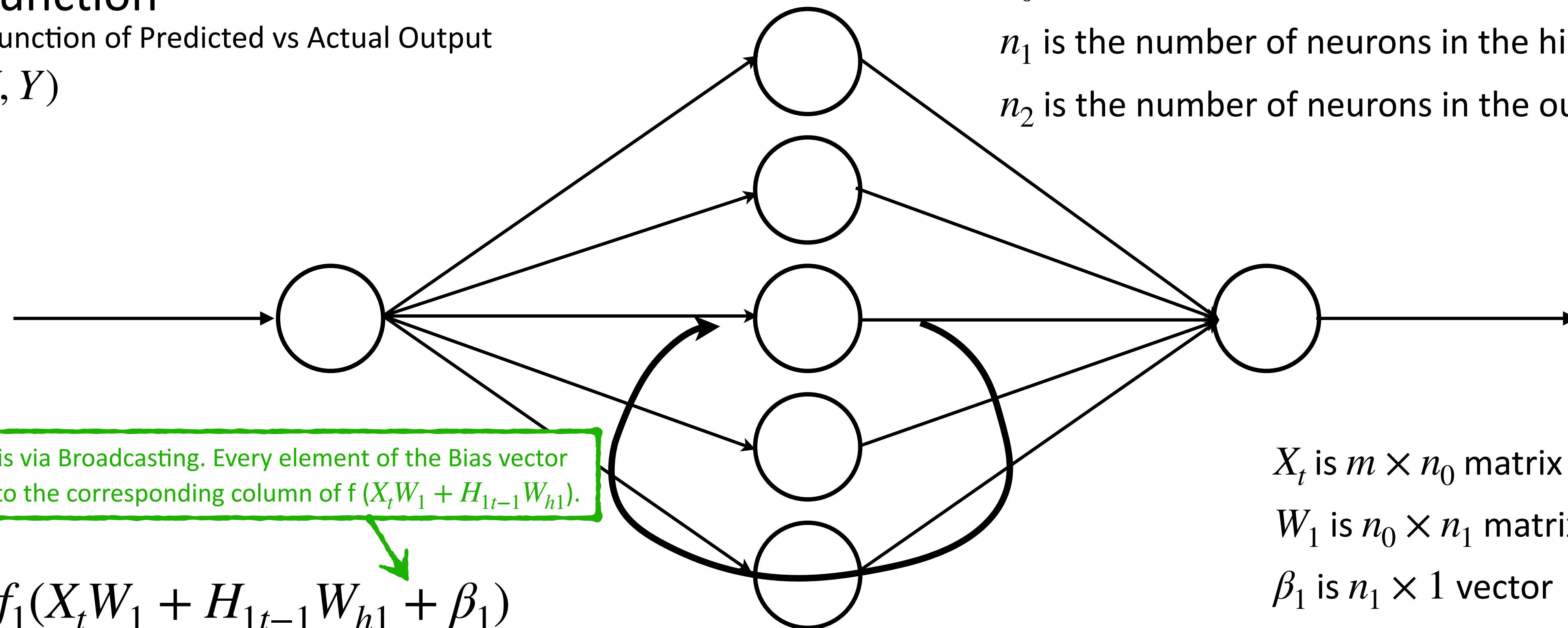
$$L = f(\hat{Y}, Y)$$

Recurrent Neural Networks

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2



$$H_{1t} = f_1(X_tW_1 + H_{1t-1}W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t}W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

Bias addition is via Broadcasting. Every element of the Bias Vector (β_2) is added to the corresponding column of ($H_{1t}W_2$).

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

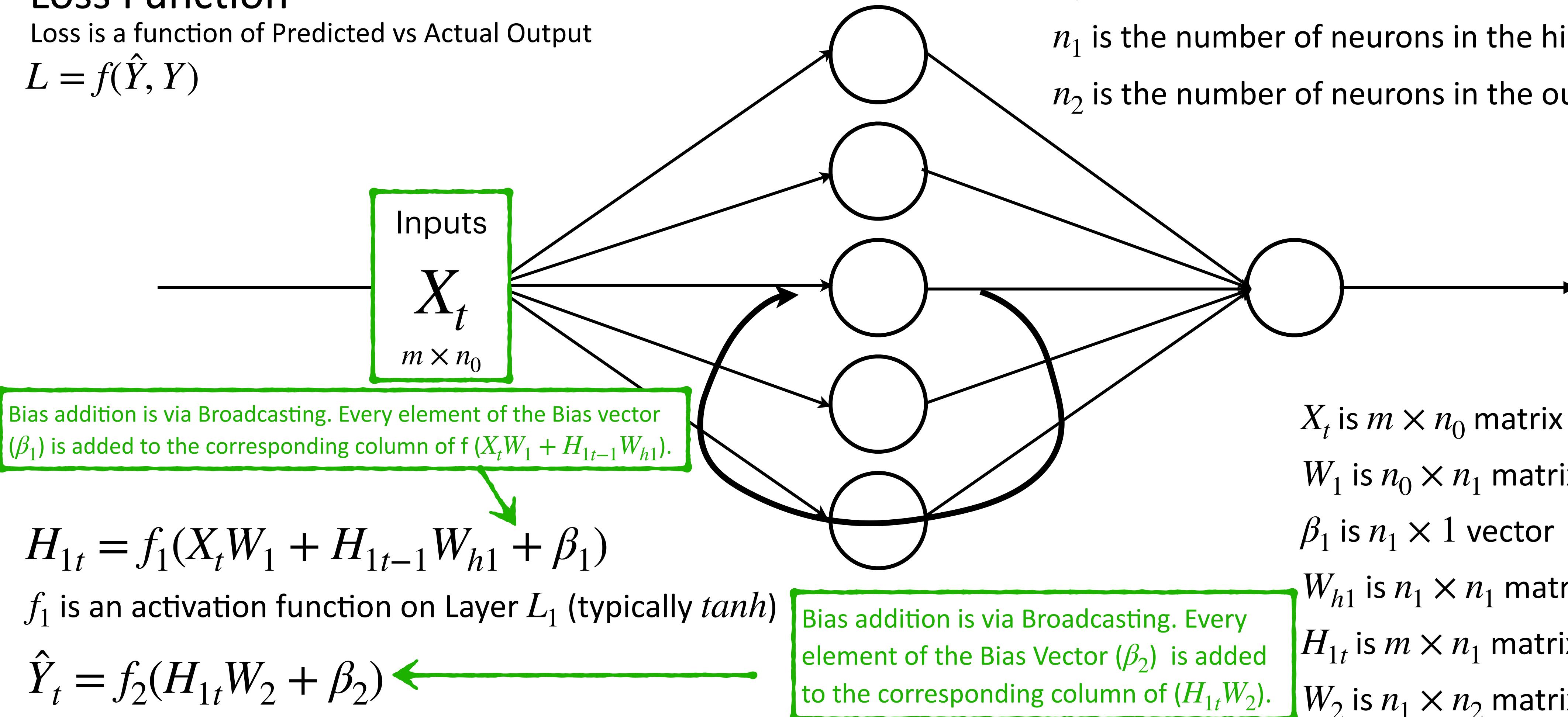
How do we represent RNNs mathematically?

Recurrent Neural Networks

Loss Function

Loss is a function of Predicted vs Actual Output

$$L = f(\hat{Y}, Y)$$



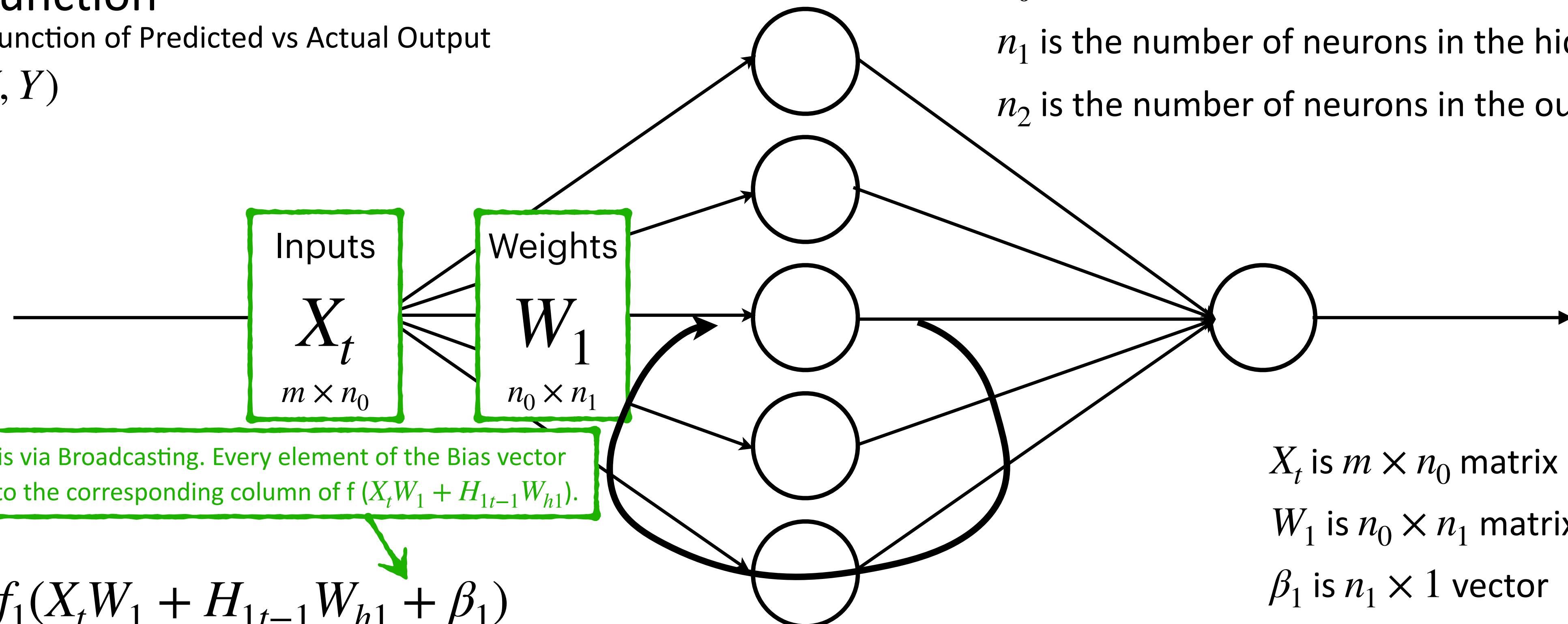
How do we represent RNNs mathematically?

Recurrent Neural Networks

Loss Function

Loss is a function of Predicted vs Actual Output

$$L = f(\hat{Y}, Y)$$



n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

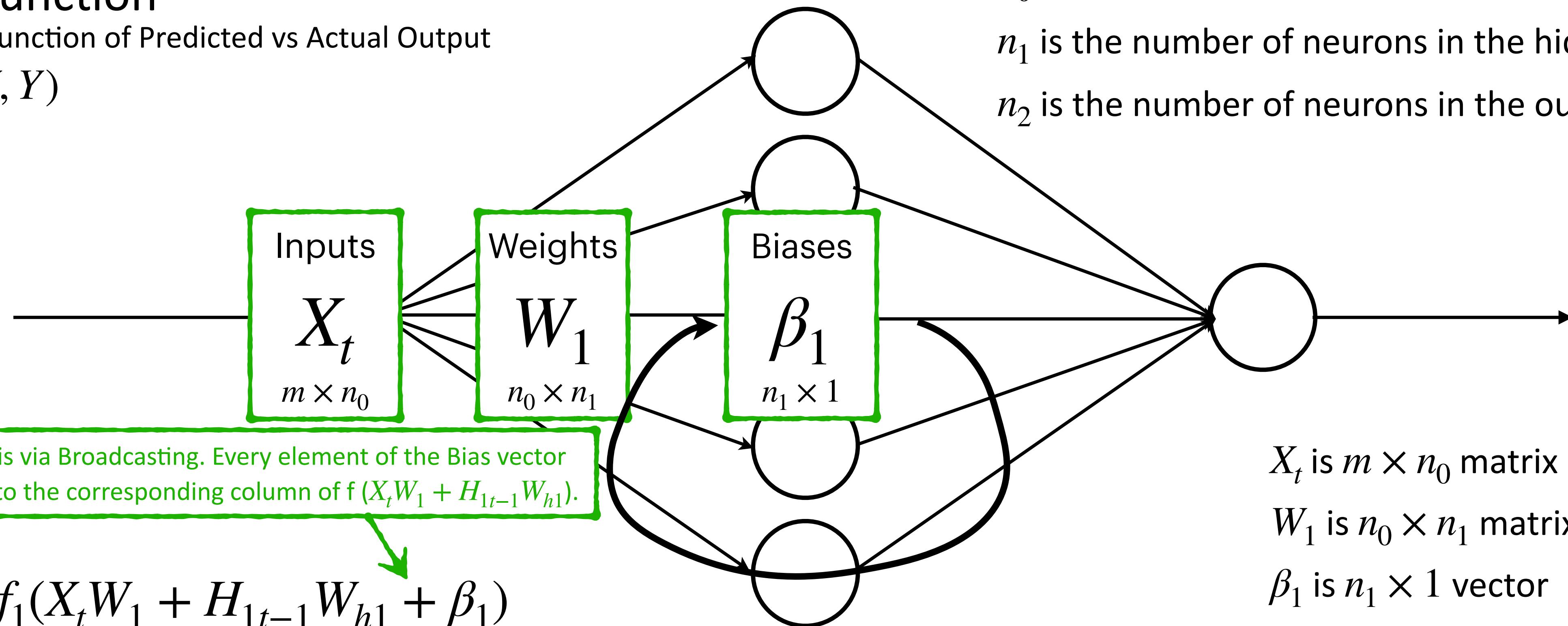
How do we represent RNNs mathematically?

