Recurrent Neural Networks Fundamentals

Rahul Singh rsingh@arrsingh.com

Feedforward Neural Networks

Feedforward Neural Networks use activation functions to transform the linear combination of inputs to make predictions

Feedforward Neural Networks

Feedforward Neural Networks use activation functions to transform the linear combination of inputs to make predictions

The neural networks we've seen in the past tutorials are also known as Feedforward neural networks because the data flows through the network from the input layer, to the hidden layers to the out put layer without cycles or feedback loops

Feedforward Neural Networks

Feedforward Neural Networks use activation functions to transform the linear combination of inputs to make predictions

$$Z_1 = f_1(XW_1 + \beta_1)$$

$$\hat{Y} = f_2(Z_1W_2 + \beta_2)$$

 $f_1(g)$ and $f_2(g)$ are the activation functions in Layers L_1 and L_2

Matrix Equations to compute the Predicted values \hat{Y} given inputs X, Weights W_1 and W_2 and Biases β_1 and β_2

X is the matrix of n input features and m observations for each. Each of the n features are independent in time and the order doesn't matter

Example: Features in a House price prediction model:

The order of the features doesn't matter

 x_1 : Number of Bedrooms x_2 : Number of Bathrooms x_3 : Square Footage x_4 : Lot Size

Lets take another example: Network Traffic Prediction

Problem Statement: We have a network service (http) and we want to predict the traffic every hour (for capacity planning). We want to scale up the service (add capacity) if we predict that the traffic is going to increase, and we want to scale down the service (release capacity) if we predict the traffic is going to decrease.

Here are the observations of traffic (Requests Per Hour) for the past 8 hours:

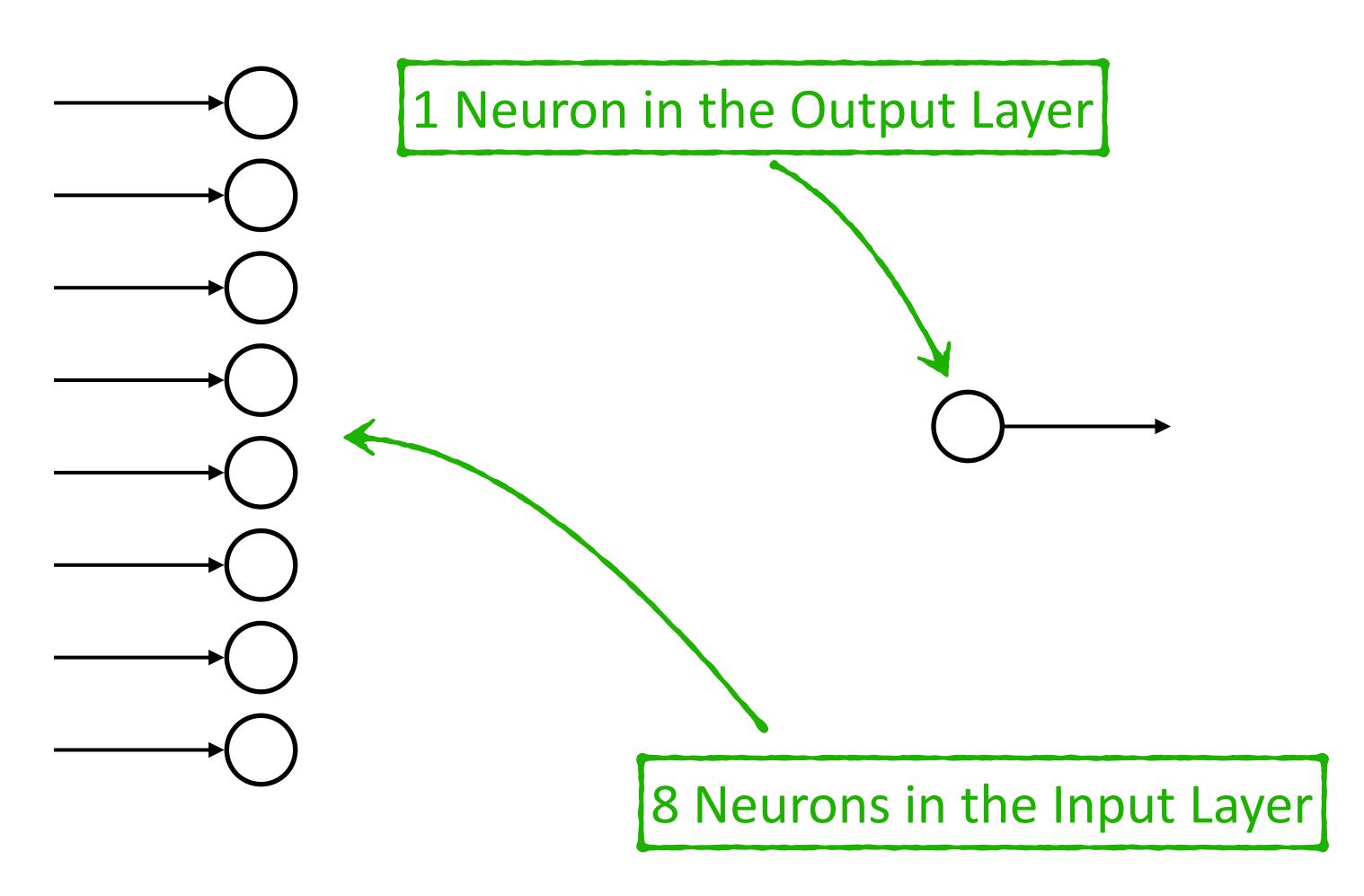
Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Question:

Can we predict the traffic at 6:00 AM? Should we add capacity or reduce it?

Network Traffic Prediction

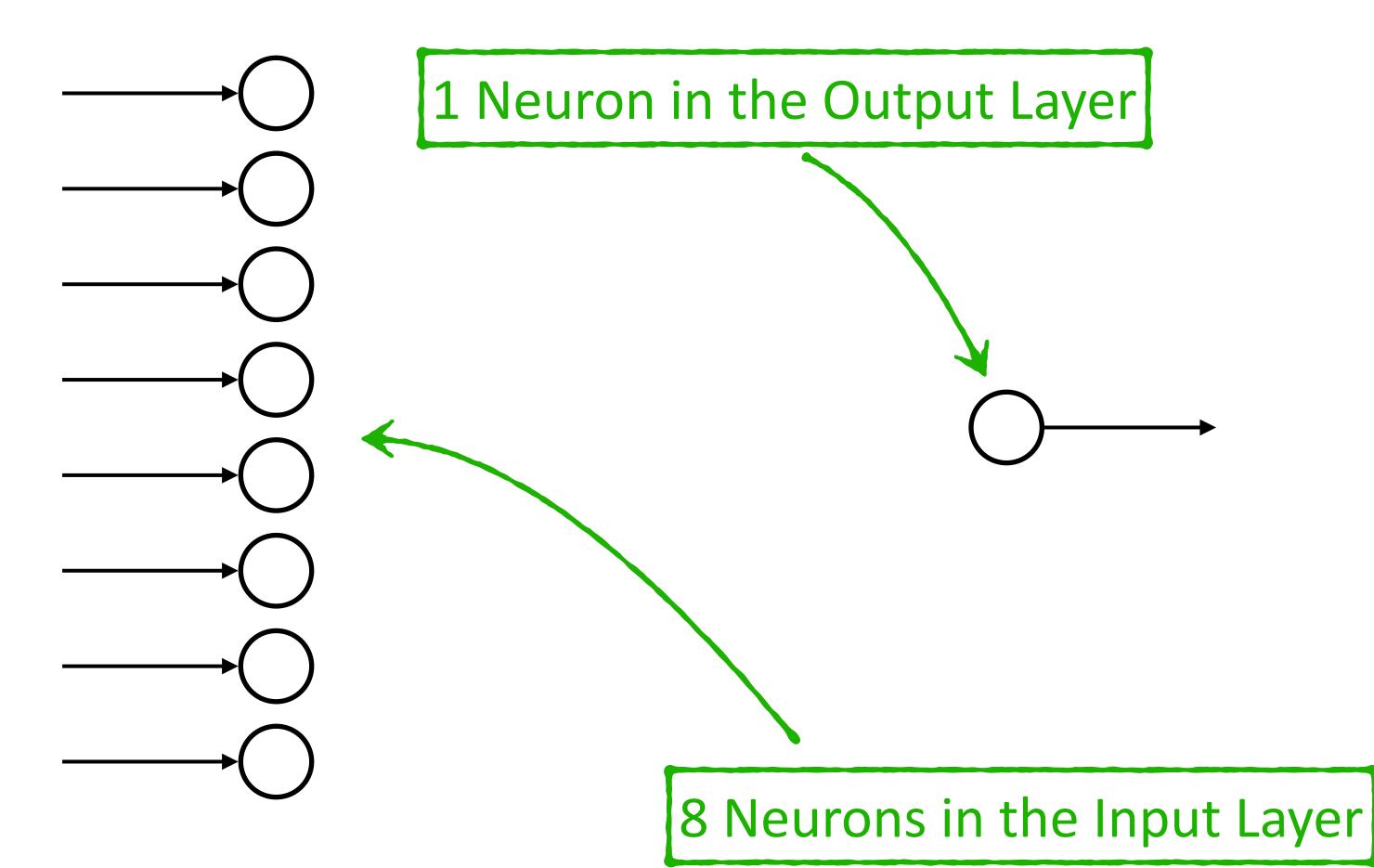
Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



