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How do we represent RNNs mathematically? Recurrent Neural Networks

N, is the number of features in the input data
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H, =(XW,+ H;,_ W, + )

fi is an activation function on Layer L, (typically tanh)

f/t = fL(H W, + ),)

/> is an activation function on Layer L, (typically softmax for
classification, or ReLU / Identity for regression)
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Loss Function
Loss is a function of Predicted vs Actual Output |s the number of neurons in the hidden

L=f(Y,Y)

Bias addition is via Broadcasting. Every element of the Bias vector

X, is m X ny matrix
(/) is added to the corresponding column of f (X, W, + H,,_{W},;).

W, is ny X n; matrix

P is n; X 1 vector

=hHXW,+ H (W, + )

fi is an activation function on Layer L, (typically tanh) Bias addition is via Broadcasting. Every

— «—
L(H W, + b))

/> is an activation function on Layer L, (typically softmax for
classification, or ReLU [/ Identity for regression)

W, is n; X ny matrix

element of the Bias Vector (f3,) is added Hlt Is m X ny matrix

to the corresponding column of (H,W,). V[/2 is ny X n, matrix
P, is n, X 1 vector

Y, is m X n, matrix
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:}‘
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In General the Total Loss is the LOSS FU nCﬁOn

sum of Losses over all time steps: Loss is a function of Predicted vs Actual Output

L, =f(f/t’ Y)
Y, = fHL,(H W, + p,)

Outputs

P T
m X n, L — ZL[
=0

Weight
/ eights

N x|/

ng is the number of features in the input data
n, is the number of neurons in the hidden layer L,
N, is the number of neurons in the output layer L,

X, is m X ny matrix

W, is ny X ny matrix

is n, X 1 vector
:Bl 1 Hlt—l
W, is ny X n; matrix

- Hy, = [(XW,+ H,_ W, + /)

A Single RNN Layer

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 4
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Recurrent Neural Networks

Lets look at training a Sequence to Vector RNN unrolled over 3 time steps

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 5
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Sequence to Vector RNN over 3 Time Steps Recurrent Neural Networks

The RNN only produces an
output at the last time step

Outputs at time steps 1,
and t; are not computed

Y, Y, I?2 = HL(H,W, + p,)

The initial
hidden state
IS zero

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 6
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Total Loss

Loss at time steps 7, and The loss is only computed

: L=Ly+L;+L
f, are not computed at the last time step C 0Tt
= L=1L,
Ly = f(¥y, Yp) LA1 =f(f/1,Y1) l:2=f(172, 6)
Yy ¥, Yy = Hh(H W, + )

The initial %o 1 2
hidden state / , ,
is zero 0 1 2

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 7
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Sequence to Vector RNN over 3 Time Steps Recurrent Neural Networks

Let’s walk through how we train this

RNN unrolled over 3 time steps

Training via Gradient Descent involves a
Forward Pass, Computing the Cost Function,
w1 Backpropagation and Parameter Updates

Backpropagation in an RNN must be done over multiple time steps. The
algorithm is called Backpropagation Through Time (BPTT)

[ A )

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)
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A Sequence to Vector RNN (many-to-one) only
produces an output and Loss at the last time step.

H\, = (XW,+ H,_ W, + /)

fi is an activation function on Layer L, (typically tanh) .
Forward Propagation

Only computes the output at the last time step

H,y = [(XoW, + H;,,;, W,y + )

l

Y, = fH, W, + )

/> is an activation function on Layer L, (typically softmax
for classification, or ReLU [/ Identity for regression)

L, =f(f/2, Y,) Hyy = HXG W + Hy oWy + 5)
Y, Hyy = fi(XW + Hy Wy + 5
t Y, = HH W, + )

Loss Function

Loss function can be Categorical Cross Entropy or Binary Cross Entropy

Hinit_) 00000 | —M > Hl() —> (00000 | > Hll—) 00000 | —m > le

T T T Lz =f(Y29 Yz) .
B Total Loss is the loss
Xy X X5 L= L2 6—__—_—_—_—__—— at the last time step

Example Loss Functions

0 1 2 L=-[ylog,y+(1—-y)log,(l—-y)] Binary Cross Entropy
K
L=- Z)’j lOge)A’j ,
Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) J=1 Categorlcal Cross Entropy 9
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Sequence to Vector RNN over 3 Time Steps Recurrent Neural Networks

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters W, ,, W, W,, b:, p, Backpropagation

P P 5 5 5 Output layer gradients are only from the final time step
L. —IL —I —L —L
oW, oW, oW,  ap, 9B ] ]