Recurrent Neural Networks

Loss Function

Loss is a function of Predicted vs Actual Output

$$L = f(\hat{Y}, Y)$$



$$H_{1t} = f_1(X_tW_1 + H_{1t-1}W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t}W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

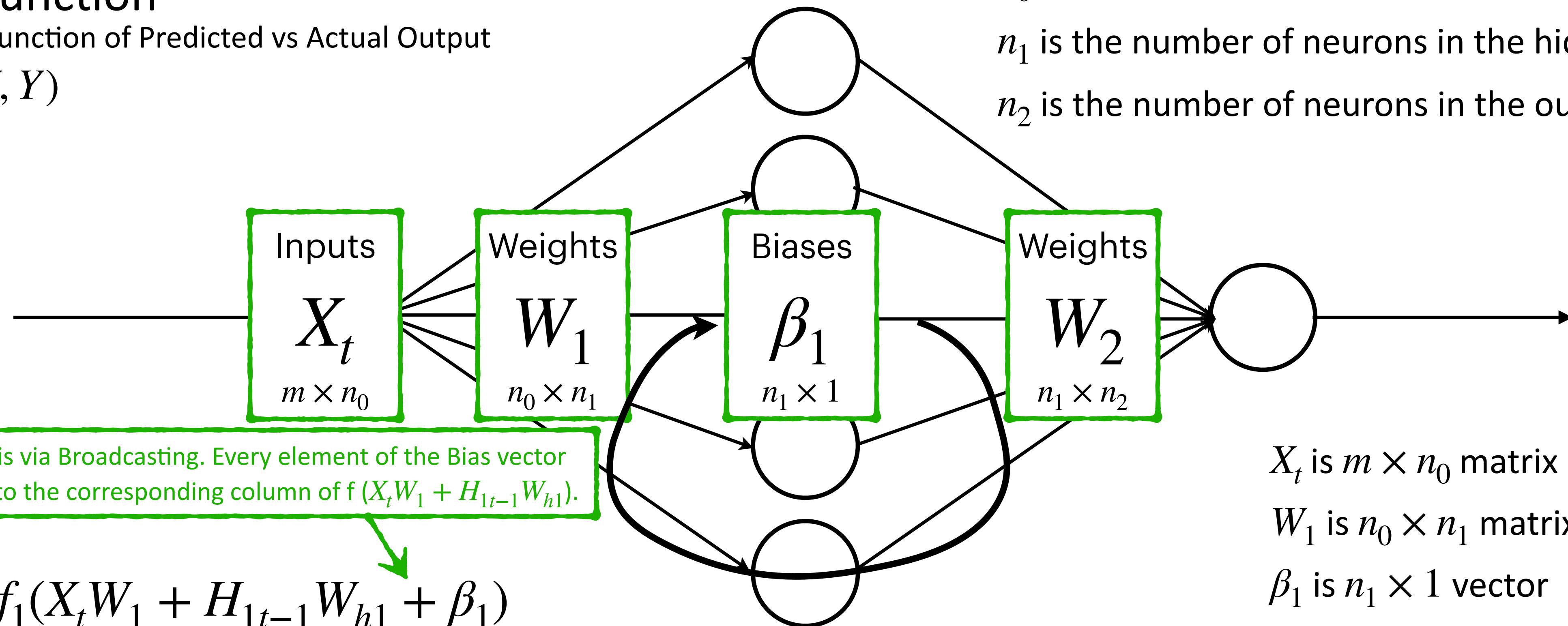
How do we represent RNNs mathematically?

Recurrent Neural Networks

Loss Function

Loss is a function of Predicted vs Actual Output

$$L = f(\hat{Y}, Y)$$



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

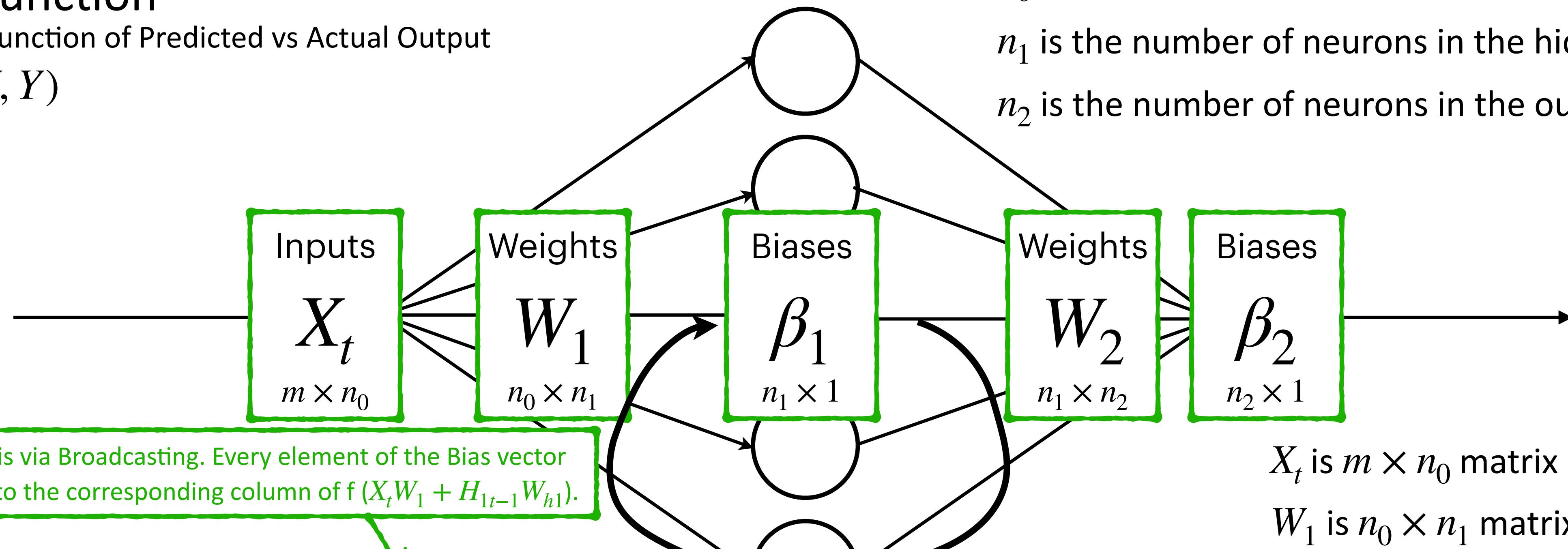
How do we represent RNNs mathematically?

Recurrent Neural Networks

Loss Function

Loss is a function of Predicted vs Actual Output

$$L = f(\hat{Y}, Y)$$



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)

n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

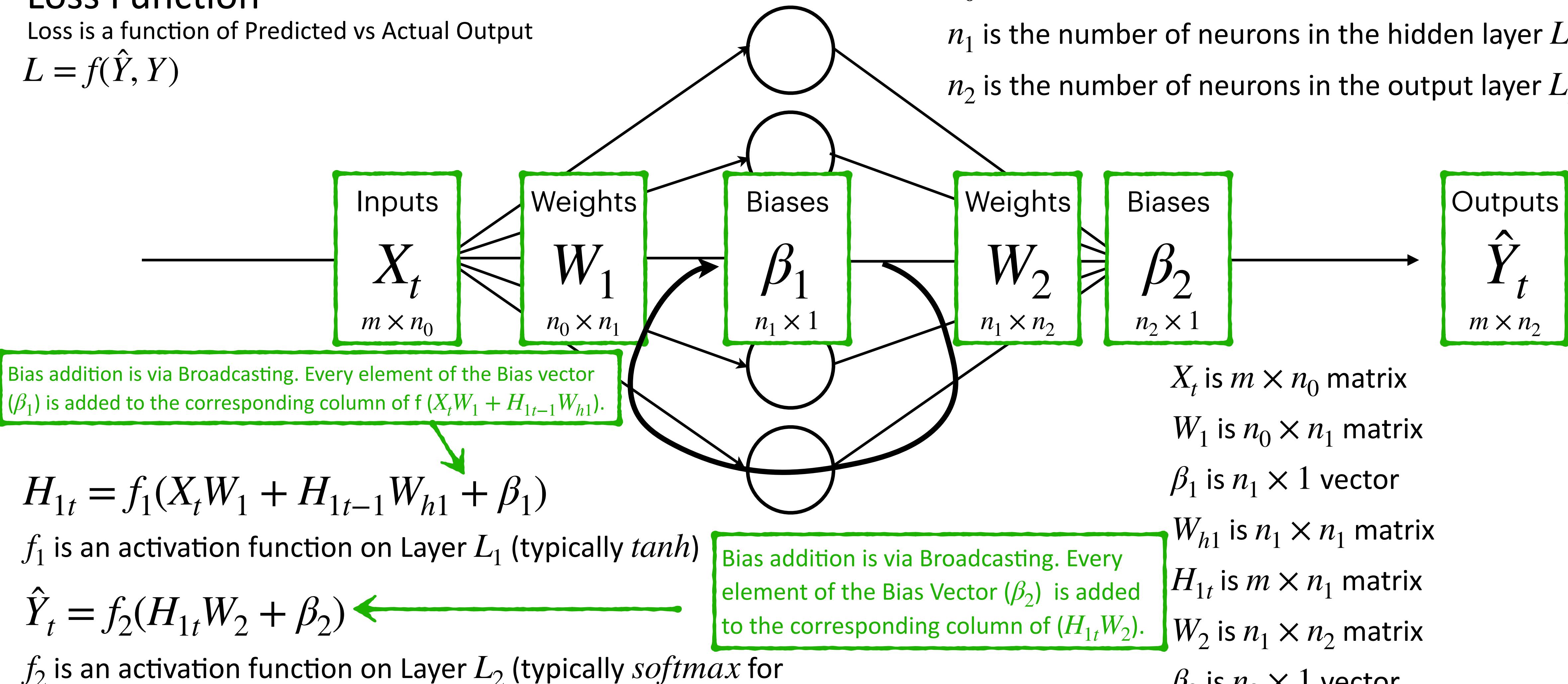
How do we represent RNNs mathematically?

Recurrent Neural Networks

Loss Function

Loss is a function of Predicted vs Actual Output

$$L = f(\hat{Y}, Y)$$



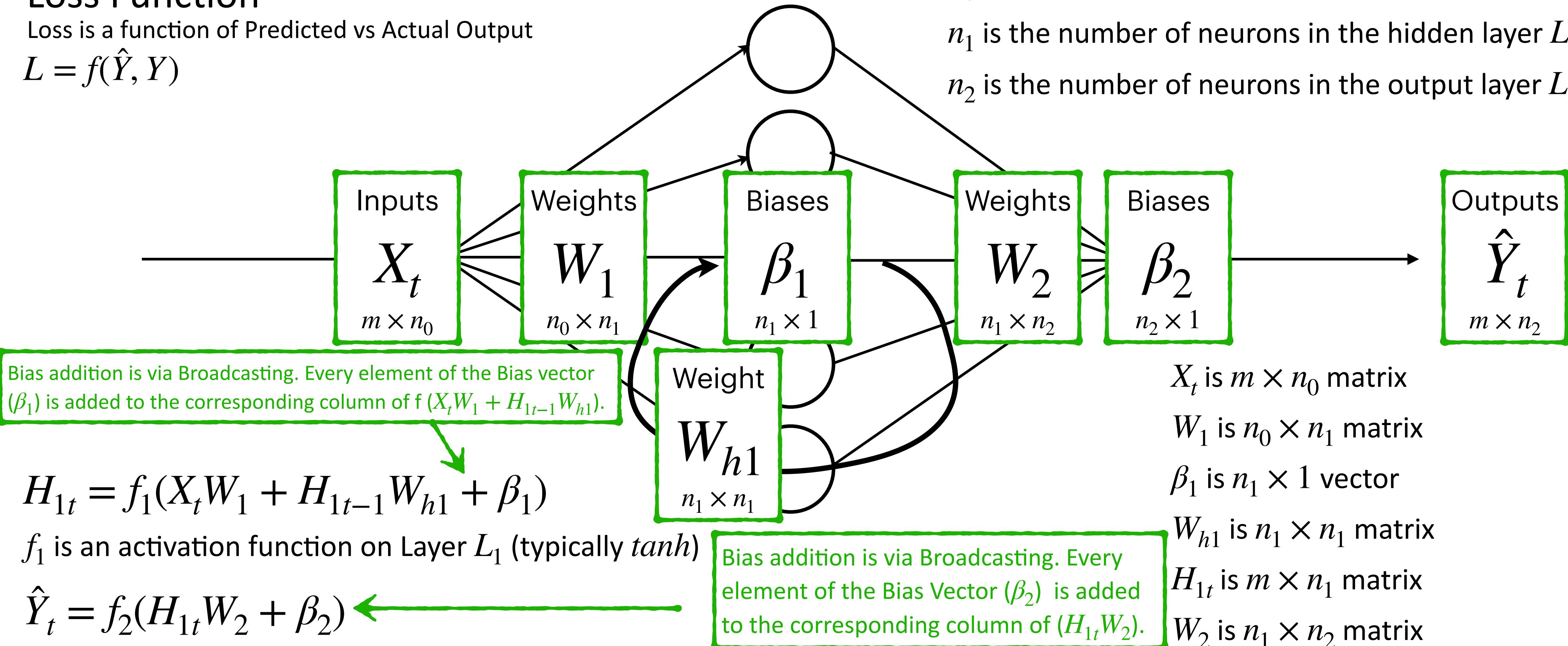
How do we represent RNNs mathematically?

Recurrent Neural Networks

Loss Function

Loss is a function of Predicted vs Actual Output

$$L = f(\hat{Y}, Y)$$



n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

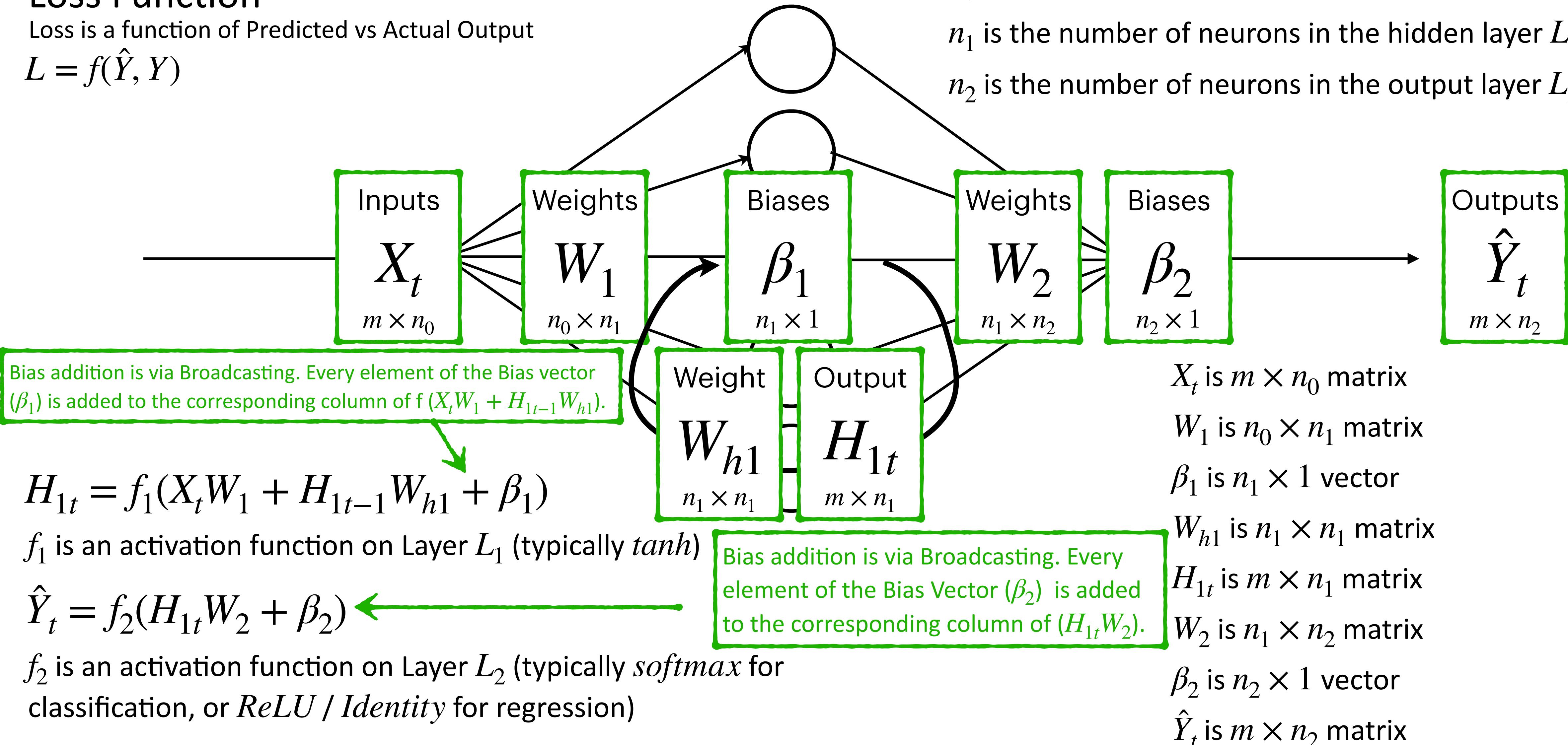
How do we represent RNNs mathematically?