Network Traffic Prediction

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Linear combination of inputs

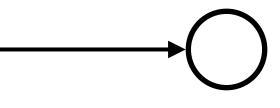


$$\hat{y} = \beta + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5 + w_6 x_6 + w_7 x_7 + w_8 x_8$$

Network Traffic Prediction

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

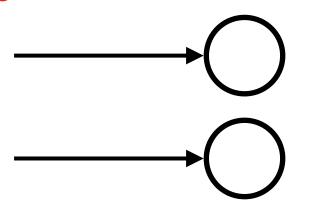
Linear combination of inputs



1 Neuron in the Output Layer

There are several problems with this approach:

- The input data has a trend that is not captured by the model
- The inputs are fixed and cannot account for more historical data points



8 Neurons in the Input Layer

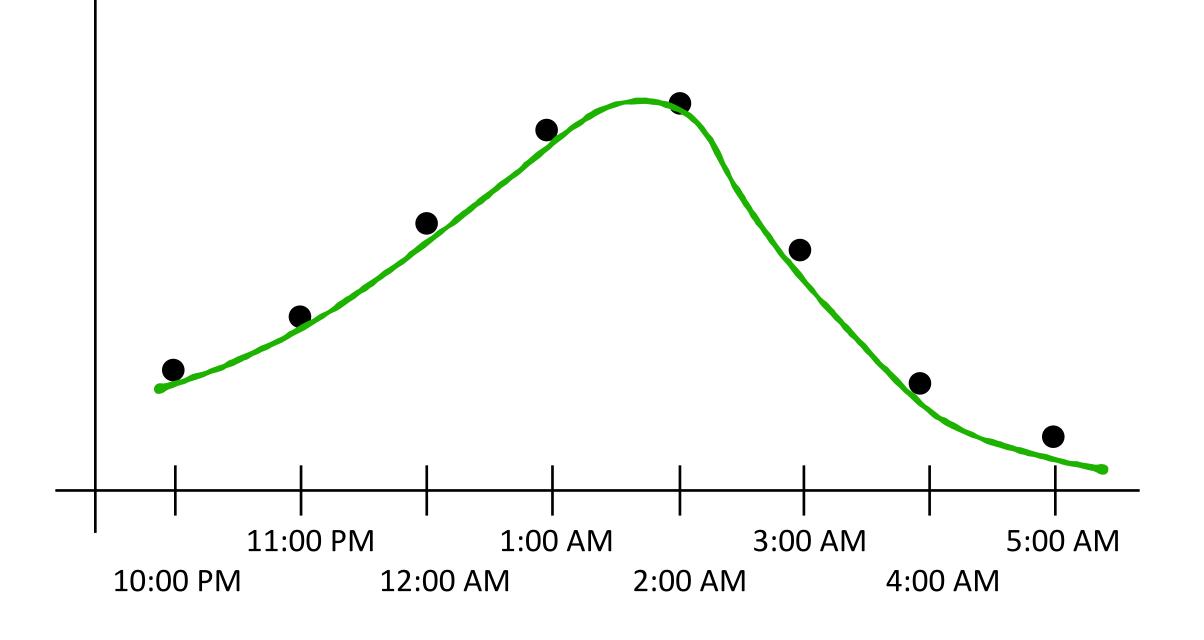
$$\hat{y} = \beta + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + w_5 x_5 + w_6 x_6 + w_7 x_7 + w_8 x_8$$

Network Traffic Prediction

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Neural Networks

Traffic starts ramping up, at 10:00 PM, peaks at 2:00 AM and then starts ramping down

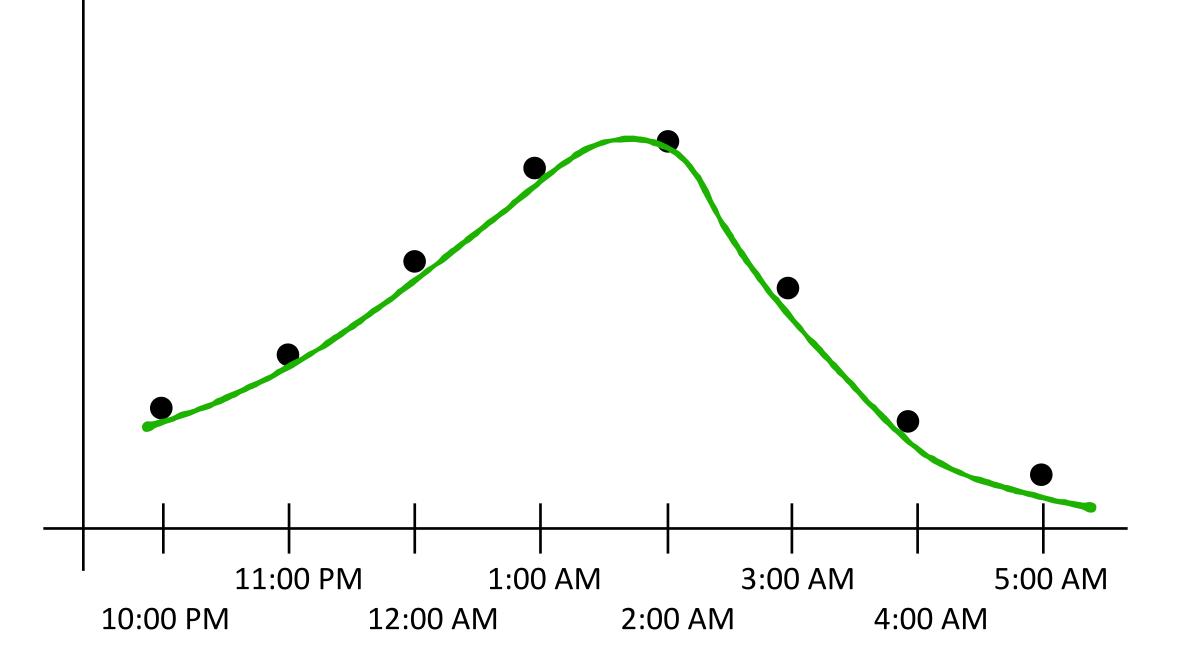


Network Traffic Prediction

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

The Feedforward Neural Network can't model this trend and simply calculates a prediction based on the weighted average of the inputs

Traffic starts ramping up, at 10:00 PM, peaks at 2:00 AM and then starts ramping down



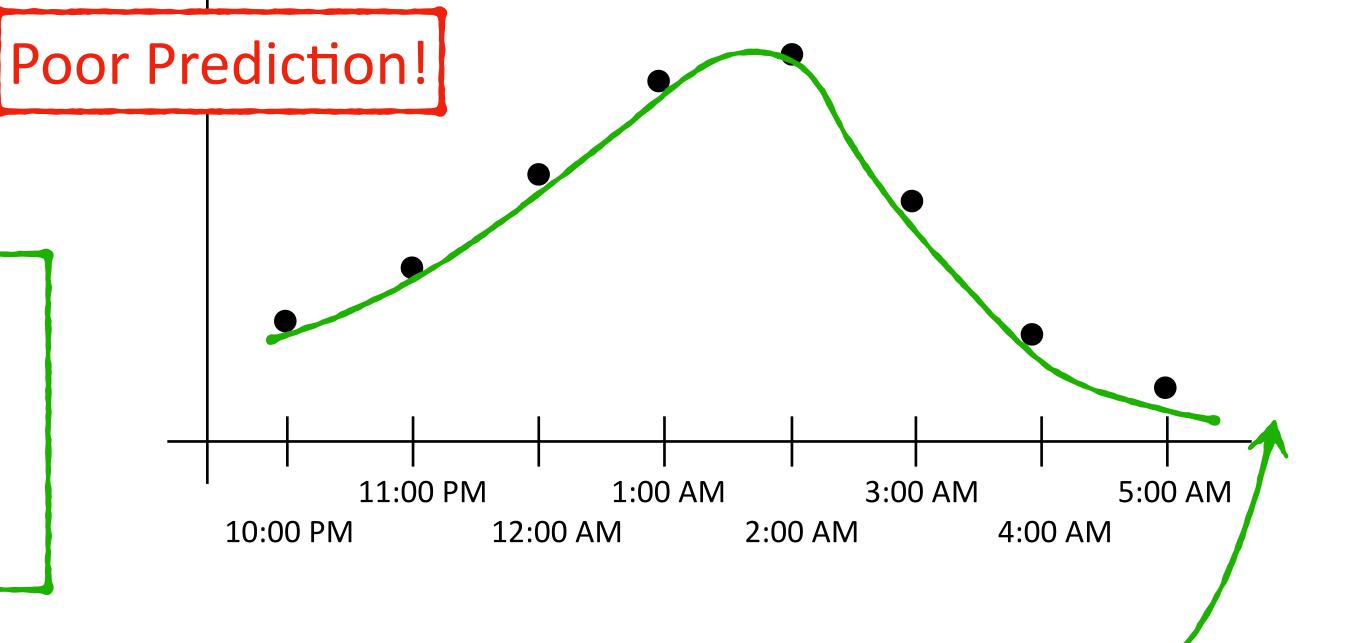
Network Traffic Prediction

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Traffic starts ramping up, at 10:00 PM, peaks at 2:00 AM and then starts ramping down