—L=—1L,
op; op,

Hy, ={(XW, + H;,_ W, + )

f; is an activation function on Layer L, (typically tanh) A 0 0

| | L, = (Y5, Y>) > —L=——-L,
) ow, oW,

Y, = fo(H, W, + ) Y,

/> is an activation function on Layer L, (typically softmax
for classification, or ReLU / Identity for regression)

A

Hinit_) 00000 | —M > HIO —> (00000 | > Hll—) 00000 | —m > le

XO X 1 X2
[ A )

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 10
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For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters W, ,, W, W,, b:, p, Backpropagation Through Time (BPTT)

P P 9 9 9 Hidden layer gradients are derivatives of Loss from the final time step
L —L —L —L —L 5 5 Chain Rule. Hn
8Wh1 OWI 8W2 @Bl aﬂz = —] = —IJ2 depends on ﬂl
opy  dp
0 0 Chain Rule. H12
Hy, =H&X W + Hy Wy + ) > —L=——-L, YZ—H12+ depends Oan
fi is an activation function on Layer L, (typically tanh) A aﬁl 0Y2 ale aﬂ1
L2 — f(Y29 Y2) a
Y, = fo(H, Wy + ) Yz ~ le_H11+

/> is an activation function on Layer L, (typically softmax
for classification, or ReLU / Identity for regression)

A

Hinit_) 00000 |—> HIO —>»> o000 0|— > H11—>
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Sequence to Vector RNN over 3 Time Steps Recurrent Neural Networks

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters W, ,, W, W,, b:, p, Backpropagation Through Time (BPTT)

P P P P P Hidden layer gradients are derivatives of Loss from the final time step
L —L —L —L —L p P Chain Rule Hn
GWhl OWI 8W2 @Bl aﬂz = —] = —L2 depends on Wl
oW, oW,
0 0 Chain Rule. H12
Hy, =H&X W + Hy Wy + ) > —L =— Y2—H12+ depends Oan
fi is an activation function on Layer L, (typically tanh) A awl OYZ ale aVvl
L2 — f(Y29 Y2) a
Y, = LH W, + ) Yz ~ le_H11+
/> is an activation function on Layer L, (typically softmax A aYz 0H12 aI_Ill an
for classification, or ReLU / Identity for regression) P P P

0
L Y. H H,—H
o7, 2(')H12 2(')H11 12 oH | Han 10

\ Chain Rule. H,
depends on H,

t() [ 1 t2 0 0 0 A 0 0 0 0 0 0
oW, oF, *oH, | ow, oH, 2w, oH,, ZoH, ' ow,

Hinit_) 00000 | —M > HIO —> (00000 | > H11—>
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Sequence to Vector RNN over 3 Time Steps Recurrent Neural Networks

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters W, ,, W, W,, b:, p, Backpropagation Through Time (BPTT)

P P P P P Hidden layer gradients are derivatives of Loss from the final time step
L —L —L —L —L 5 p Chain Rule. Hn
GWhl OWI 8W2 @Bl aﬂz — L = 2 depends on Whl
0 a Chain Rule. H12
Hy, =H&X W + Hy Wy + ) L= Y2 H{»,+ " |depends Oan
fi is an activation function on Layer L, (typically tanh) A an aY2 ale 0Wh1
L2 — f(Y29 Y2) a
Y, = fH, W, + ) Yz A Y, H12 Hy+

/> is an activation function on Layer L, (typically softmax
for classification, or ReLU / Identity for regression)

A

Hinit_) 00000 | —M > HIO —> (00000 | > H11—>

+ +
oWy, oY, ~O0Hp; oWy, oH; oW, OH|; “oHy, oWy

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 13



https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Sequence to Vector RNN over 3 Time Steps Recurrent Neural Networks

For backpropagation we have to calculate the partial derivative

of the Loss function w.r.t the parameters W,;, W,, W,, f,, /> Parameter Updates

0 L 0 L 0 L 0 L 0 L
oWy, oW, oW, ap, op, 0 ,
pr =P, — | —L | Xlearning_rate
op,
Hy, = [(X W) + Hy Wy + 5)) P
f; is an activation function on Layer L, (typically tanh) A — N ;
1 ! L, = f(¥,, Y,) W, =W, (aWz L) X learning _rate
Y, = fo(H, W, + ) Y,
/> is an activation function on Layer L, (typically softmax A ,
for classification, or ReLU / Identity for regression) ﬁl — ﬁl o %L X learning_rate
1
‘i 00000 00000 00000 a .
Hinis — T — Hyp > T — Hpj~> T — Hp W, =W, - (WL> X learning _rate
1
X X X 0 .
0 I 2 Wy =W, — (()W L) X learning _rate
hl
f t t
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Sequence to Vector RNN over 3 Time Steps Recurrent Neural Networks

For backpropagation we have to calculate the partial derivative

Gradient Descent for Sequence to Vector RNN
of the Loss function w.r.t the parameters W, ,, W, W,, b:, p, -

Step 1: Start with initial values for W,, W,, W, ., 5, p»
0 L 0 L 0 L 0 L 0 L
oW, oW, ow, o, op, Step 2: Forward Propagation...