Recurrent Neural Networks

Loss Function

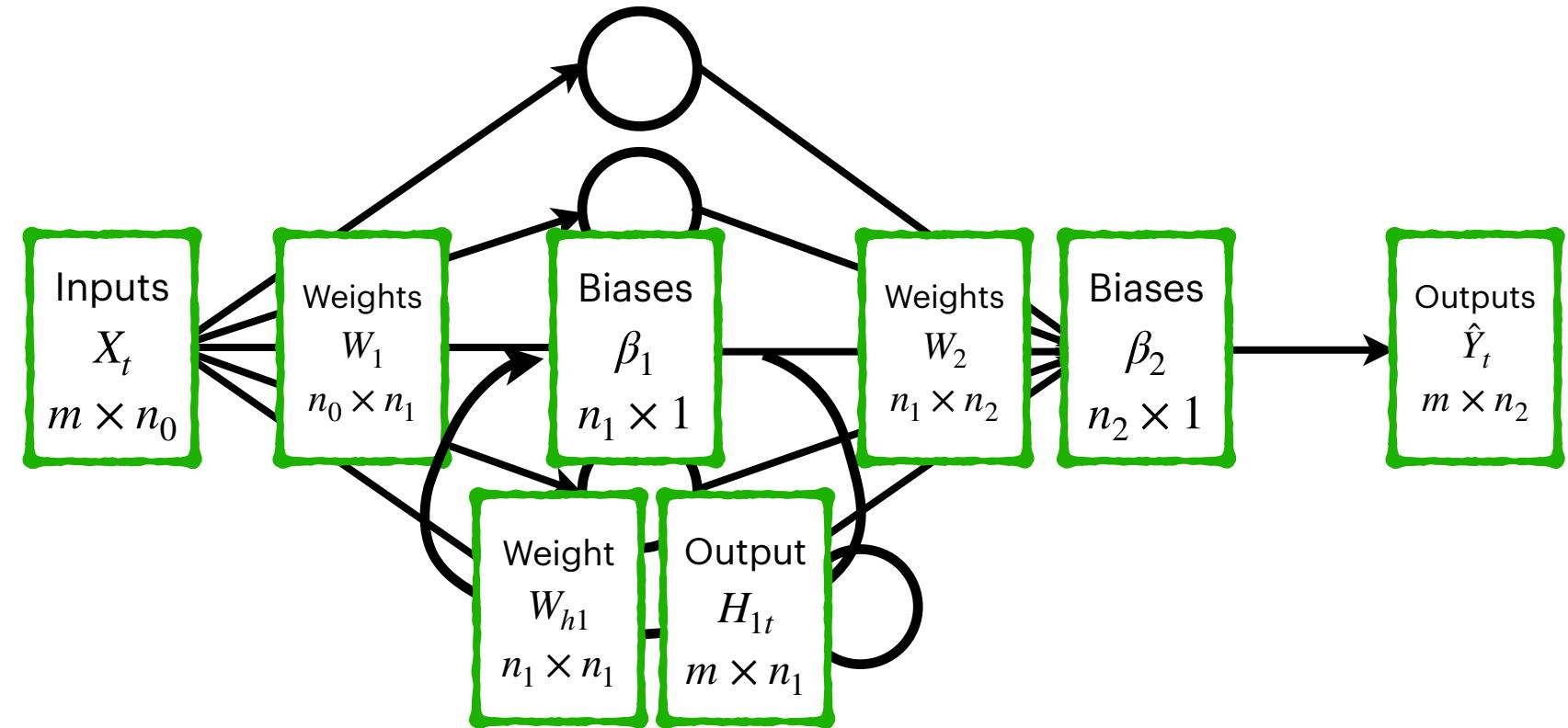
Loss is a function of Predicted vs Actual Output

$$L = f(\hat{Y}, Y)$$



How do we represent RNNs mathematically?

Recurrent Neural Networks



n_0 is the number of features in the input data

n_1 is the number of neurons in the hidden layer L_1

n_2 is the number of neurons in the output layer L_2

X_t is $m \times n_0$ matrix

W_1 is $n_0 \times n_1$ matrix

β_1 is $n_1 \times 1$ vector

W_{h1} is $n_1 \times n_1$ matrix

H_{1t} is $m \times n_1$ matrix

W_2 is $n_1 \times n_2$ matrix

β_2 is $n_2 \times 1$ vector

\hat{Y}_t is $m \times n_2$ matrix

In General the Total Loss is the sum of Losses over all time steps:

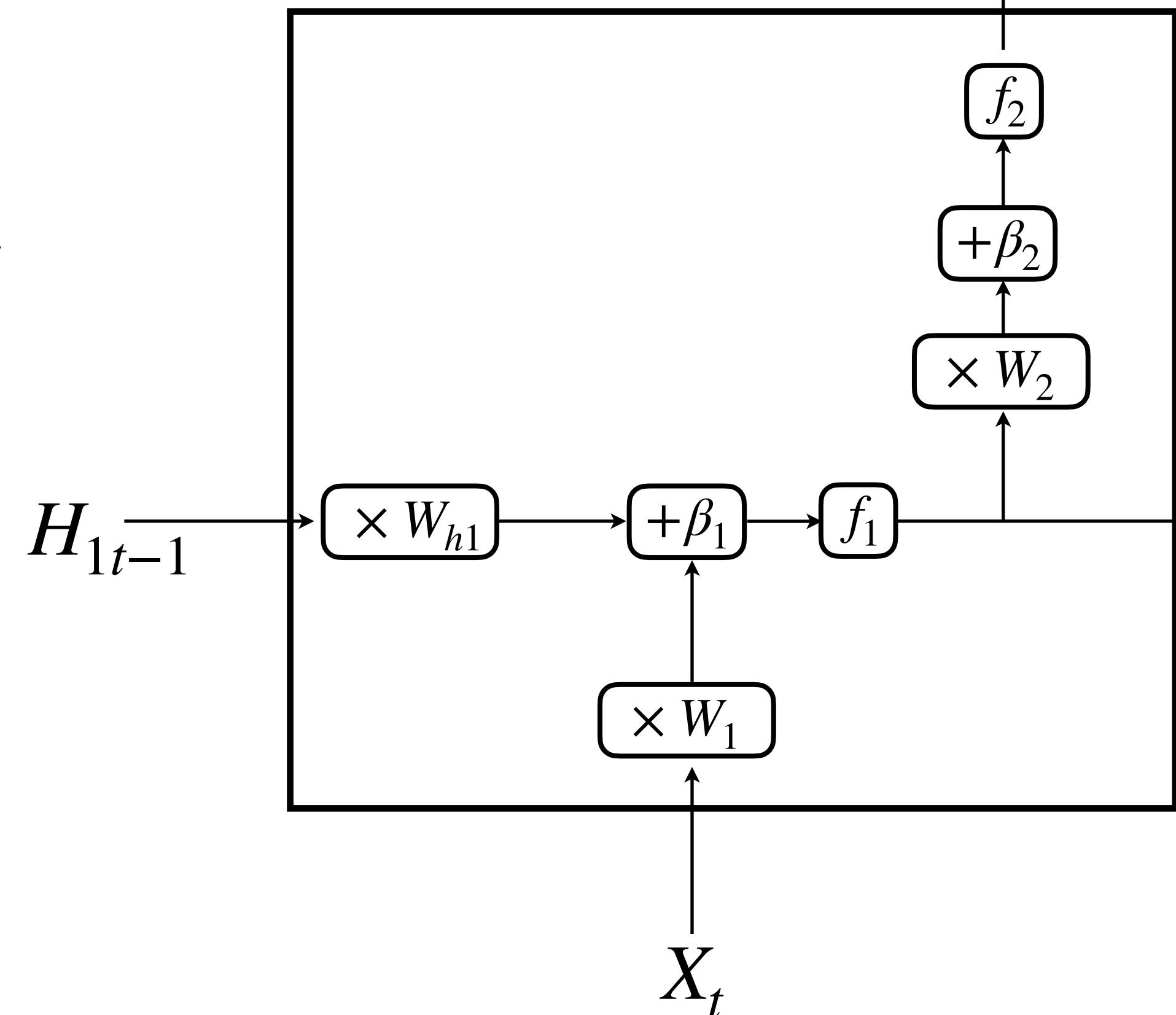
$$L = \sum_{t=0}^T L_t$$

Loss Function

Loss is a function of Predicted vs Actual Output

$$L_t = f(\hat{Y}_t, Y_t)$$

$$\hat{Y}_t = f_2(H_{1t}W_2 + \beta_2)$$



$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

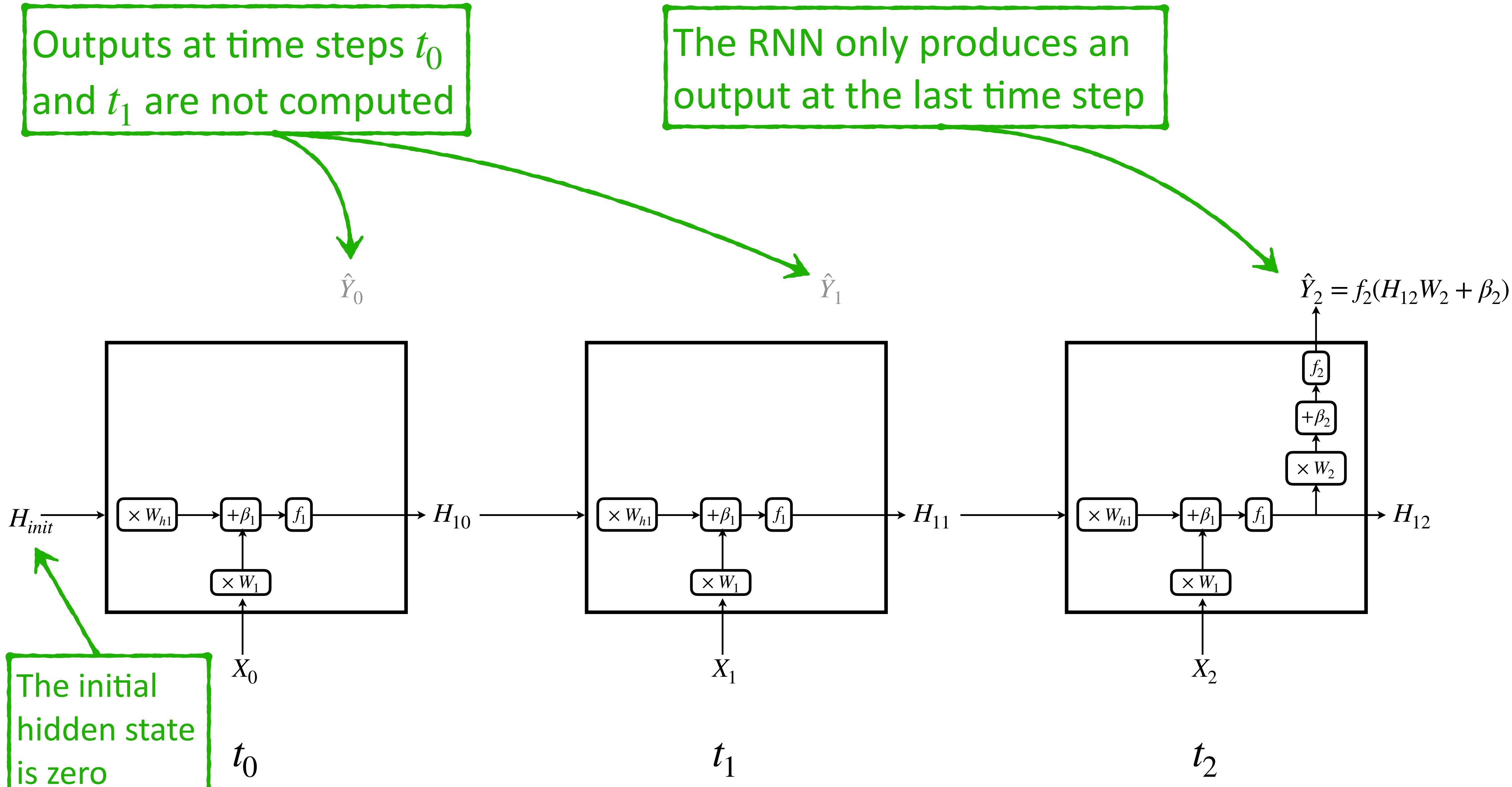
A Single RNN Layer

Recurrent Neural Networks

Lets look at training a **Sequence to Vector RNN** unrolled over 3 time steps

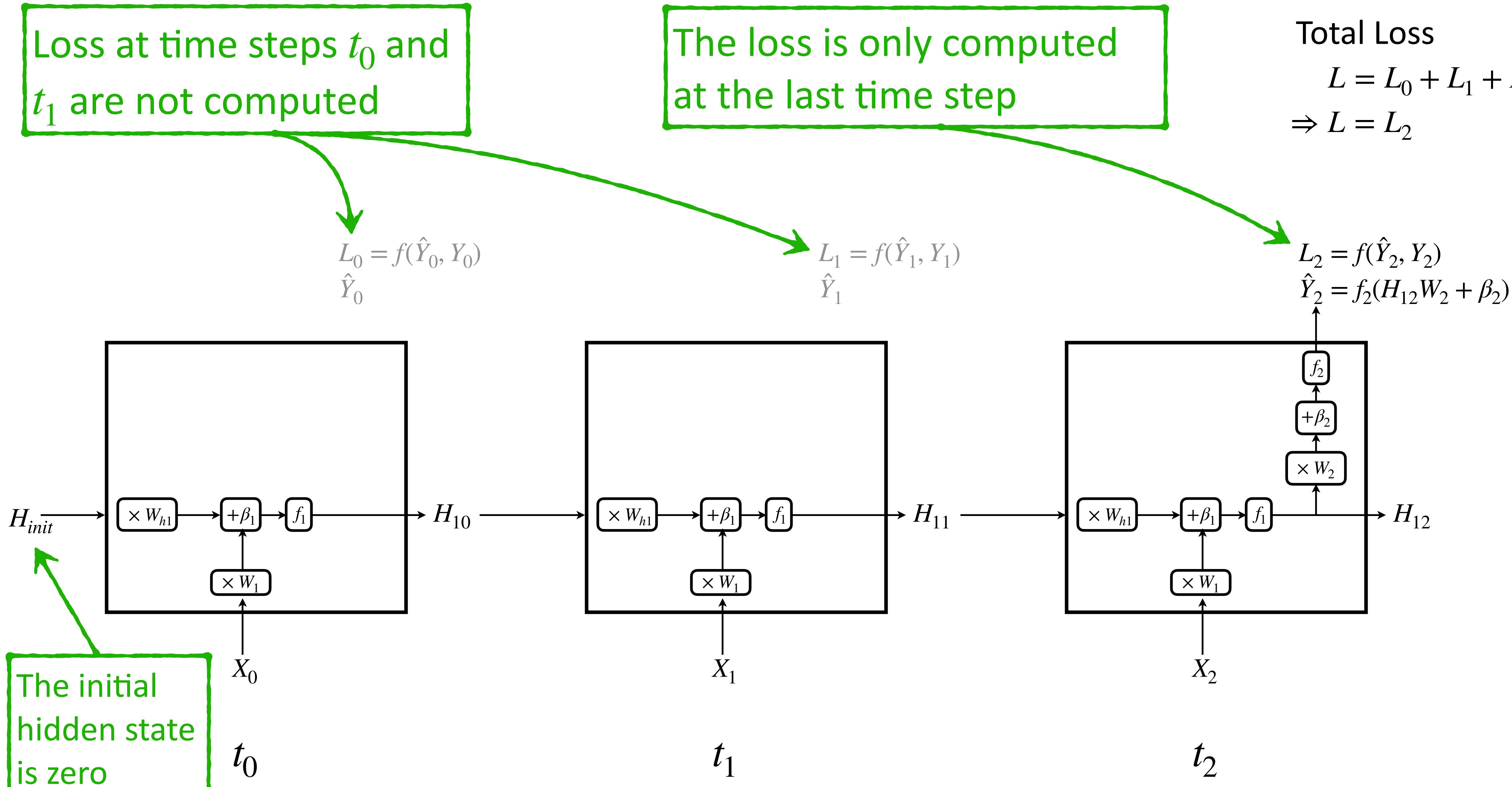
Sequence to Vector RNN over 3 Time Steps