Predicted Traffic at 6:00 AM: ~650

The Feedforward Neural Network can't model this trend and simply calculates a prediction based on the weighted average of the inputs

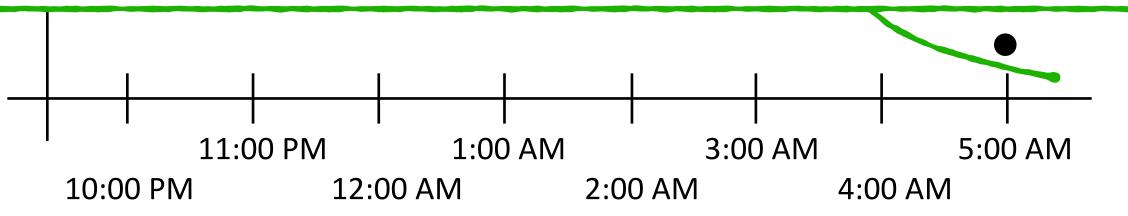


Traffic is actually in a decline. Should predict ~250

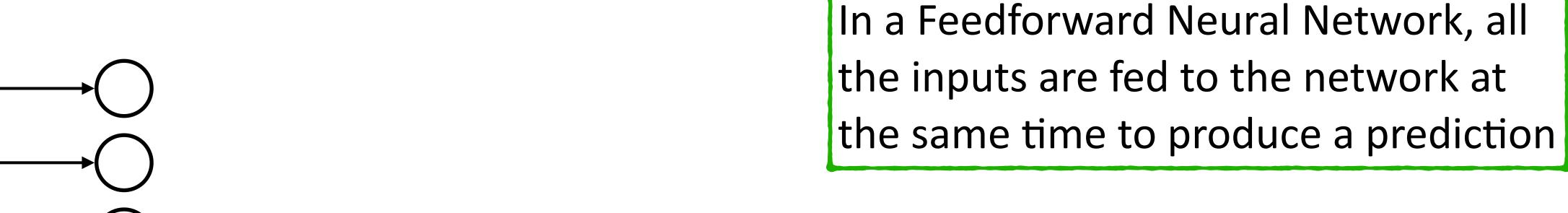
Network Traffic Prediction

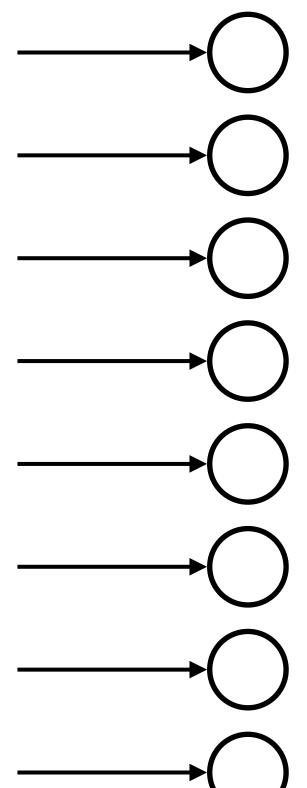
Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732

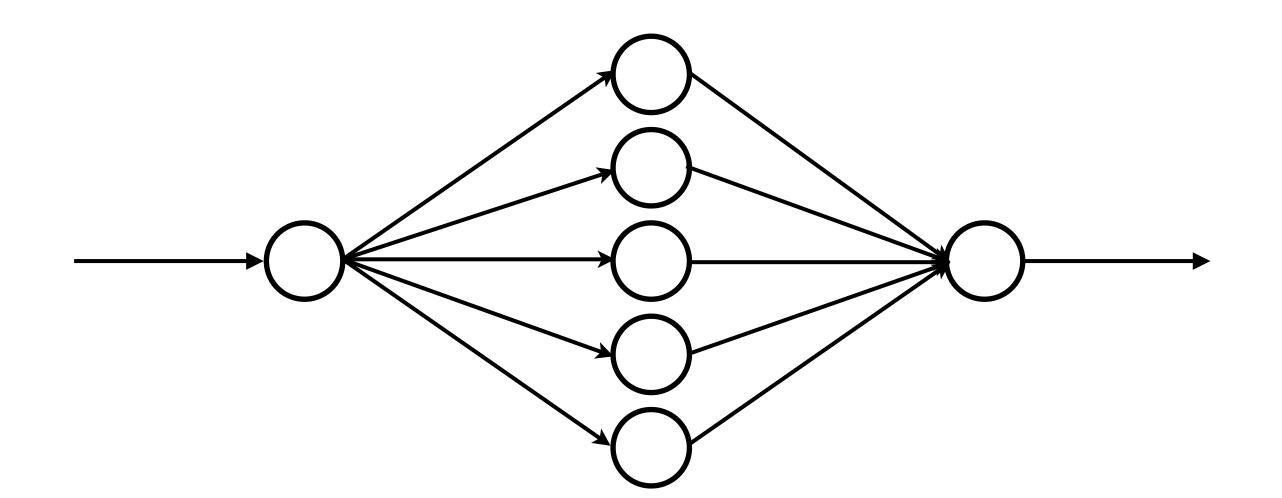
Feedforward Neural Networks cannot model inputs that have a temporal dependency and ordering



Recurrent Neural Networks can model inputs that have a temporal dependency and ordering



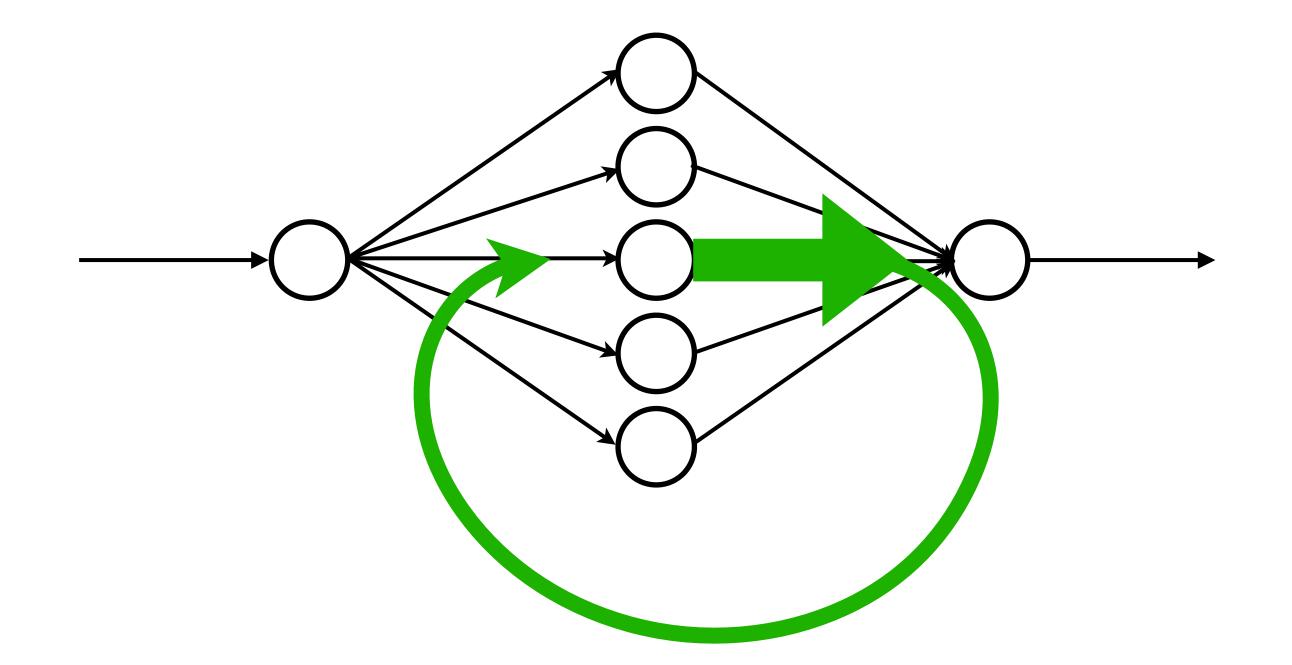




Recurrent Neural Networks

In an RNN, however since the inputs have a temporal dependency, the inputs are fed to the network and processed one at a time.