H,, = {(XoW, + H;,;; W, + P)
Hy = [XG\W + HigWy, + /1)

H, =f{(XW,+ H,_ W, + /)

fi is an activation function on Layer L, (typically tanh) L2 =f(?2, Y2) le =f1(X2W1 4+ HIIWhl + :Bl)
?r:fz(lewz‘Fﬂz) ?2 YZ =f2(H12W2 +:B2) L2 =f(Y29 Y2)

/> is an activation function on Layer L, (typically softmax

for classification, or ReLU / Identity for regression) t Step 3: BaCkprOpagaﬁon Through Time
0 L iL iL iL iL
oW oW, oW, op op;
Hyjy ——>(@esee)—> H|, > (tesee)—> H| > [ceeee)—> H |, Step 4: Parameter Updates
T T T Pr =P — <0i,52L> X learning_rate
X, X, X,

0 0
= f, — | —L | X learning rate W, =W, — | ——L | Xlearning rate
P =D < op > 8— 2 2 ( ow, > 8_

0 .
W, =W, - (WL> X learning_rate W, =W, — < L> X learning _rate

1

Step 5: Go to step 2 and repeat

oW,
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Recurrent Neural Networks

Lets look at training a Sequence to Sequence RNN unrolled over 3 time steps

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 16



https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Sequence to Sequence RNN over 3 Time Steps Recurrent Neural Networks

Outputs are computed
at each time step

I?0 = fr,(H oW, + f,) I?1 = HL(H W, + ) I?2 = fHL(H W, + )

The initial
hidden state
IS zero

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 17
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Sequence to Sequence RNN over 3 Time Steps Recurrent Neural Networks

Total Loss
L — LO + Ll + L2

Loss is computed at
each time step

Ly = (¥, %) Ly =f(¥),Y)) Ly = (¥, 7))
Yo =fH(H oW, + p5) Y, = HLH[ W, + ) Y, = HLH W, + )

The initial
hidden state
IS zero
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Sequence to Sequence RNN over 3 Time Steps Recurrent Neural Networks

Let’s walk through how we train this

RNN unrolled over 3 time steps

Training via Gradient Descent involves a
Forward Pass, Computing the Cost Function,
w1 Backpropagation and Parameter Updates

Backpropagation in an RNN must be done over multiple time steps. The
algorithm is called Backpropagation Through Time (BPTT)

[ A )

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)
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Sequence to Sequence RNN over 3 Time Steps Recurrent Neural Networks

Hy, =HXW,+H, W, +[)
fi is an activation function on Layer L, (typically tanh)

A Sequence to Sequence RNN (many-to-many)
produces an output and Loss at every time step.

Y, =fH, W, + )

/> is an activation function on Layer L, (typically softmax

for classification, or ReLU / Identity for regression) FO rwa rd P ro pagaﬁo N
Computes the output at every time step
Hyy = f{i(XoW, + H;,,;; Wy, + 5)) Yo = H(H oW, + )
Ly=f(Yp.Y)  Li=fY.Y)  Ly=f(Y,Y,) By =AW+ HigWi + P i =5 Wa + /)
Y, Y, Y, Hy, = (X W + H) Wy, + 5)) Y, = HL(H W, + p,)
A A A

Loss Function

Loss function can be Categorical Cross Entropy or Binary Cross Entropy

Hinit_) 00000 | —M > Hl() —> (00000 | > Hll—) 00000 | —m > le

T T T Ly =f(?()9 Yy L =f(?1, Y,)) L, =f(?2, Y,)

L = L() + Ll + L2 6\ Total Loss is the sum of the
XO Xl X2 losses at each time step

Example Loss Functions

0 1 2 L=-[ylog,y+ (1 —-y)log,(l—-y)] Binary Cross Entropy
K
L=- Z)’j lOge)A’j ,
Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) J=1 Categorlcal Cross Entropy 20



https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Sequence to Sequence RNN over 3 Time Steps Recurrent Neural Networks