Recurrent Neural Networks



Sequence to Vector RNN over 3 Time Steps

Recurrent Neural Networks



Let's walk through how we train this
RNN unrolled over 3 time steps

Training via Gradient Descent involves a
Forward Pass, Computing the Cost Function,
Backpropagation and Parameter Updates

Backpropagation in an RNN must be done over multiple time steps. The
algorithm is called **Backpropagation Through Time (BPTT)**

t_0

t_1

t_2

Sequence to Vector RNN over 3 Time Steps

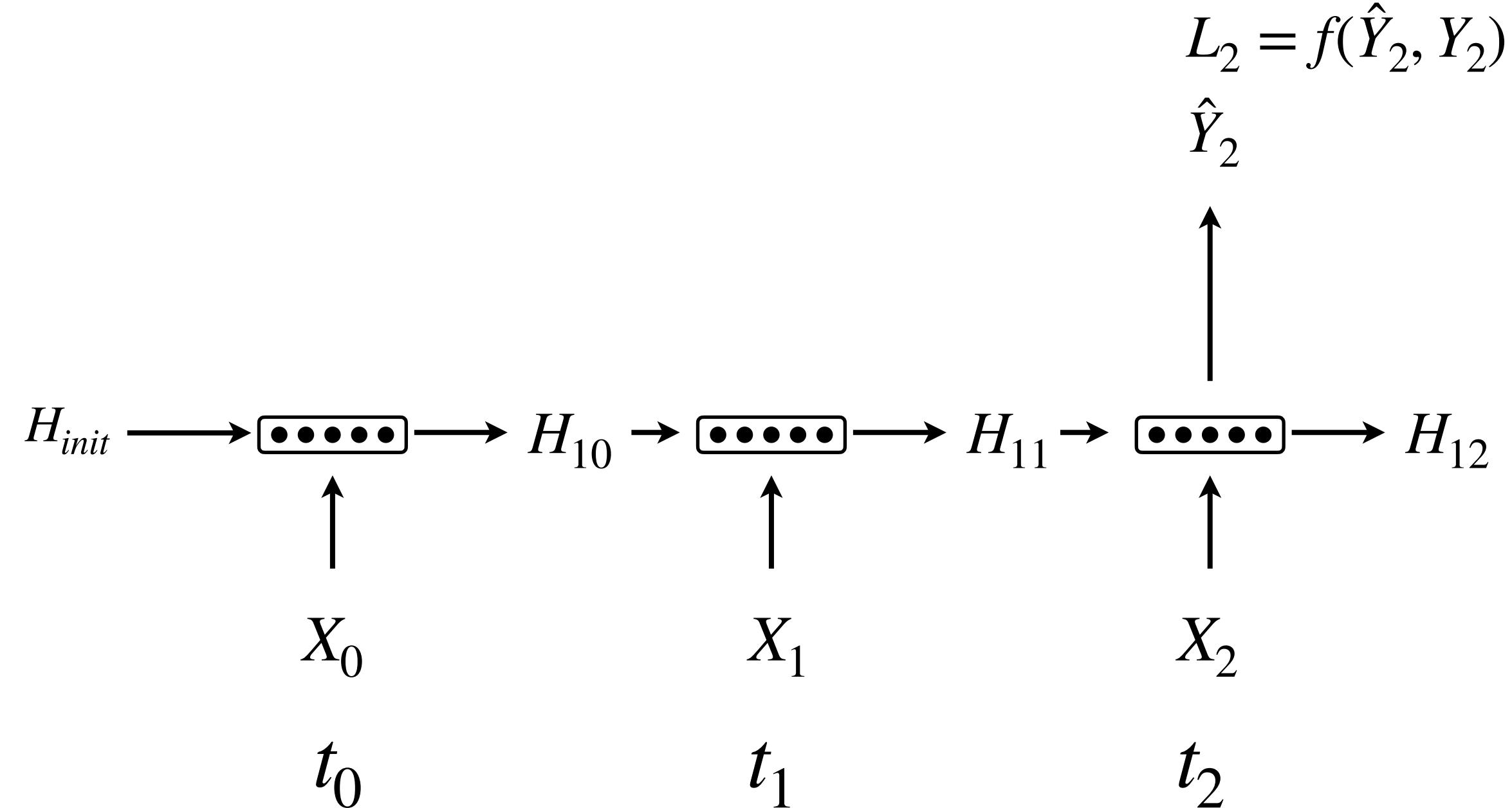
Recurrent Neural Networks

$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)



A Sequence to Vector RNN (many-to-one) only produces an output and Loss at the last time step.

Forward Propagation

Only computes the output at the last time step

$$H_{10} = f_1(X_0 W_1 + H_{init} W_{h1} + \beta_1)$$

$$H_{11} = f_1(X_1 W_1 + H_{10} W_{h1} + \beta_1)$$

$$H_{12} = f_1(X_2 W_1 + H_{11} W_{h1} + \beta_1)$$

$$\hat{Y}_2 = f_2(H_{12} W_2 + \beta_2)$$

Loss Function

Loss function can be Categorical Cross Entropy or Binary Cross Entropy

$$L_2 = f(\hat{Y}_2, Y_2)$$

$$L = L_2$$

Total Loss is the loss at the last time step

Example Loss Functions

$$L = - [y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

Binary Cross Entropy

$$L = - \sum_{j=1}^K y_j \log_e \hat{y}_j$$

Categorical Cross Entropy

Sequence to Vector RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$

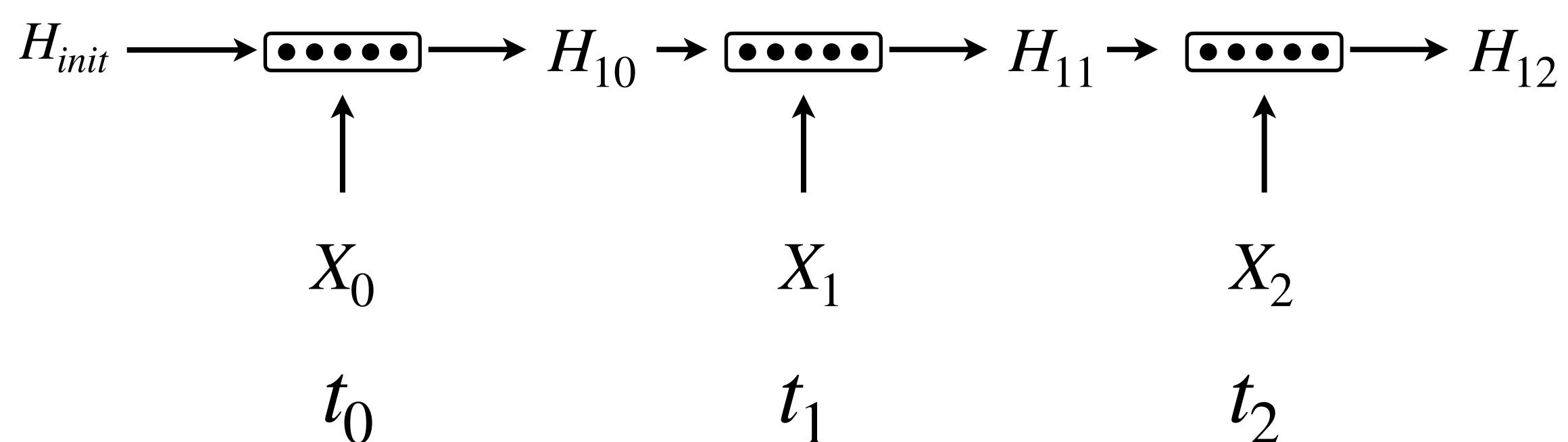
$$\frac{\partial}{\partial W_{h1}} L \quad \frac{\partial}{\partial W_1} L \quad \frac{\partial}{\partial W_2} L \quad \frac{\partial}{\partial \beta_1} L \quad \frac{\partial}{\partial \beta_2} L$$

$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)



Recurrent Neural Networks

Backpropagation

Output layer gradients are only from the final time step

$$\Rightarrow \frac{\partial}{\partial \beta_2} L = \frac{\partial}{\partial \beta_2} L_2$$

$$\Rightarrow \frac{\partial}{\partial W_2} L = \frac{\partial}{\partial W_2} L_2$$

Sequence to Vector RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$

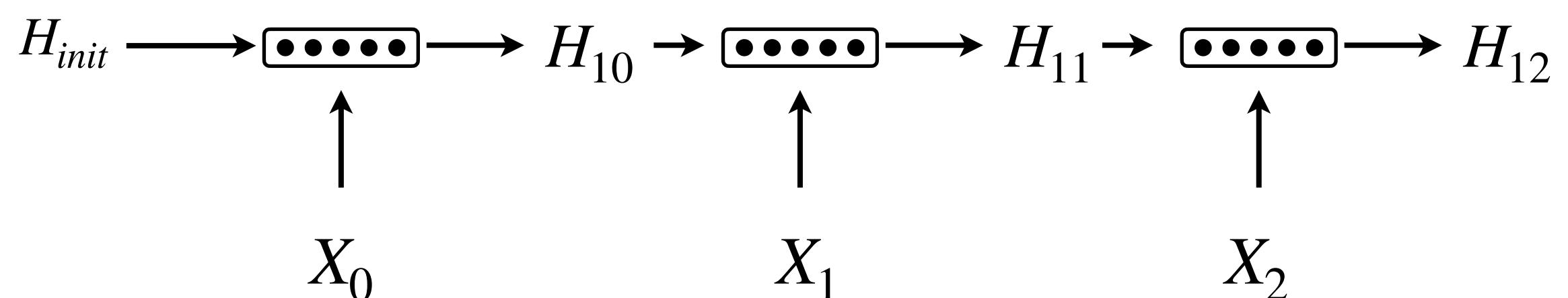
$$\frac{\partial}{\partial W_{h1}} L \quad \frac{\partial}{\partial W_1} L \quad \frac{\partial}{\partial W_2} L \quad \frac{\partial}{\partial \beta_1} L \quad \frac{\partial}{\partial \beta_2} L$$

$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically \tanh)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically softmax for classification, or $\text{ReLU} / \text{Identity}$ for regression)



BPTT sums the derivatives over all the time steps

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \left[\frac{\partial}{\partial \beta_1} H_{12} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial \beta_1} H_{11} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial \beta_1} H_{10} \right]$$

Recurrent Neural Networks

Backpropagation Through Time (BPTT)

Hidden layer gradients are derivatives of Loss from the final time step

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \frac{\partial}{\partial \beta_1} L_2$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial \beta_1} H_{12} +$$

$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial \beta_1} H_{11} +$$

$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial \beta_1} H_{10}$$

Chain Rule. H_{12} depends on β_1

Chain Rule. H_{12} depends on H_{11}

Chain Rule. H_{11} depends on H_{10}

Sequence to Vector RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$

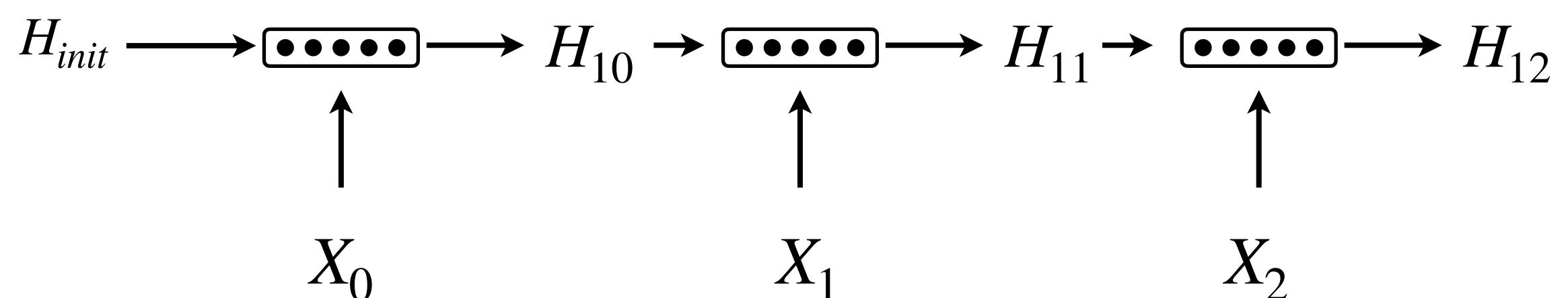
$$\frac{\partial}{\partial W_{h1}} L \quad \frac{\partial}{\partial W_1} L \quad \frac{\partial}{\partial W_2} L \quad \frac{\partial}{\partial \beta_1} L \quad \frac{\partial}{\partial \beta_2} L$$

$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically *softmax* for classification, or *ReLU / Identity* for regression)



$t_0 \quad t_1 \quad t_2$

$$\Rightarrow \frac{\partial}{\partial W_1} L = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \left[\frac{\partial}{\partial W_1} H_{12} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial W_1} H_{11} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_1} H_{10} \right]$$

Recurrent Neural Networks

Backpropagation Through Time (BPTT)