The structure of an RNN is similar to that of a FeedForward Network (input layer, hidden layers and an output layer) with one additional nuance...

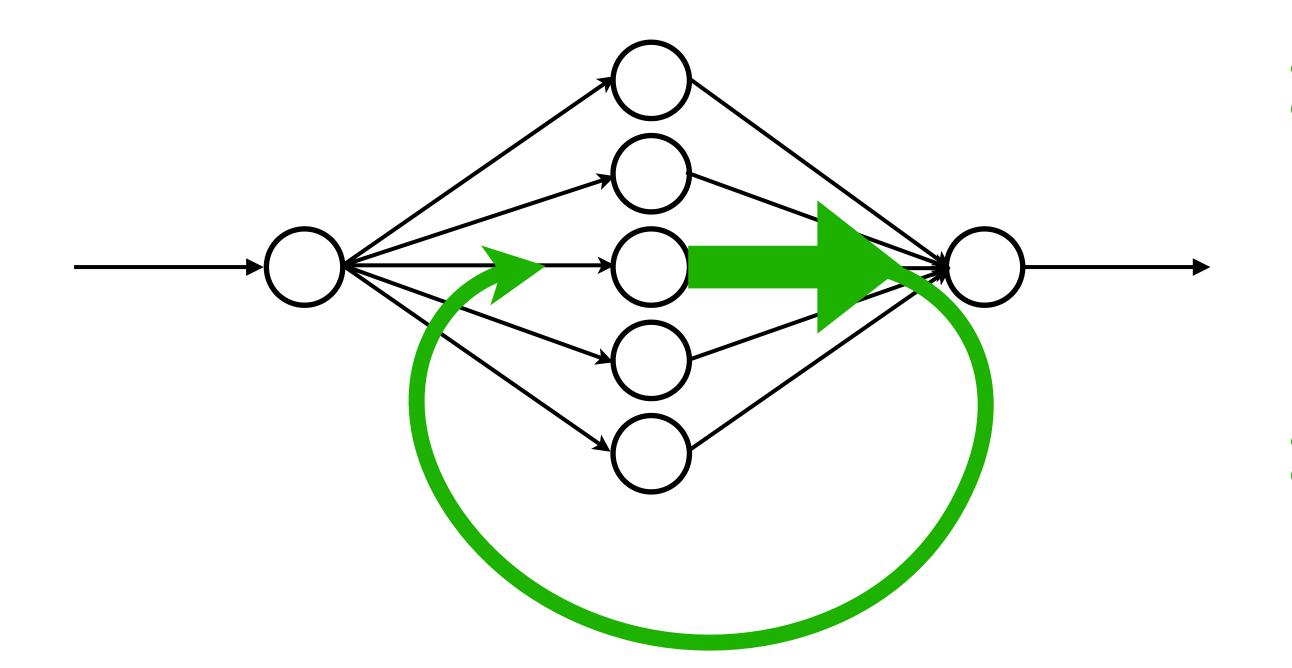


Recurrent Neural Networks

In an RNN, however since the inputs have a temporal dependency, the inputs are fed to the network and processed one at a time.

The structure of an RNN is similar to that of a FeedForward Network (input layer, hidden layers and an output layer) with one additional nuance...

... the output from the hidden layer at time t, is fed back as input to the hidden layer at time t+1 along with the input at time t+1



Recurrent Neural Networks

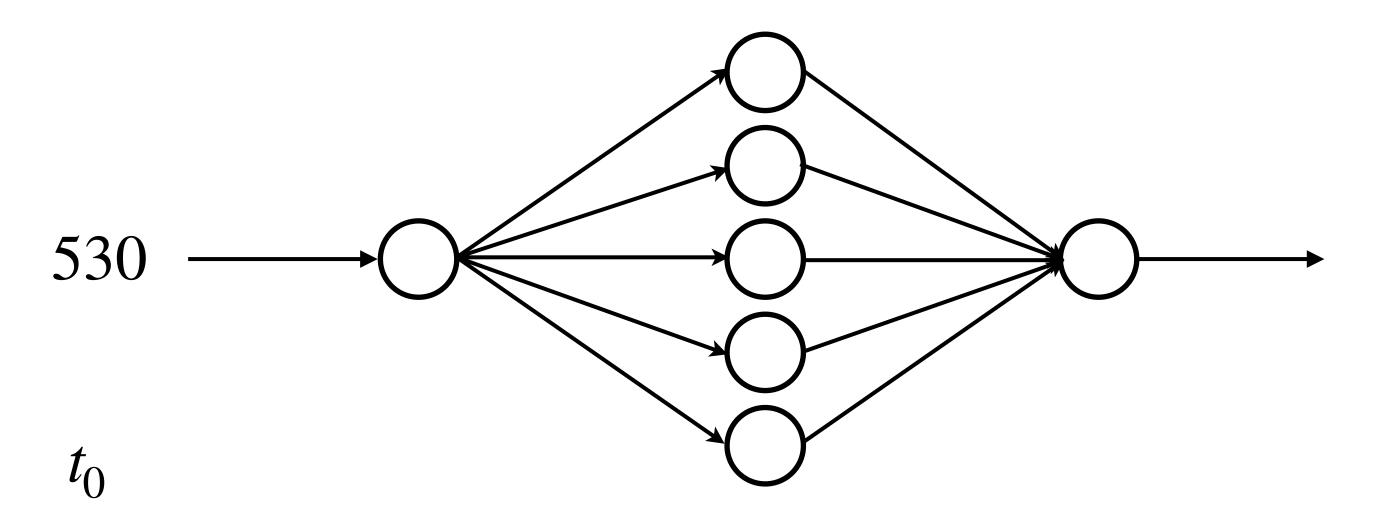
In an RNN, however since the inputs have a temporal dependency, the inputs are fed to the network and processed one at a time.

The structure of an RNN is similar to that of a FeedForward Network (input layer, hidden layers and an output layer) with one additional nuance...

... the output from the hidden layer at time t, is fed back as input to the hidden layer at time t+1 along with the input at time t+1

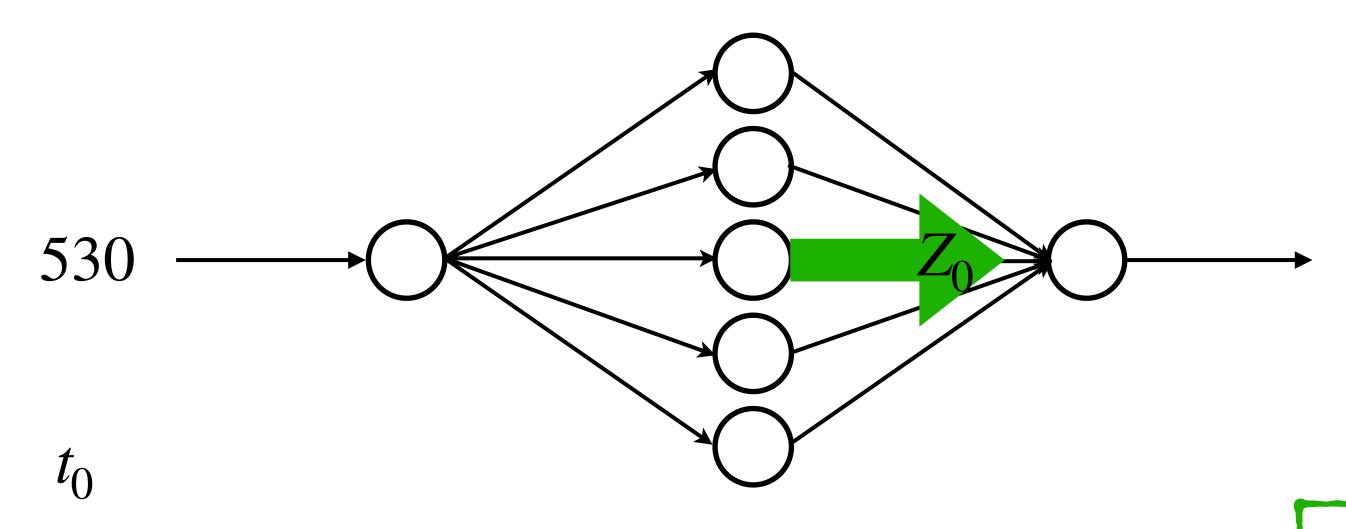
Let's walk through how this works...