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters W, ,, W, W,, b:, p, Backpropagation

P P 9 P P Output layer gradients are summed from each time step
L. —I —1I —L —L
oW, oW, ow, of op, P 3 3 3
E— — _LO : Ll : Lz
op,  Op, op; op;
5 5 A 0 0 0 0

Ly=f(Yp, Yy)  Li=fY.Y)  Ly=f(¥ 1) > —L=—-IL- L A L,+

YO Yl Y2

A A A

Hinit_) 00000 | —M > HIO —> (00000 | > Hll—) 00000 | —m > le

XO X 1 X2
[ A )
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Sequence to Sequence RNN over 3 Time Steps Recurrent Neural Networks

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters W,;, W,, W,, f,, /> Backpropagation Through Time (BPTT)

Hidden layer gradients are the sum of the derivatives of Loss from each time step

0 0 0 0 0
L —L —L —L —L ) ) B p
oW1 oW, oW, op op, > —L =—1, LA )

ovy  dp op op

P, 0~ 6?0 OaHl() Oaﬁ1 10 depends on f3;
L, = I,},Y L, = ?,Y 1 ?,Y P 5 5 . 9 Chain Rule. H};

o=fT0 Yy  Li=f.Y)  L=f(1.1) P I T _ fernte. 5
y y y op oY, OoH; ~dp
Y, Y, Y, | —
A A A 5?1 16H11 10H10 1laﬁ1 10 epends on 11
= 0 L = 0 i 0 H H,y+
1 1= o7 16H11 1 P, 11 oH, 110151 10

Hinit_) eec00|—> Hl() —> (e0000|—> Hll—) eeco0|—> le

op
= iLz — 0 L, 0 ?2 J H,+ Chain Rule. H;,
T T T P, 5?2 oH,, ~dp, < — | depends on f3,
0 0 , 0 0 .
— Y H,——H, + — | Chain Rule. H,

0 0 .~ O 0 0 .
f f f L, Y, H,, H,,—H,, <& — | Chain Rule. H},
0 ] ) oY, “0oH, "“0H oH df depends on H,
A, aLaf/_aH+aHaH+aHaHaH_
=, ="~ 12 2 | 7, 112 125, 111 12 115, **10
Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 1 0Y2 ale _aﬁl aHll aﬂl aHll aHlO aﬂl 22
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Sequence to Sequence RNN over 3 Time Steps Recurrent Neural Networks

For backpropagation we have to calculate the partial derivative
of the Loss function w.r.t the parameters W,;, W,, W,, f,, /> Backpropagation Through Time (BPTT)

Hidden layer gradients are the sum of the derivatives of Loss from each time step
0 0 0 0 0

L —L —L —L —L 0 0 0 0
oW, oW, oW, op, op, > ——L =——1 1 LA L,

; ot
L, = i} Y. L., = ? Y 1 ? Y. Chain Rule. Hy;
0 f( 0’ O) 1 f( 1° 1) 9 f( ox) 2) =>LL1= @/\Ll 0 ?1 0 H11+€— z_

YO Yl Y2 0 . 0 p 0 o 0 o +(_ _~ | Chain Rule. Hy;
~ p— depends on H
A A A aYI laI_I11 laHl() 11 6W1 10 10
0 0 0 0 0 0
- —L; = 1 Y | —H), Hy\—H,+

Hinit_) 00000 | —M > Hl() —> (00000 | > Hll—) 00000 | —m > H12

0 J 0 o O Chain Rule. H
> ——L, =——L Y. H,+ - Hy
T T T = o8, s e -
?\ L, o ?2 o H12LH11+(” - | Chain Rule. H},
XO Xl X2 oY, “OH, “0H ow; depends on Hj,
t t t a,\ L2 J ?2 J le 0 HlliH1§ — | Chain Rule. Hy;
O 1 2 aYZ 0H12 0H11 0H10 an depends on HIO

A S S O ¥y Ry SO A Py
27 Lo 2 2 5W1 12 aHll 126‘}‘/1 11 (3H11 12aI_I10 Han 2;0
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Sequence to Sequence RNN over 3 Time Steps Recurrent Neural Networks

For backpropagation we have to calculate the partial derivative

of the Loss function w.r.t the parameters W,;, W,, W,, f,, /> Backpropagation Through Time (BPTT)

Hidden layer gradients are the sum of the derivatives of Loss from each time step