Hidden layer gradients are derivatives of Loss from the final time step

$$\Rightarrow \frac{\partial}{\partial W_1} L = \frac{\partial}{\partial W_1} L_2$$

$$\Rightarrow \frac{\partial}{\partial W_1} L = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial W_1} H_{12} +$$

$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial W_1} H_{11} +$$

$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_1} H_{10}$$

Chain Rule. H_{12} depends on W_1

Chain Rule. H_{12} depends on H_{11}

Chain Rule. H_{11} depends on H_{10}

BPTT sums the derivatives over all the time steps

Sequence to Vector RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$

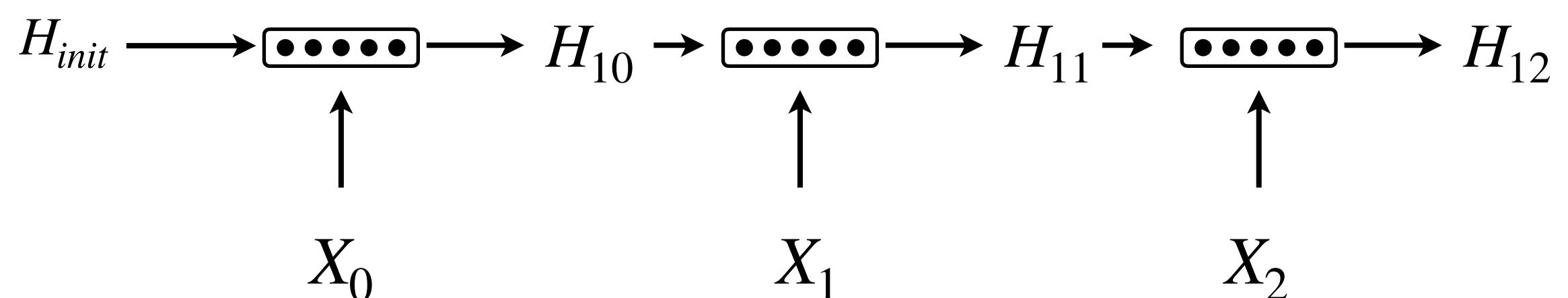
$$\frac{\partial}{\partial W_{h1}} L \quad \frac{\partial}{\partial W_1} L \quad \frac{\partial}{\partial W_2} L \quad \frac{\partial}{\partial \beta_1} L \quad \frac{\partial}{\partial \beta_2} L$$

$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically \tanh)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically softmax for classification, or $\text{ReLU} / \text{Identity}$ for regression)



$$\Rightarrow \frac{\partial}{\partial W_{h1}} L = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \left[\frac{\partial}{\partial W_{h1}} H_{12} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial W_{h1}} H_{11} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_{h1}} H_{10} \right]$$

Recurrent Neural Networks

Backpropagation Through Time (BPTT)

Hidden layer gradients are derivatives of Loss from the final time step

$$\Rightarrow \frac{\partial}{\partial W_{h1}} L = \frac{\partial}{\partial W_{h1}} L_2$$

$$\Rightarrow \frac{\partial}{\partial W_{h1}} L = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial W_{h1}} H_{12} +$$

$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial W_{h1}} H_{11} +$$

$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_{h1}} H_{10}$$

Chain Rule. H_{12} depends on W_{h1}

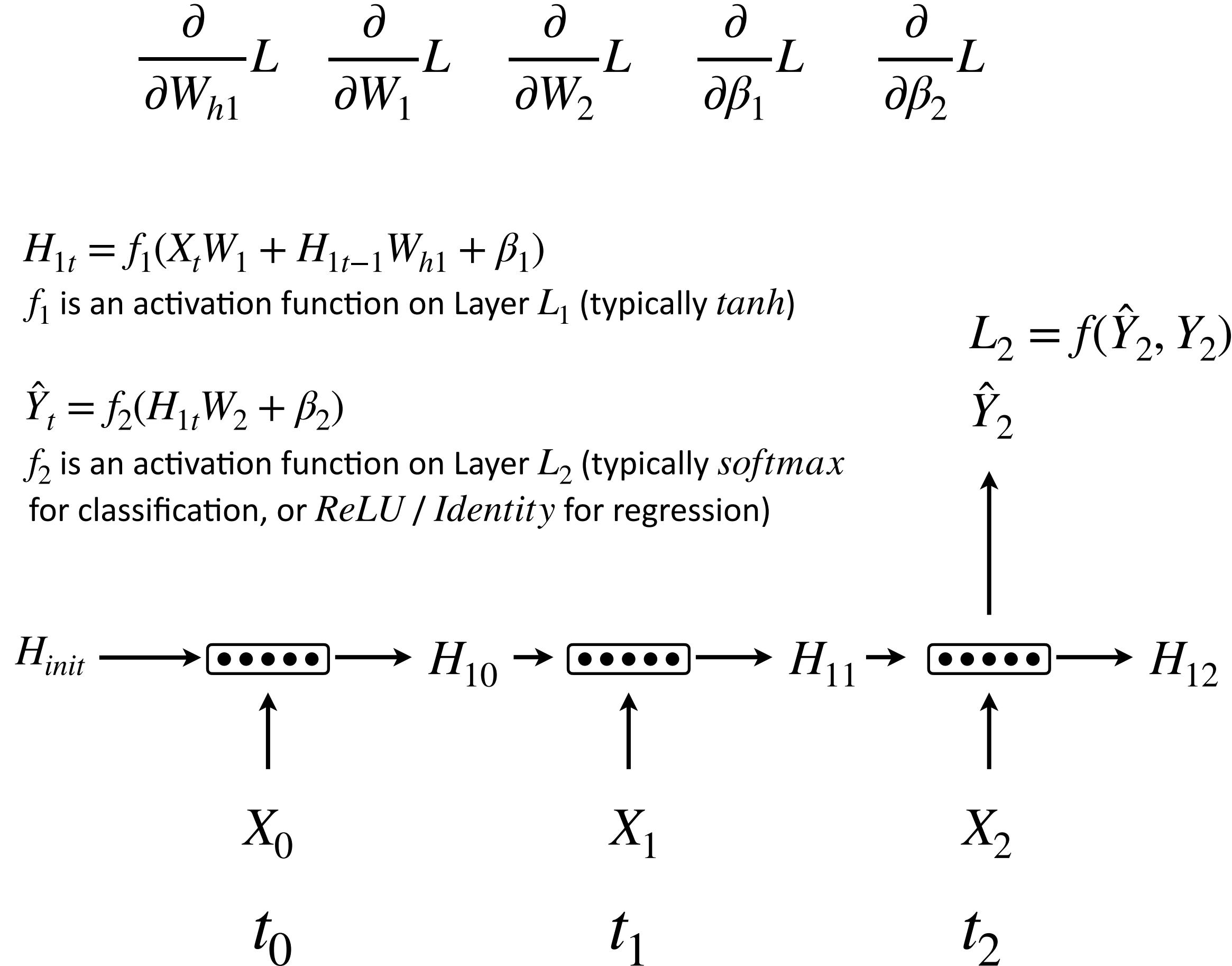
Chain Rule. H_{12} depends on H_{11}

Chain Rule. H_{11} depends on H_{10}

BPTT sums the derivatives over all the time steps

Sequence to Vector RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$



Recurrent Neural Networks

Parameter Updates

$$\beta_2 = \beta_2 - \left(\frac{\partial}{\partial \beta_2} L \right) \times learning_rate$$

$$W_2 = W_2 - \left(\frac{\partial}{\partial W_2} L \right) \times learning_rate$$

$$\beta_1 = \beta_1 - \left(\frac{\partial}{\partial \beta_1} L \right) \times learning_rate$$

$$W_1 = W_1 - \left(\frac{\partial}{\partial W_1} L \right) \times learning_rate$$

$$W_{h1} = W_{h1} - \left(\frac{\partial}{\partial W_{h1}} L \right) \times learning_rate$$

Sequence to Vector RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$

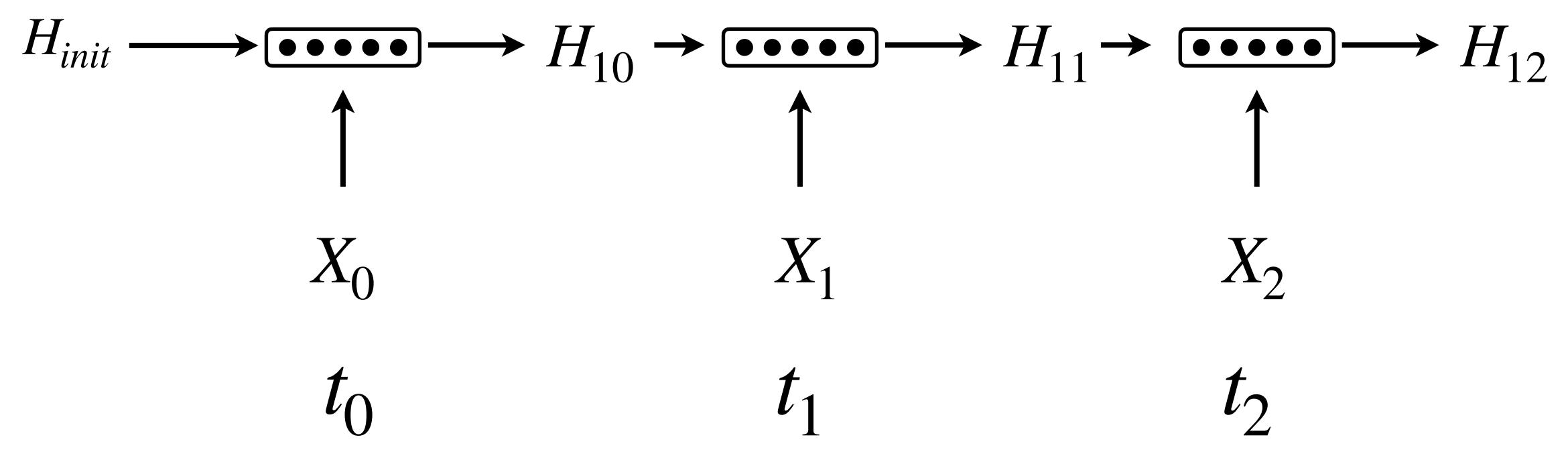
$$\frac{\partial}{\partial W_{h1}} L \quad \frac{\partial}{\partial W_1} L \quad \frac{\partial}{\partial W_2} L \quad \frac{\partial}{\partial \beta_1} L \quad \frac{\partial}{\partial \beta_2} L$$

$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically \tanh)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)



Recurrent Neural Networks

Gradient Descent for Sequence to Vector RNN

Step 1: Start with initial values for $W_1, W_2, W_{h1}, \beta_1, \beta_2$

Step 2: Forward Propagation...

$$H_{10} = f_1(X_0 W_1 + H_{init} W_{h1} + \beta_1)$$

$$H_{11} = f_1(X_1 W_1 + H_{10} W_{h1} + \beta_1)$$

$$H_{12} = f_1(X_2 W_1 + H_{11} W_{h1} + \beta_1)$$

$$\hat{Y}_2 = f_2(H_{12} W_2 + \beta_2) \quad L_2 = f(\hat{Y}_2, Y_2)$$

Step 3: Backpropagation Through Time

$$\frac{\partial}{\partial W_{h1}} L \quad \frac{\partial}{\partial W_1} L \quad \frac{\partial}{\partial W_2} L \quad \frac{\partial}{\partial \beta_1} L \quad \frac{\partial}{\partial \beta_2} L$$

Step 4: Parameter Updates

$$\beta_2 = \beta_2 - \left(\frac{\partial}{\partial \beta_2} L \right) \times learning_rate$$

$$\beta_1 = \beta_1 - \left(\frac{\partial}{\partial \beta_1} L \right) \times learning_rate \quad W_2 = W_2 - \left(\frac{\partial}{\partial W_2} L \right) \times learning_rate$$

$$W_1 = W_1 - \left(\frac{\partial}{\partial W_1} L \right) \times learning_rate \quad W_{h1} = W_{h1} - \left(\frac{\partial}{\partial W_{h1}} L \right) \times learning_rate$$