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering



Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

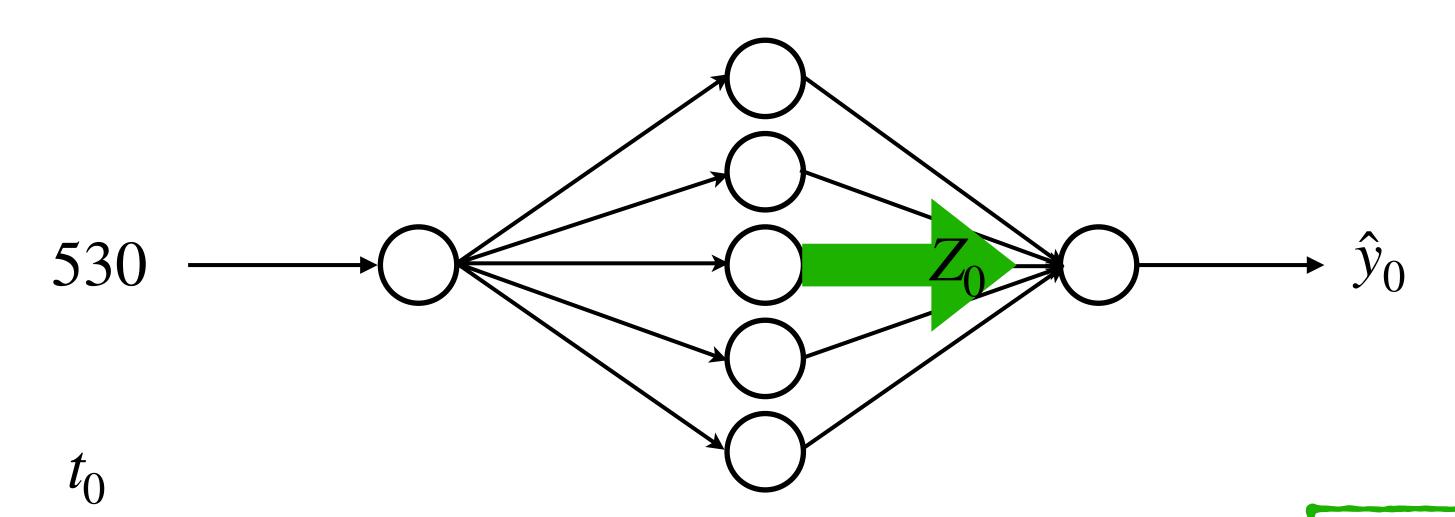
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering



Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Produces $Z_{\!0}$ from Layer $L_{\!1}$

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

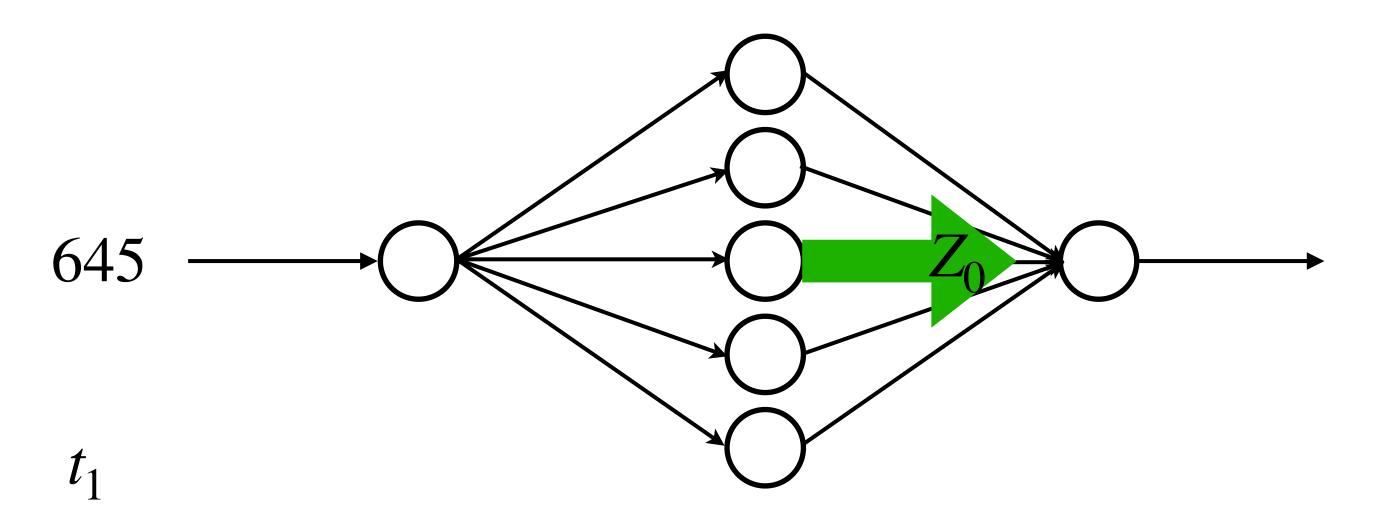


Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Produces output \hat{y}_0

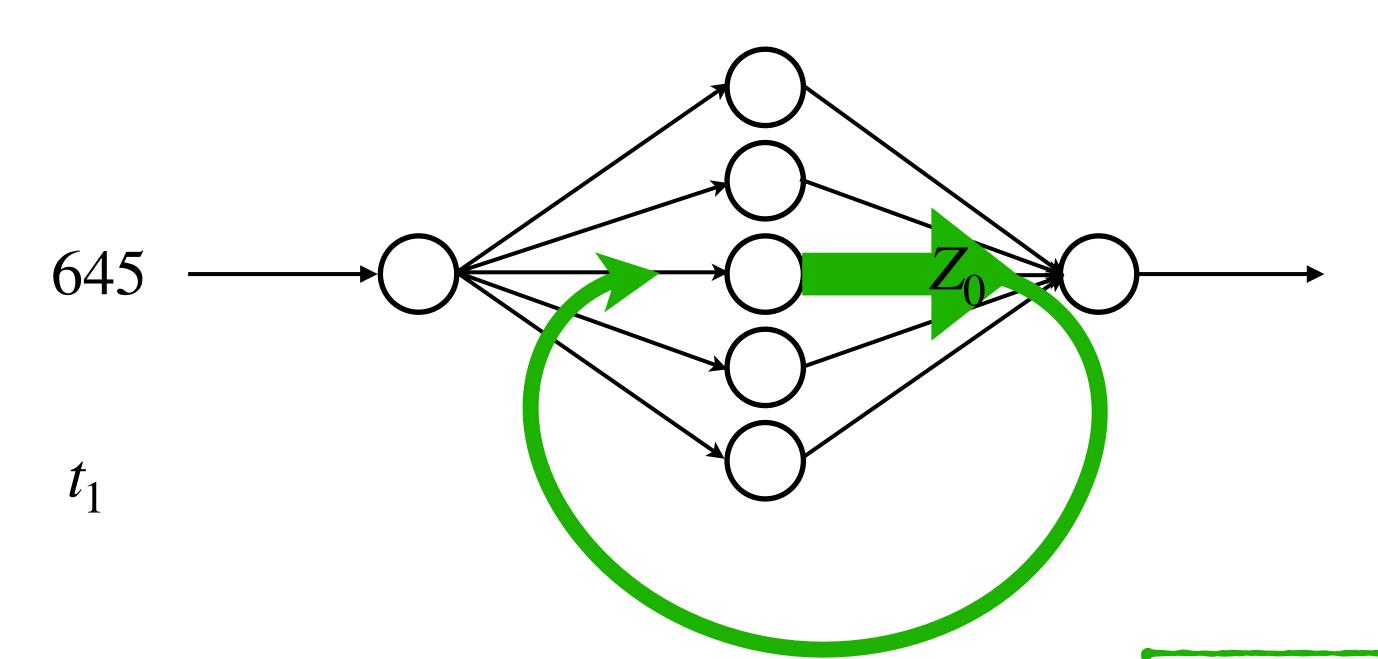
Produces $Z_{\!0}$ from Layer $L_{\!1}$

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering



Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

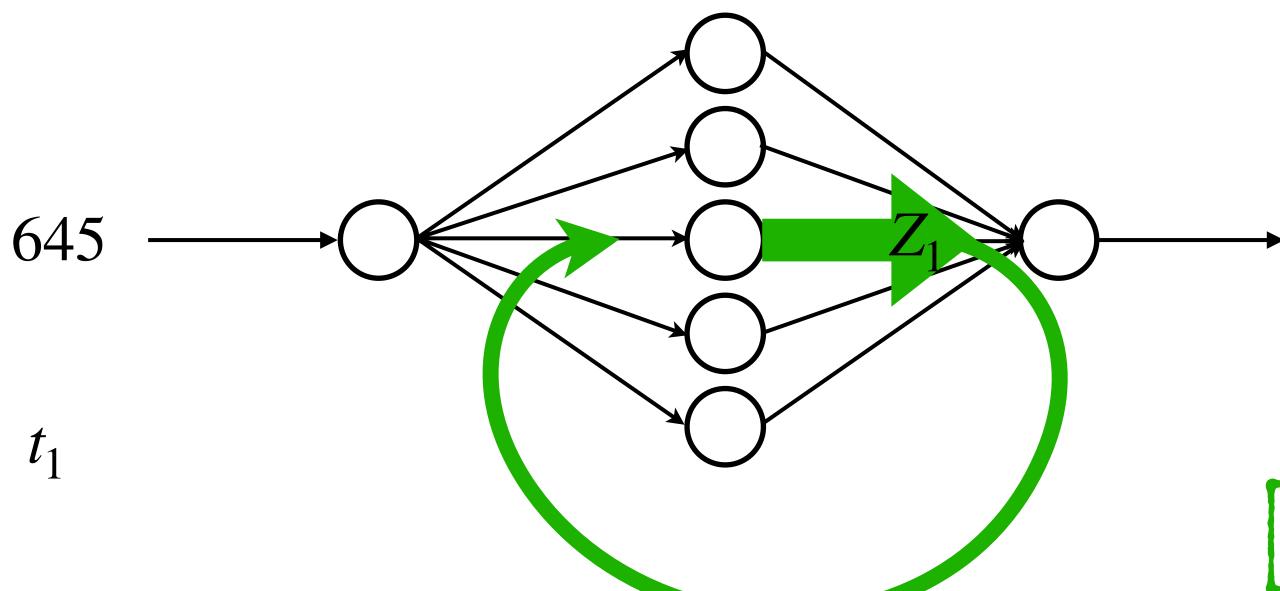
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering



Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

 $Z_{\!0}$ (from $t_{\!0}$) is fed back to the hidden layer

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering



Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Produces Z_1 from Layer L_1

 $Z_{\!0}$ (from $t_{\!0}$) is fed back to the hidden layer

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering



Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Produces output \hat{y}_1

Produces Z_1 from Layer L_1

 $Z_{\!0}$ (from $t_{\!0}$) is fed back to the hidden layer

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Let's unroll the loop so its easier to see what happens at each time step

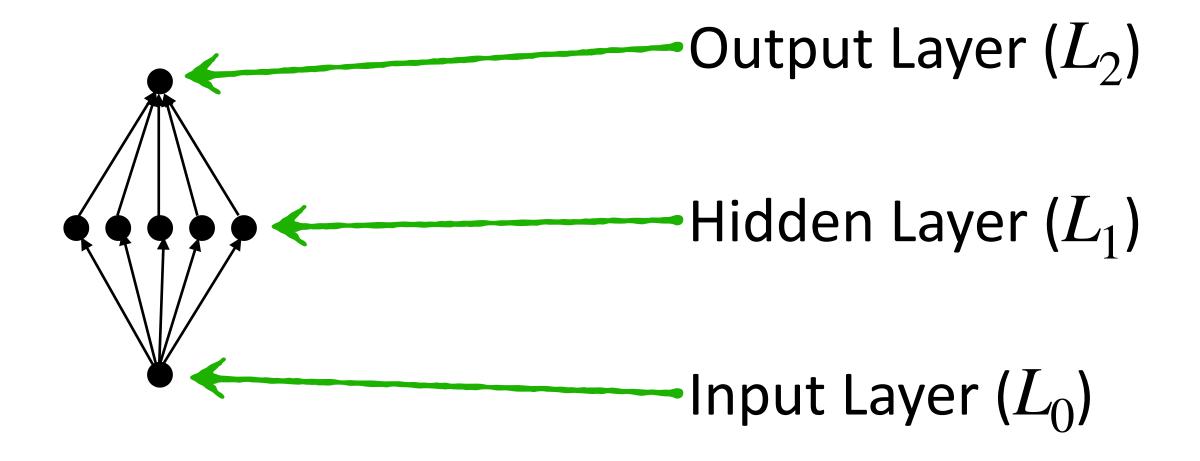
Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Produces output \hat{y}_1

Produces Z_1 from Layer L_1

 $Z_{\!0}$ (from $t_{\!0}$) is fed back to the hidden layer

First lets represent the RNN a bit differently...



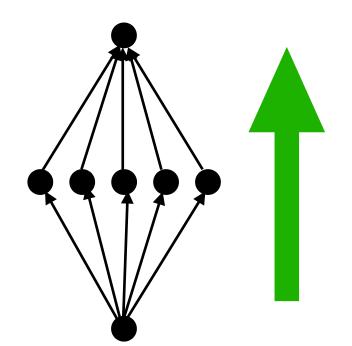
Recurrent Neural Networks

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Traffic Hour 10:00 PM 530 11:00 PM 645 12:00 AM 732 1:00 AM 845 2:00 AM 865 3:00 AM 720 4:00 AM 485 5:00 AM 366

First lets represent the RNN a bit differently...

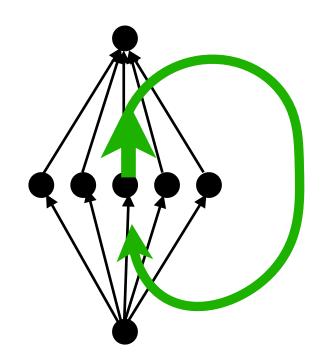


Inputs are fed from the input layer and move through the hidden layer to produce an output

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour **Traffic** 10:00 PM 530 11:00 PM 645 12:00 AM 732 1:00 AM 845 2:00 AM 865 3:00 AM 720 4:00 AM 485 5:00 AM 366

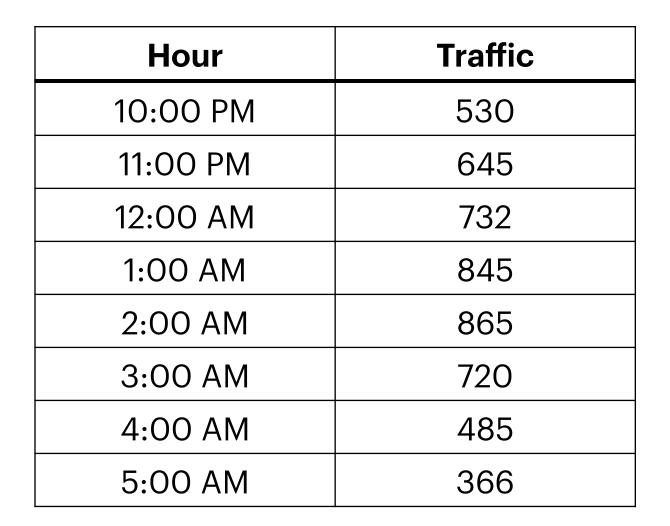
First lets represent the RNN a bit differently...



Output from the hidden layer at time t_0 is fed back as input to the same layer at time t_1

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

First lets represent the RNN a bit differently...

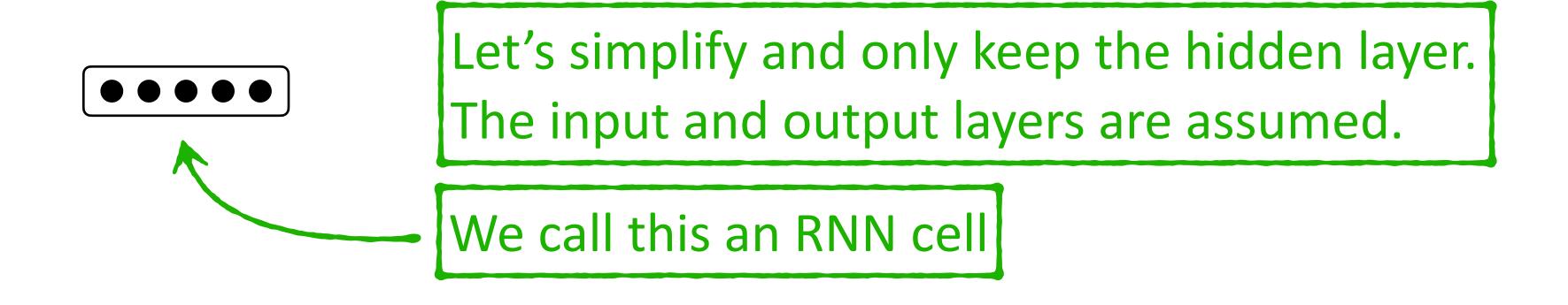


Let's simplify and only keep the hidden layer. The input and output layers are assumed.

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

First lets represent the RNN a bit differently...

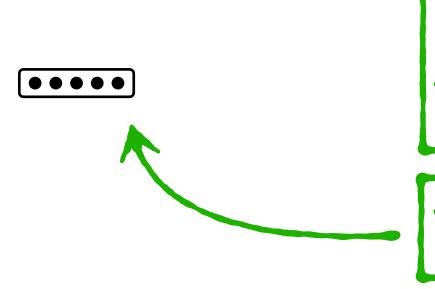
Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

First lets represent the RNN a bit differently...