0 0 0 0 0
L —L —L —L —L 0 0 0 0
oWy, oW, oW, op, op, = L= Ly LA L,

= Ly=——L Y, H,y+
oW, 0 o7, OaHl() Oan 10 depends on Whl
- I’} Y [ = ? Y [, = ? Y 3 3 P Chain Rule. H{,
AO f( 0» O) Al f( I° 1) ,\2 f( 29 2) N L =—oTI7L, 7, H, + € — | depends on W,

Y Y Y oW, oY, oHy; JdWy
0 1 2 0 0 ~ 0 0 — Chain Rule. Hy;
A A A —L, Y, Hy, Hy+ depends on H,,
oY, OH) ~0H oW,
0 7N 0 0 0
= Ll —_ ~ Ll Yl Hll + Hll H10+
oW1 oY, oHy | oWy oH;y oW,

Hinit_) 00000 | —M > HIO —> (00000 | > Hll—) 00000 | —m > le

= o L, = o L, J ?2 0 Hlﬁ; Chain Rule. H;,

T T T aWhl 6?2 ale aWhl — ] depends on Whl

?\ L2 0 ?2 J H12LH11+ < - | Chain Rule. H,

XO Xl X2 aYZ 5H12 OHH OWM dEDEHdS on Hll
0 0 » O 0 0

t t l’ —L, Y, H, H, H,, €&——— | ChainRule. H},

O 1 2 aYZ 8H12 OHH 0H10 aWhl depends on HIO

0 o 0 .| 0 0 0 0 0 0
L L Hi,

+ Hy, Hy
| o | | OH\; “0H;y ~ JdWy,
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Sequence to Sequence RNN over 3 Time Steps Recurrent Neural Networks

For backpropagation we have to calculate the partial derivative

of the Loss function w.r.t the parameters W,;, W,, W,, f,, /> Parameter Updates

0 0 0 0 0

L —L —IL —L —L
oWy, oW, oW, ap, op, 0 ,
p,=p,— | —L | X learning_rate
op,

Ly :f(f/o, Yy) L, =f(f/1, Y)) L, =f(f/2, Y,) W, =W, — (d_WzL> X learning _rate

! 1 t P =P — <£L> X learning _rate

1
. 0
Hiniy ——> "%" —> Hyjp~> "i" — Hy > "%" —> Hj W, =W, — (_GW L) X learning _rate
1

0
W, =W, — (()W L) X learning_rate
hl
o g 5)
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Sequence to Sequence RNN over 3 Time Steps Recurrent Neural Networks

For backpropagation we have to calculate the partial derivative

Gradient Descent for Sequence to Sequence RNN
of the Loss function w.r.t the parameters W, ,, W, W,, b:, p, - -

Step 1: Start with initial values for W, W,, W, ., f;, P>

0 0 0 0 0
L —L —L —L —L . -
oW, oW, oW, 0P B, Step 2: Forward Propagation... A
Hyy=HX W+ HyyWi + 01 Yy =HH W, + p)
Hy =fiX\W + Ho W, +B) Y, =£H W, + B)
Ly=fY,Y) L =fY,.Y) L,=fY,,Y,) Hy, = HCoW + H Wi+ D) Y, = f(H Wy + )
A A A Step 3: Backpropagation Through Time
0 0 0 0 0
L —L —L —0L —L
oW1 oW, oW, op op,
Hyjy ——>(@esee)—> H|, > (tesee)—> H| > [ceeee)—> H |, Step 4: Parameter Updates
T T T Pr =P — <0iﬂzL> X learning_rate
XO X] X2 _ 0 I ] . W. =W 0 L ] :
P =P — <6_ﬁ1 > X learning_rate = Wy — (6_Wz > X learning _rate
t t )

0 .
W, =W, - (WL> X learning_rate W, =W, — < L> X learning _rate

1

Step 5: Go to step 2 and repeat

oW,
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Related Tutorials & Textbooks

Neural Networks 7

An introduction to Neural Networks starting from a foundation of linear regression, logistic classification and multi class
classification models along with the matrix representation of a neural network generalized to / layers with n neurons

Forward and Back Propagation in Neural Networks CJ

A deep dive into how Neural Networks are trained using Gradient Descent. Output predictions, are compared to observations to
calculate loss and Backward propagation then computes gradients by working backward through the network

Gradient Descent for Multiple Regression €7

Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear
model in multiple dimensions.

Recommended Textbooks

Artificial Intelligence: A Modern Approach

by Peter Norvig, Stuart Russell

For a complete list of tutorials see:
https://arrsingh.com/ai-tutorials

Sturt [SSINSSEES
Russell BArtiTicialintelligence
i AWleelagn A oreric)
FoUrthiEGition)
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