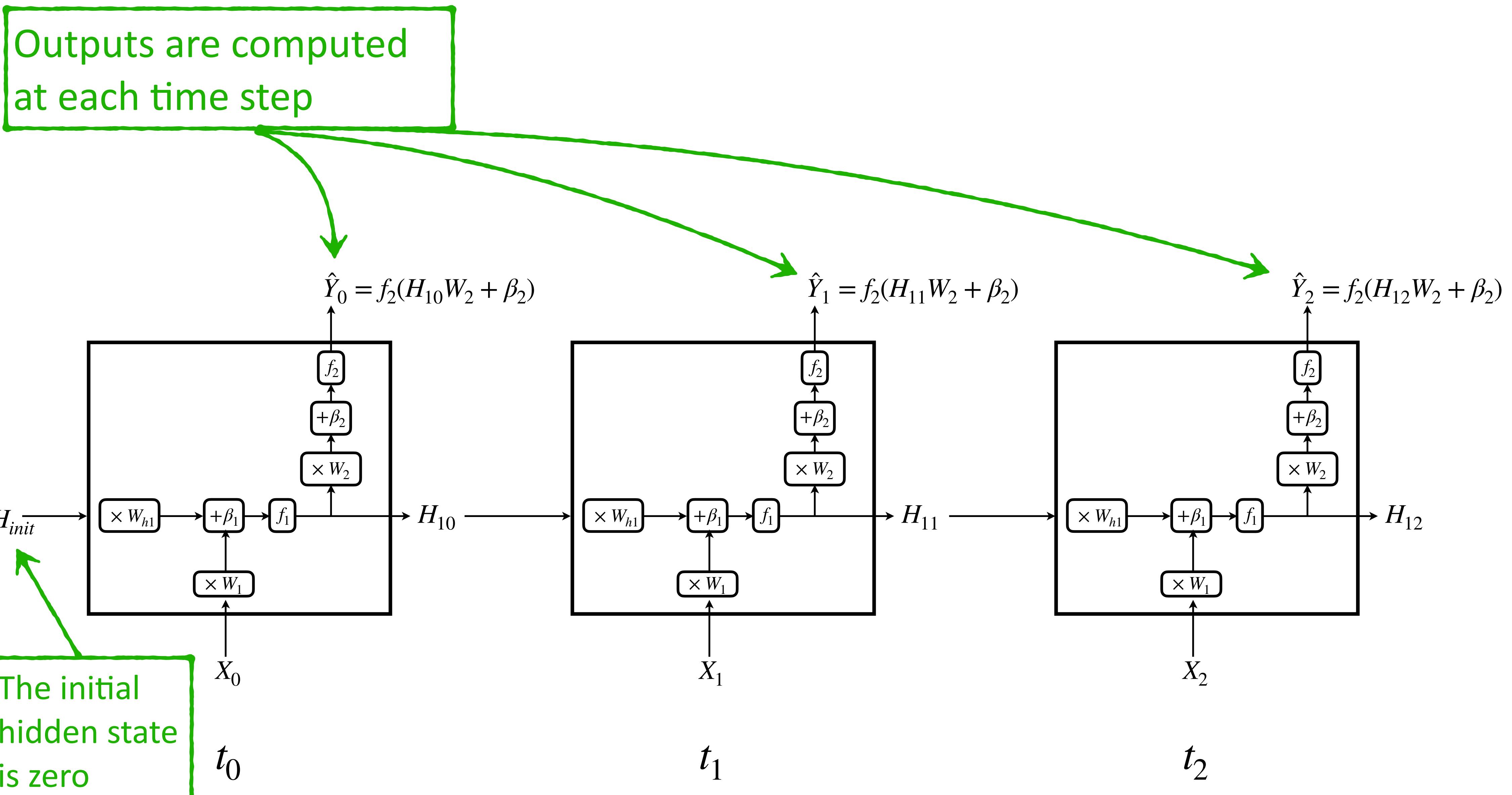
Step 5: Go to step 2 and repeat

Recurrent Neural Networks

Lets look at training a **Sequence to Sequence RNN** unrolled over 3 time steps

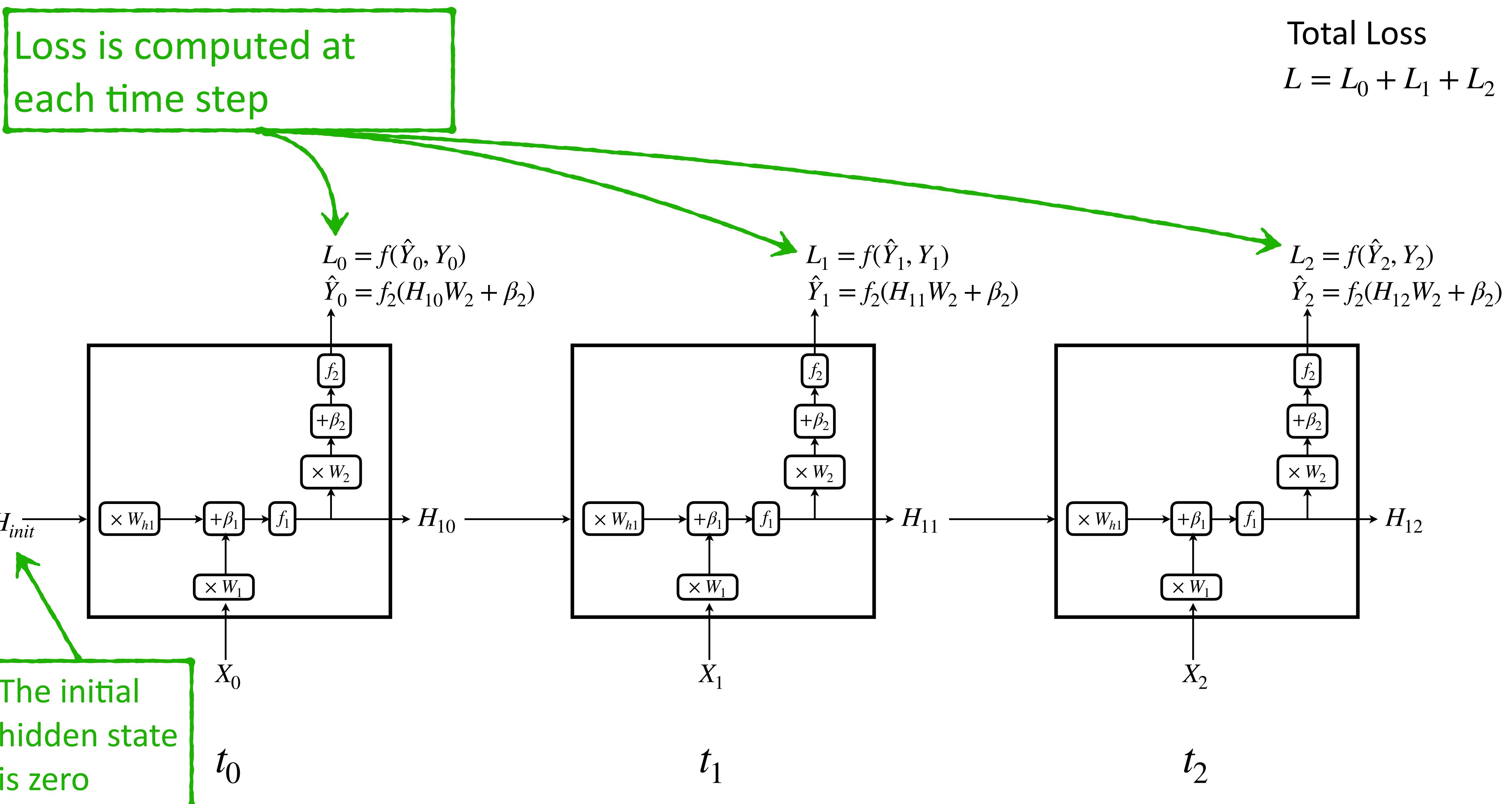
Sequence to Sequence RNN over 3 Time Steps

Recurrent Neural Networks



Sequence to Sequence RNN over 3 Time Steps

Recurrent Neural Networks



Let's walk through how we train this RNN unrolled over 3 time steps

Training via Gradient Descent involves a **Forward Pass, Computing the Cost Function, Backpropagation and Parameter Updates**

Backpropagation in an RNN must be done over multiple time steps. The algorithm is called **Backpropagation Through Time (BPTT)**

 t_0 t_1 t_2

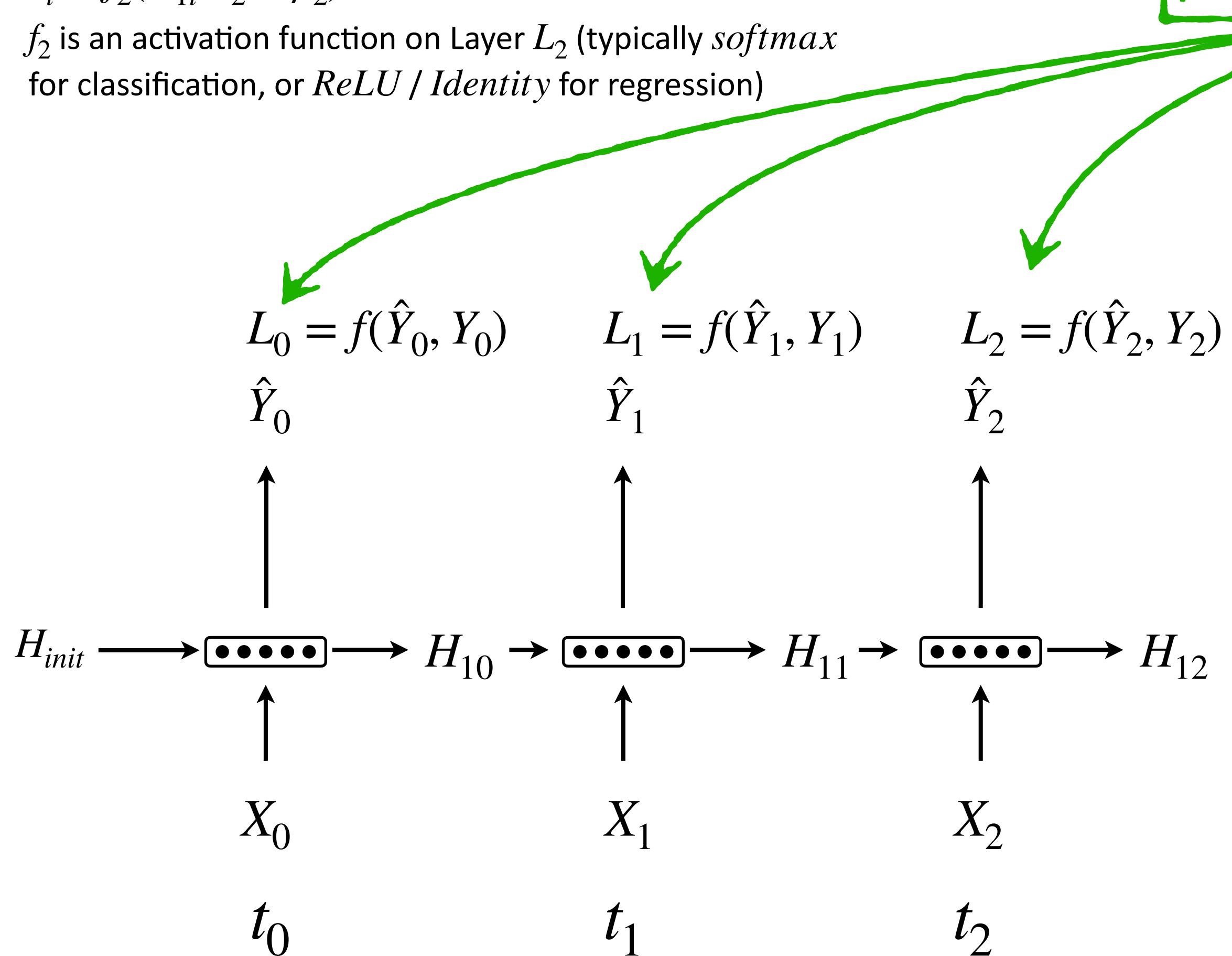
Sequence to Sequence RNN over 3 Time Steps

$$H_{1t} = f_1(X_t W_1 + H_{1t-1} W_{h1} + \beta_1)$$

f_1 is an activation function on Layer L_1 (typically $tanh$)

$$\hat{Y}_t = f_2(H_{1t} W_2 + \beta_2)$$

f_2 is an activation function on Layer L_2 (typically $softmax$ for classification, or $ReLU$ / $Identity$ for regression)



Recurrent Neural Networks

A Sequence to Sequence RNN (many-to-many) produces an output and Loss at every time step.

Forward Propagation

Computes the output at every time step

$$H_{10} = f_1(X_0 W_1 + H_{init} W_{h1} + \beta_1)$$

$$\hat{Y}_0 = f_2(H_{10} W_2 + \beta_2)$$

$$H_{11} = f_1(X_1 W_1 + H_{10} W_{h1} + \beta_1)$$

$$\hat{Y}_1 = f_2(H_{11} W_2 + \beta_2)$$

$$H_{12} = f_1(X_2 W_1 + H_{11} W_{h1} + \beta_1)$$

$$\hat{Y}_2 = f_2(H_{12} W_2 + \beta_2)$$

Loss Function

Loss function can be Categorical Cross Entropy or Binary Cross Entropy

$$L_0 = f(\hat{Y}_0, Y_0) \quad L_1 = f(\hat{Y}_1, Y_1) \quad L_2 = f(\hat{Y}_2, Y_2)$$

$$L = L_0 + L_1 + L_2$$

Total Loss is the sum of the losses at each time step

Example Loss Functions

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

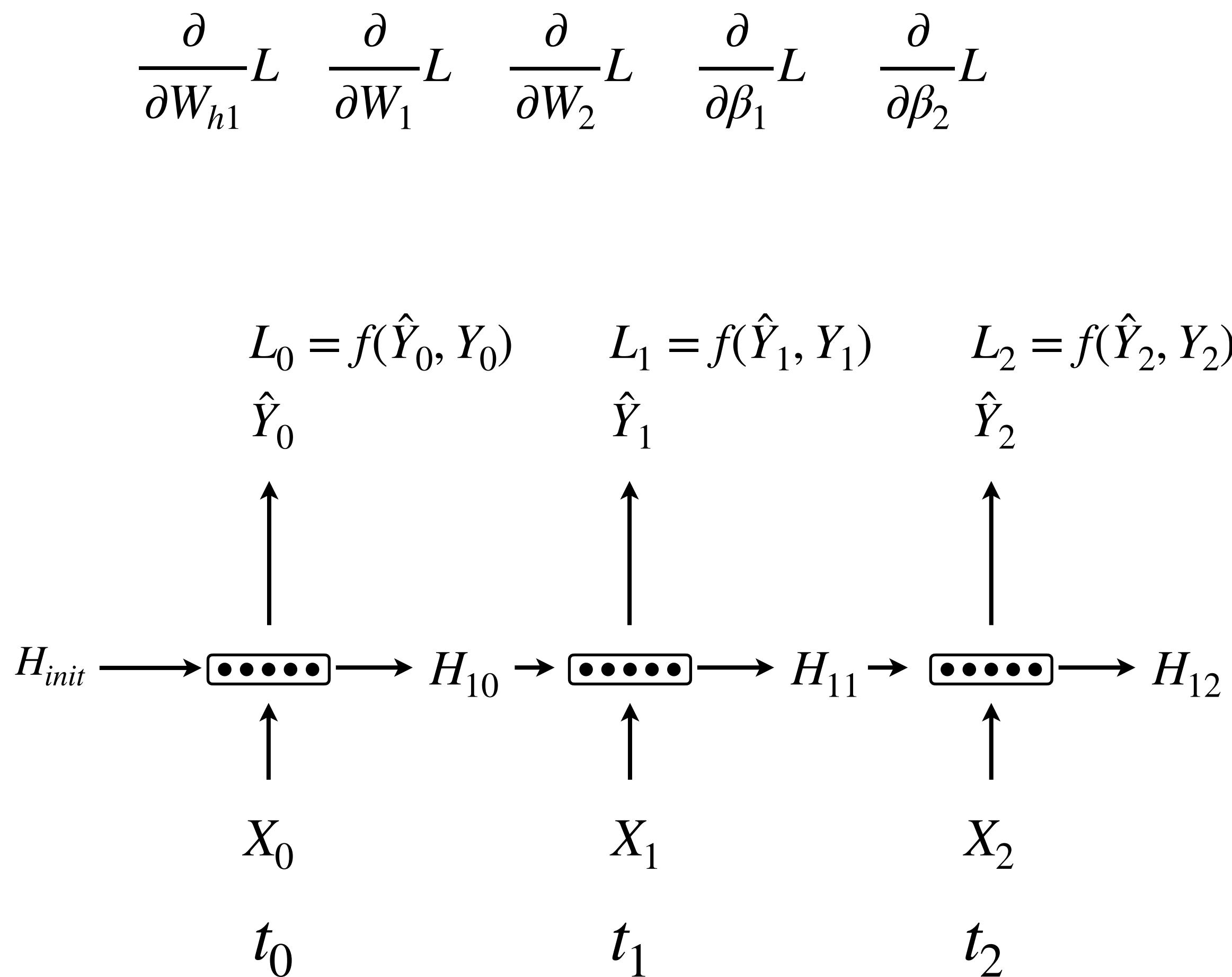
Binary Cross Entropy

$$L = - \sum_{j=1}^K y_j \log_e \hat{y}_j$$

Categorical Cross Entropy

Sequence to Sequence RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$



Recurrent Neural Networks

Backpropagation

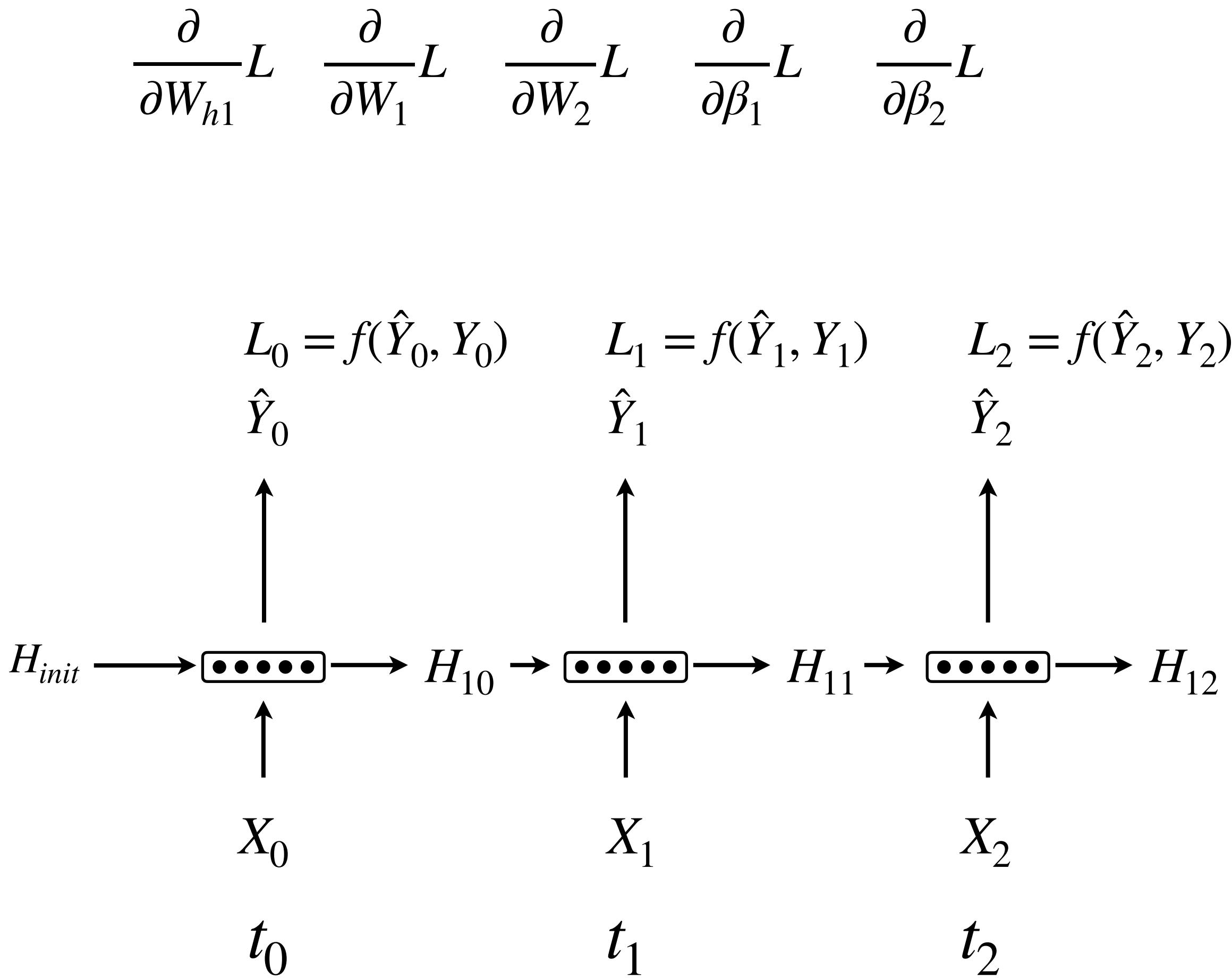
Output layer gradients are summed from each time step

$$\Rightarrow \frac{\partial}{\partial \beta_2} L = \frac{\partial}{\partial \beta_2} L_0 + \frac{\partial}{\partial \beta_2} L_1 + \frac{\partial}{\partial \beta_2} L_2$$

$$\Rightarrow \frac{\partial}{\partial W_2} L = \frac{\partial}{\partial W_2} L_0 + \frac{\partial}{\partial W_2} L_1 + \frac{\partial}{\partial W_2} L_2 +$$

Sequence to Sequence RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$



Recurrent Neural Networks

Backpropagation Through Time (BPTT)

Hidden layer gradients are the sum of the derivatives of Loss from each time step

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \frac{\partial}{\partial \beta_1} L_0 + \frac{\partial}{\partial \beta_1} L_1 + \frac{\partial}{\partial \beta_1} L_2$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L_0 = \frac{\partial}{\partial \hat{Y}_0} L_0 \frac{\partial}{\partial H_{10}} \hat{Y}_0 \frac{\partial}{\partial \beta_1} H_{10} + \quad \boxed{\text{Chain Rule. } H_{10} \text{ depends on } \beta_1}$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L_1 = \frac{\partial}{\partial \hat{Y}_1} L_1 \frac{\partial}{\partial H_{11}} \hat{Y}_1 \frac{\partial}{\partial \beta_1} H_{11} + \quad \boxed{\text{Chain Rule. } H_{11} \text{ depends on } \beta_1}$$

$$\frac{\partial}{\partial \hat{Y}_1} L_1 \frac{\partial}{\partial H_{11}} \hat{Y}_1 \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial \beta_1} H_{10} + \quad \boxed{\text{Chain Rule. } H_{11} \text{ depends on } H_{10}}$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L_1 = \frac{\partial}{\partial \hat{Y}_1} L_1 \frac{\partial}{\partial H_{11}} \hat{Y}_1 \left[\frac{\partial}{\partial \beta_1} H_{11} + \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial \beta_1} H_{10} \right]$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L_2 = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial \beta_1} H_{12} + \quad \boxed{\text{Chain Rule. } H_{12} \text{ depends on } \beta_1}$$

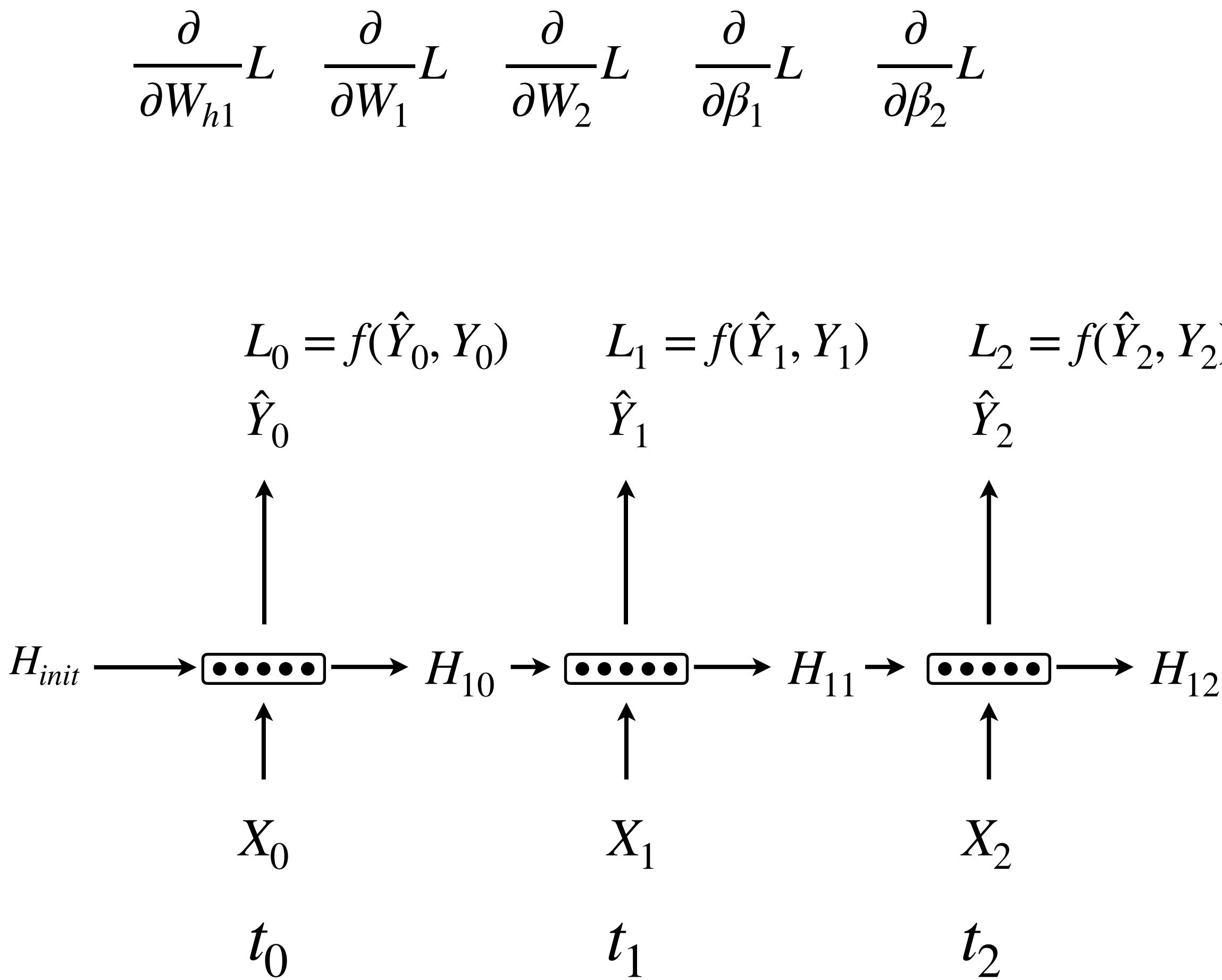
$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial \beta_1} H_{11} + \quad \boxed{\text{Chain Rule. } H_{12} \text{ depends on } H_{11}}$$

$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial \beta_1} H_{10} \quad \boxed{\text{Chain Rule. } H_{11} \text{ depends on } H_{10}}$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L_2 = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \left[\frac{\partial}{\partial \beta_1} H_{12} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial \beta_1} H_{11} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial \beta_1} H_{10} \right]$$

Sequence to Sequence RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$



Recurrent Neural Networks

Backpropagation Through Time (BPTT)

Hidden layer gradients are the sum of the derivatives of Loss from each time step

$$\Rightarrow \frac{\partial}{\partial W_1} L = \frac{\partial}{\partial W_1} L_0 + \frac{\partial}{\partial W_1} L_1 + \frac{\partial}{\partial W_1} L_2$$

$$\Rightarrow \frac{\partial}{\partial W_1} L_0 = \frac{\partial}{\partial \hat{Y}_0} L_0 \frac{\partial}{\partial H_{10}} \hat{Y}_0 \frac{\partial}{\partial W_1} H_{10} + \boxed{\text{Chain Rule. } H_{10} \text{ depends on } W_1}$$

$$\Rightarrow \frac{\partial}{\partial W_1} L_1 = \frac{\partial}{\partial \hat{Y}_1} L_1 \frac{\partial}{\partial H_{11}} \hat{Y}_1 \frac{\partial}{\partial W_1} H_{11} + \frac{\partial}{\partial \hat{Y}_1} L_1 \frac{\partial}{\partial H_{11}} \hat{Y}_1 \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_1} H_{10} + \boxed{\text{Chain Rule. } H_{11} \text{ depends on } W_1}$$

$$\Rightarrow \frac{\partial}{\partial W_1} L_1 = \frac{\partial}{\partial \hat{Y}_1} L_1 \frac{\partial}{\partial H_{11}} \hat{Y}_1 \left[\frac{\partial}{\partial W_1} H_{11} + \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_1} H_{10} \right]$$

$$\Rightarrow \frac{\partial}{\partial W_1} L_2 = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial W_1} H_{12} + \boxed{\text{Chain Rule. } H_{12} \text{ depends on } W_1}$$

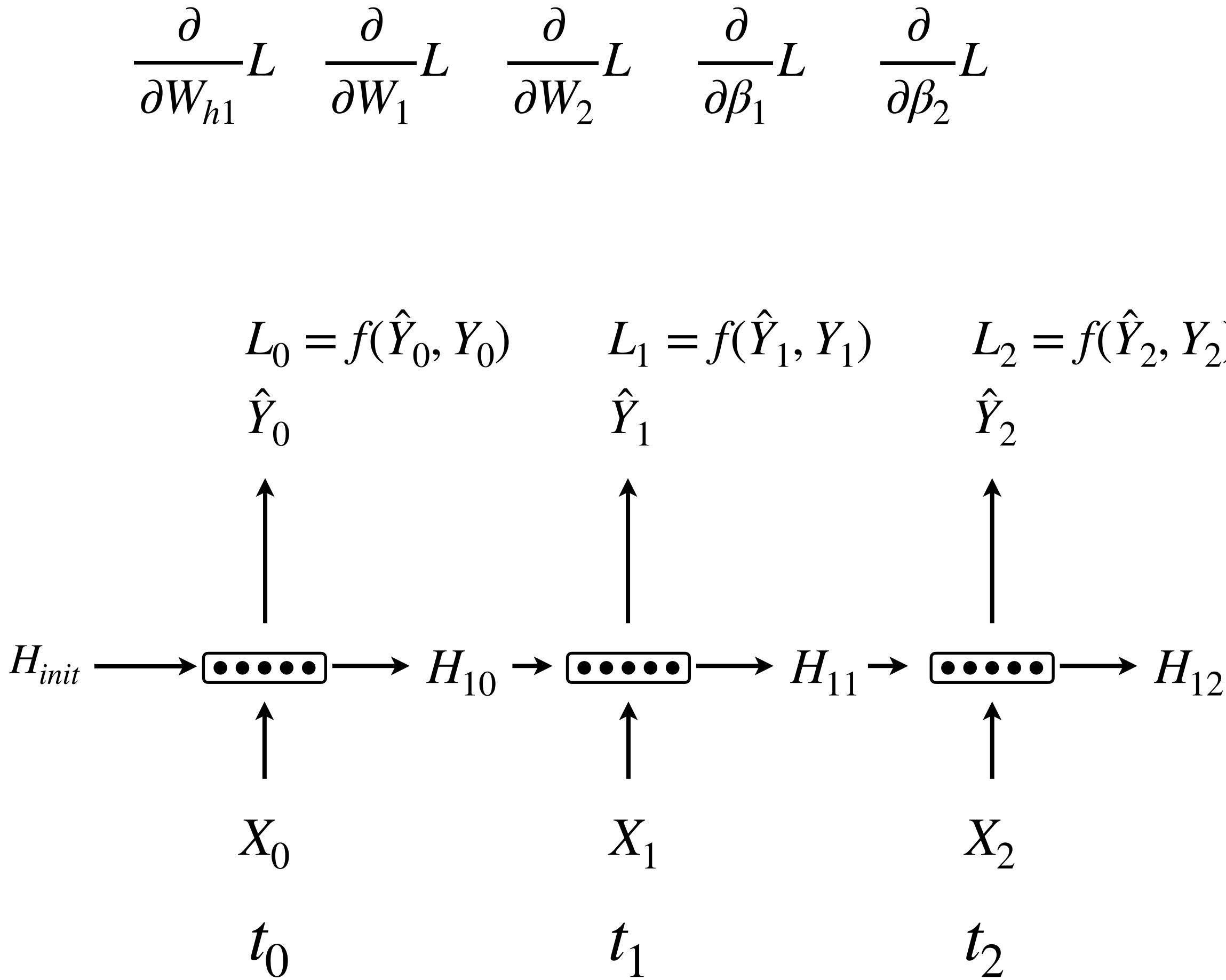
$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial W_1} H_{11} + \boxed{\text{Chain Rule. } H_{12} \text{ depends on } H_{11}}$$

$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_1} H_{10} + \boxed{\text{Chain Rule. } H_{11} \text{ depends on } H_{10}}$$

$$\Rightarrow \frac{\partial}{\partial W_1} L_2 = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \left[\frac{\partial}{\partial W_1} H_{12} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial W_1} H_{11} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_1} H_{10} \right]$$

Sequence to Sequence RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$



Recurrent Neural Networks

Backpropagation Through Time (BPTT)

Hidden layer gradients are the sum of the derivatives of Loss from each time step

$$\Rightarrow \frac{\partial}{\partial W_{h1}} L = \frac{\partial}{\partial W_{h1}} L_0 + \frac{\partial}{\partial W_{h1}} L_1 + \frac{\partial}{\partial W_{h1}} L_2$$

$$\Rightarrow \frac{\partial}{\partial W_{h1}} L_0 = \frac{\partial}{\partial \hat{Y}_0} L_0 \frac{\partial}{\partial H_{10}} \hat{Y}_0 \frac{\partial}{\partial W_{h1}} H_{10} + \quad \boxed{\text{Chain Rule. } H_{10} \text{ depends on } W_{h1}}$$

$$\Rightarrow \frac{\partial}{\partial W_{h1}} L_1 = \frac{\partial}{\partial \hat{Y}_1} L_1 \frac{\partial}{\partial H_{11}} \hat{Y}_1 \frac{\partial}{\partial W_{h1}} H_{11} + \quad \boxed{\text{Chain Rule. } H_{11} \text{ depends on } W_{h1}}$$

$$\frac{\partial}{\partial \hat{Y}_1} L_1 \frac{\partial}{\partial H_{11}} \hat{Y}_1 \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_{h1}} H_{10} + \quad \boxed{\text{Chain Rule. } H_{11} \text{ depends on } H_{10}}$$

$$\Rightarrow \frac{\partial}{\partial W_{h1}} L_1 = \frac{\partial}{\partial \hat{Y}_1} L_1 \frac{\partial}{\partial H_{11}} \hat{Y}_1 \left[\frac{\partial}{\partial W_{h1}} H_{11} + \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_{h1}} H_{10} + \right]$$

$$\Rightarrow \frac{\partial}{\partial W_{h1}} L_2 = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial W_{h1}} H_{12} + \quad \boxed{\text{Chain Rule. } H_{12} \text{ depends on } W_{h1}}$$

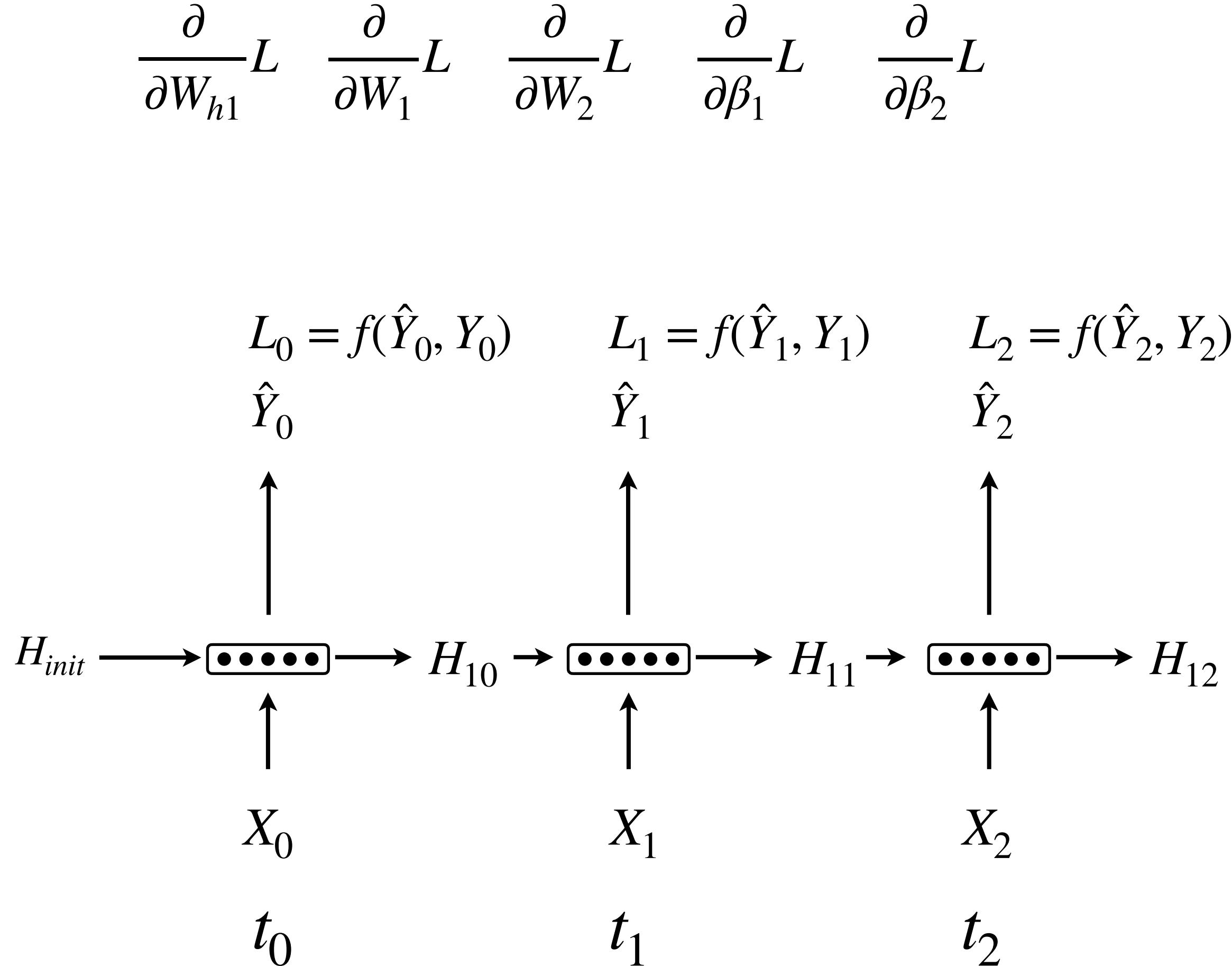
$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial W_{h1}} H_{11} + \quad \boxed{\text{Chain Rule. } H_{12} \text{ depends on } H_{11}}$$

$$\frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_{h1}} H_{10} + \quad \boxed{\text{Chain Rule. } H_{11} \text{ depends on } H_{10}}$$

$$\Rightarrow \frac{\partial}{\partial W_{h1}} L_2 = \frac{\partial}{\partial \hat{Y}_2} L_2 \frac{\partial}{\partial H_{12}} \hat{Y}_2 \left[\frac{\partial}{\partial W_{h1}} H_{12} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial W_{h1}} H_{11} + \frac{\partial}{\partial H_{11}} H_{12} \frac{\partial}{\partial H_{10}} H_{11} \frac{\partial}{\partial W_{h1}} H_{10} \right]$$

Sequence to Sequence RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$



Recurrent Neural Networks

Parameter Updates

$$\beta_2 = \beta_2 - \left(\frac{\partial}{\partial \beta_2} L \right) \times \text{learning_rate}$$

$$W_2 = W_2 - \left(\frac{\partial}{\partial W_2} L \right) \times \text{learning_rate}$$

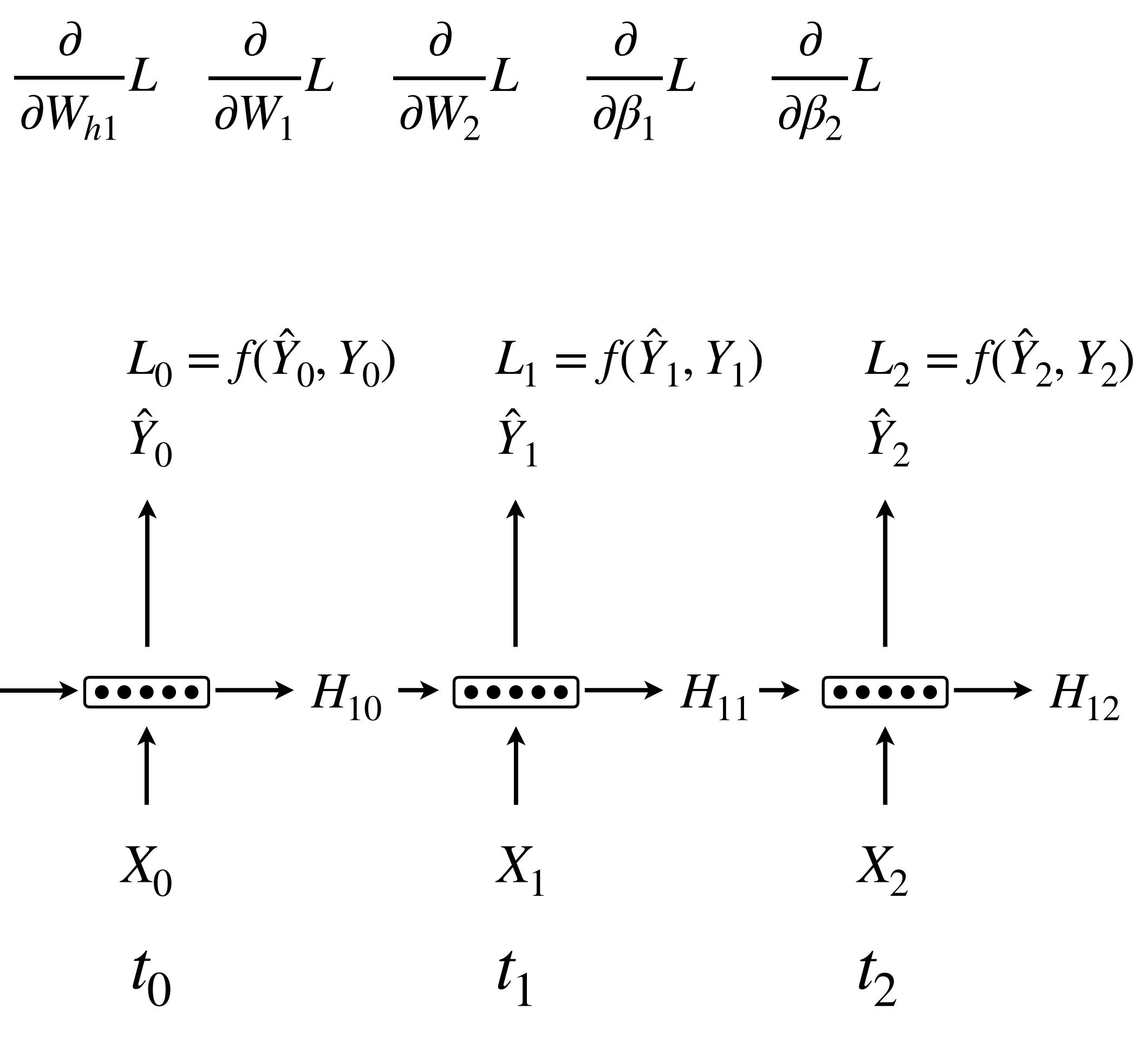
$$\beta_1 = \beta_1 - \left(\frac{\partial}{\partial \beta_1} L \right) \times \text{learning_rate}$$

$$W_1 = W_1 - \left(\frac{\partial}{\partial W_1} L \right) \times \text{learning_rate}$$

$$W_{h1} = W_{h1} - \left(\frac{\partial}{\partial W_{h1}} L \right) \times \text{learning_rate}$$

Sequence to Sequence RNN over 3 Time Steps

For backpropagation we have to calculate the partial derivative of the Loss function w.r.t the parameters $W_{h1}, W_1, W_2, \beta_1, \beta_2$



Recurrent Neural Networks

Gradient Descent for Sequence to Sequence RNN

Step 1: Start with initial values for $W_1, W_2, W_{h1}, \beta_1, \beta_2$

Step 2: Forward Propagation...

$$H_{10} = f_1(X_0 W_1 + H_{init} W_{h1} + \beta_1) \quad \hat{Y}_0 = f_2(H_{10} W_2 + \beta_2)$$

$$H_{11} = f_1(X_1 W_1 + H_{10} W_{h1} + \beta_1) \quad \hat{Y}_1 = f_2(H_{11} W_2 + \beta_2)$$

$$H_{12} = f_1(X_2 W_1 + H_{11} W_{h1} + \beta_1) \quad \hat{Y}_2 = f_2(H_{12} W_2 + \beta_2)$$

$$L = L_0 + L_1 + L_2$$

Step 3: Backpropagation Through Time

$$\frac{\partial}{\partial W_{h1}} L \quad \frac{\partial}{\partial W_1} L \quad \frac{\partial}{\partial W_2} L \quad \frac{\partial}{\partial \beta_1} L \quad \frac{\partial}{\partial \beta_2} L$$

Step 4: Parameter Updates

$$\beta_2 = \beta_2 - \left(\frac{\partial}{\partial \beta_2} L \right) \times \text{learning_rate}$$

$$\beta_1 = \beta_1 - \left(\frac{\partial}{\partial \beta_1} L \right) \times \text{learning_rate} \quad W_2 = W_2 - \left(\frac{\partial}{\partial W_2} L \right) \times \text{learning_rate}$$

$$W_1 = W_1 - \left(\frac{\partial}{\partial W_1} L \right) \times \text{learning_rate} \quad W_{h1} = W_{h1} - \left(\frac{\partial}{\partial W_{h1}} L \right) \times \text{learning_rate}$$

Step 5: Go to step 2 and repeat

Related Tutorials & Textbooks

Neural Networks ↗

An introduction to Neural Networks starting from a foundation of linear regression, logistic classification and multi class classification models along with the matrix representation of a neural network generalized to l layers with n neurons

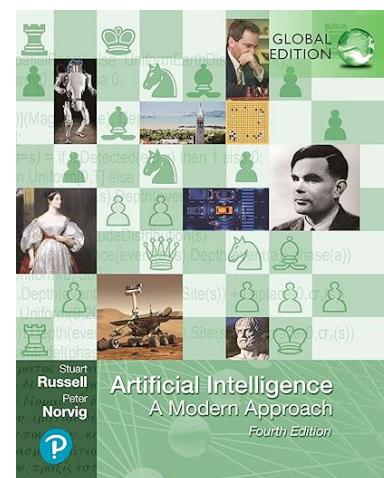
Forward and Back Propagation in Neural Networks ↗

A deep dive into how Neural Networks are trained using Gradient Descent. Output predictions, are compared to observations to calculate loss and Backward propagation then computes gradients by working backward through the network

Gradient Descent for Multiple Regression ↗

Gradient Descent algorithm for multiple regression and how it can be used to optimize $k + 1$ parameters for a Linear model in multiple dimensions.

Recommended Textbooks



Artificial Intelligence: A Modern Approach

by Peter Norvig, Stuart Russell

For a complete list of tutorials see:
<https://arrsingh.com/ai-tutorials>