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



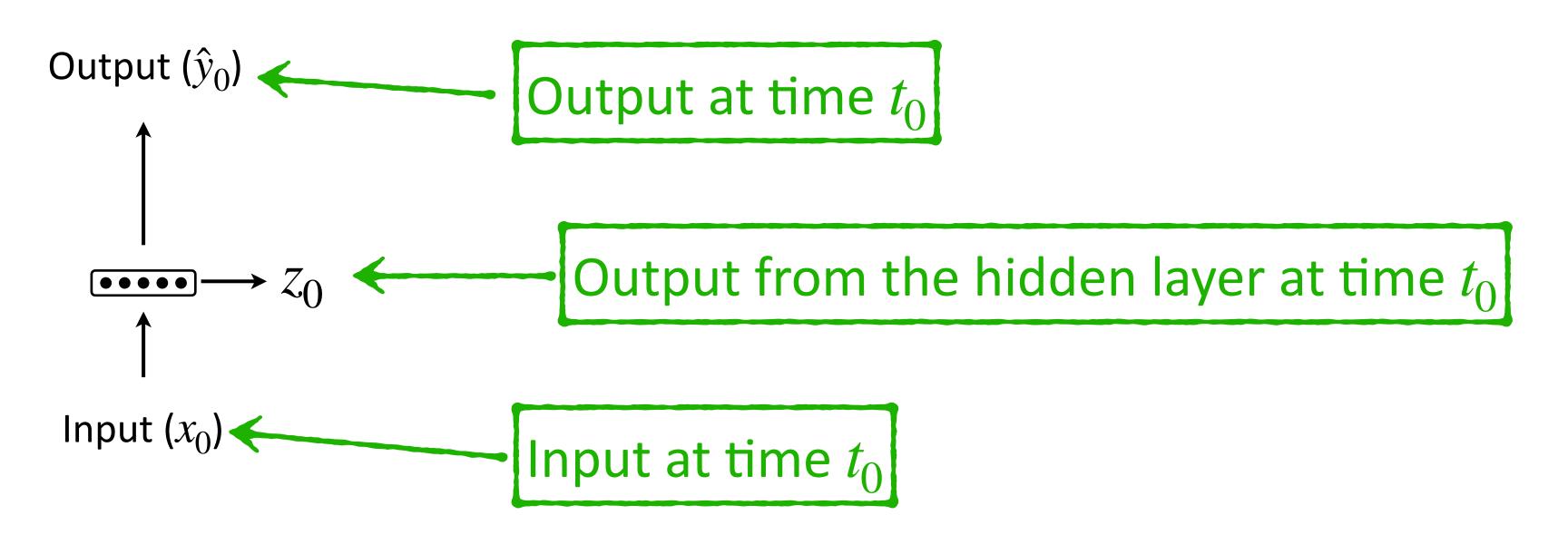
Let's simplify and only keep the hidden layer.
The input and output layers are assumed.

We call this an RNN cell

Making it a bit smaller so it fits on the slide...

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

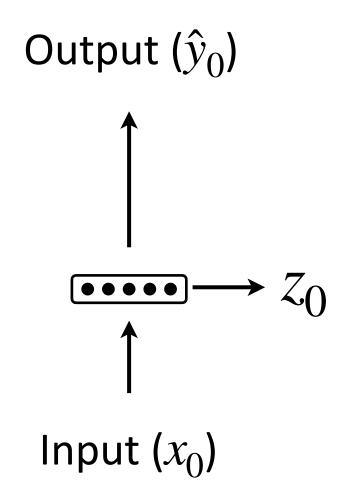
First lets represent the RNN a bit differently...



Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

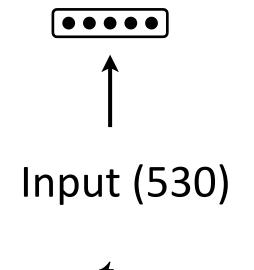
Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

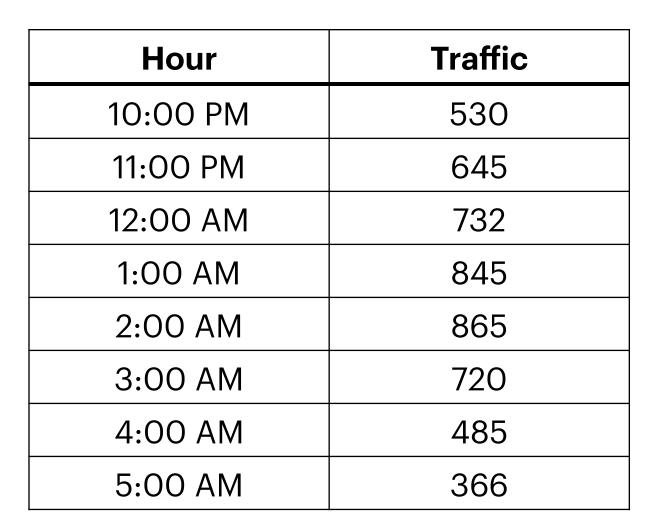
Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

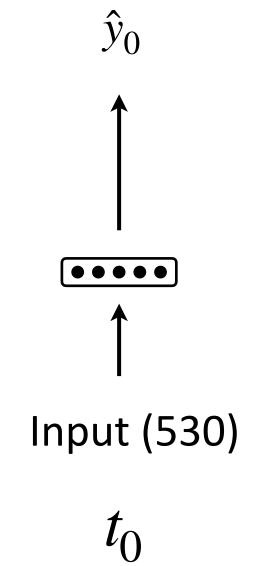
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

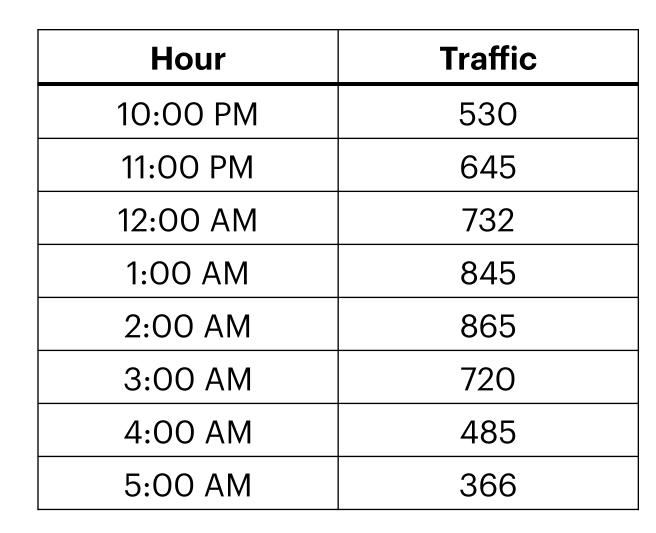


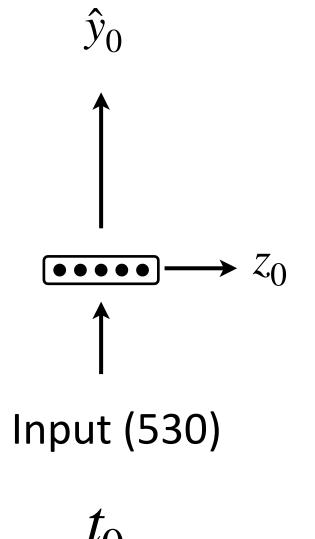
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering



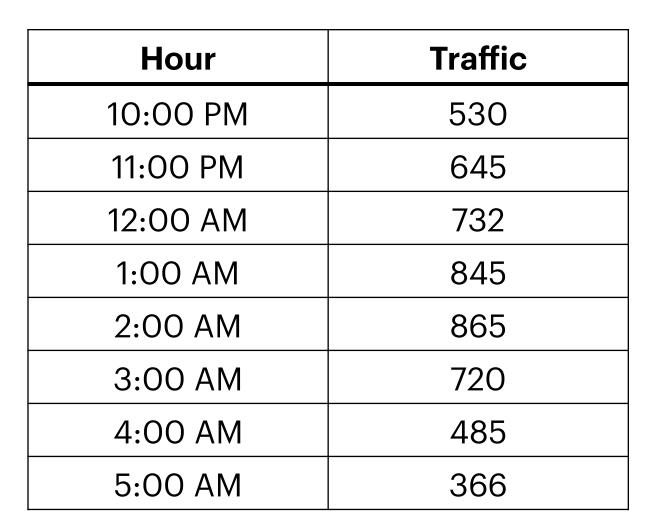


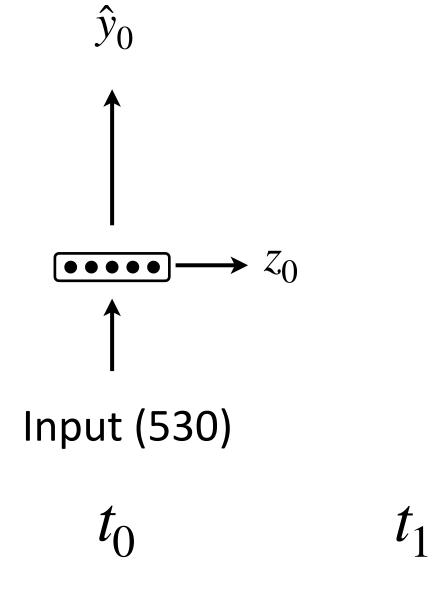
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering





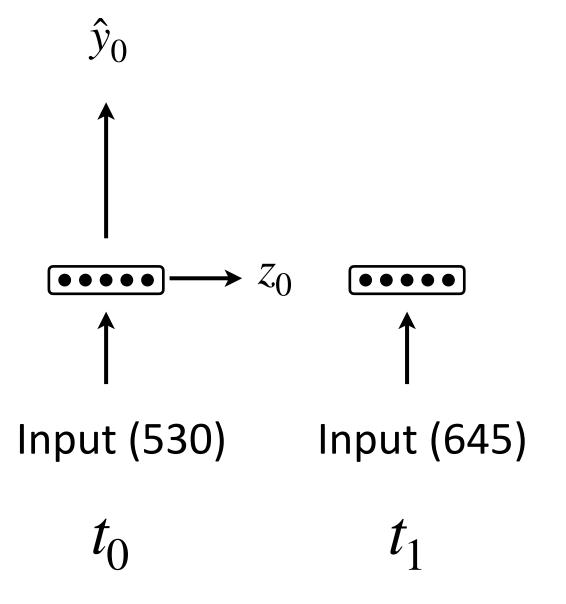
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering





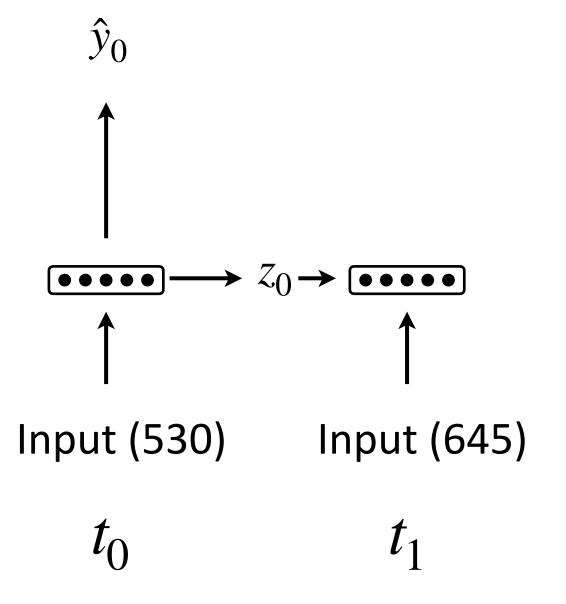
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



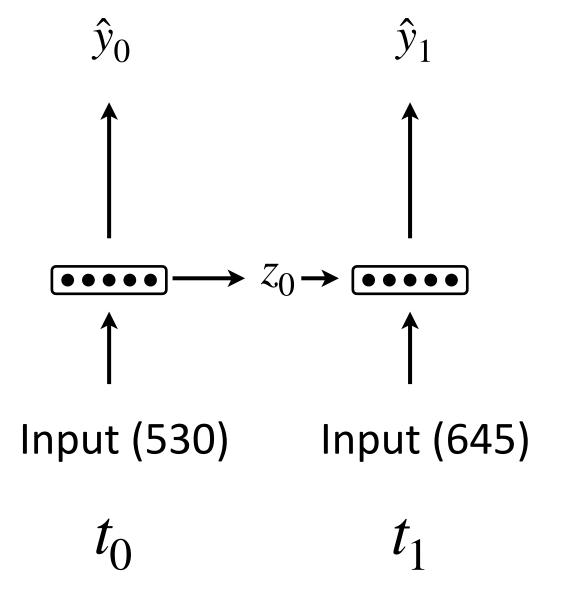
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



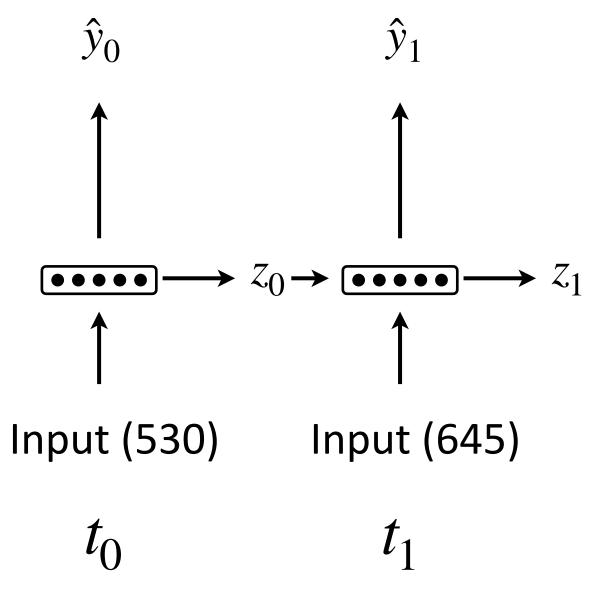
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



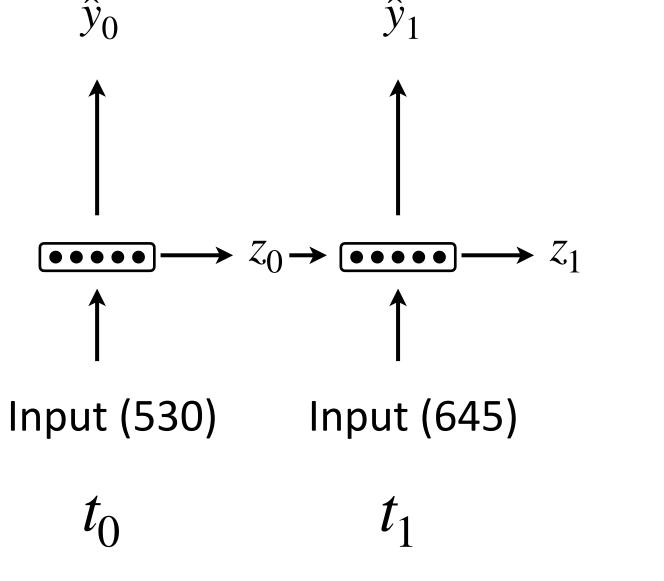
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



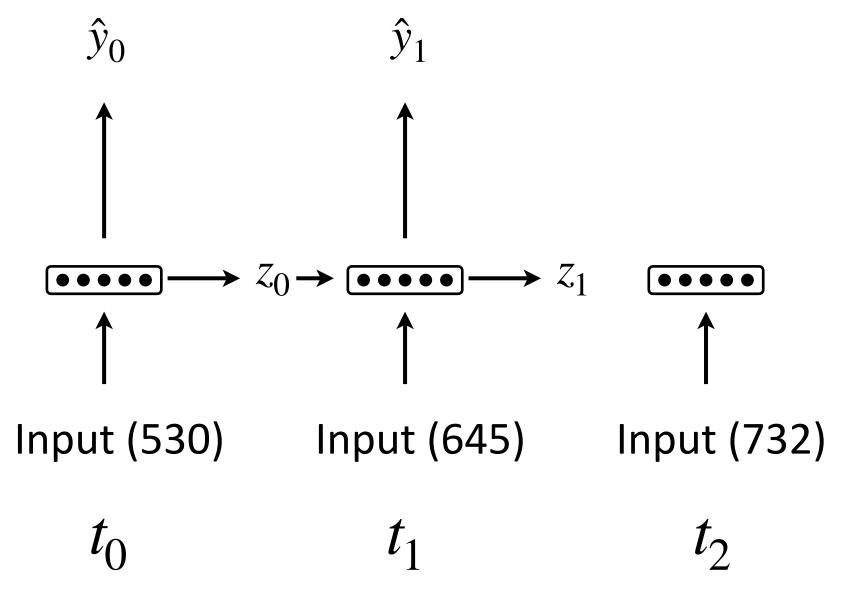
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



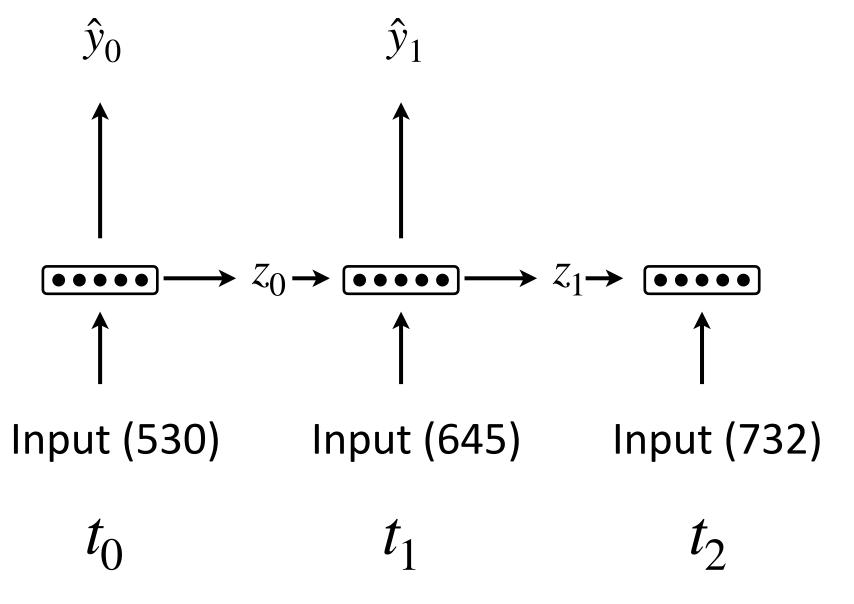
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



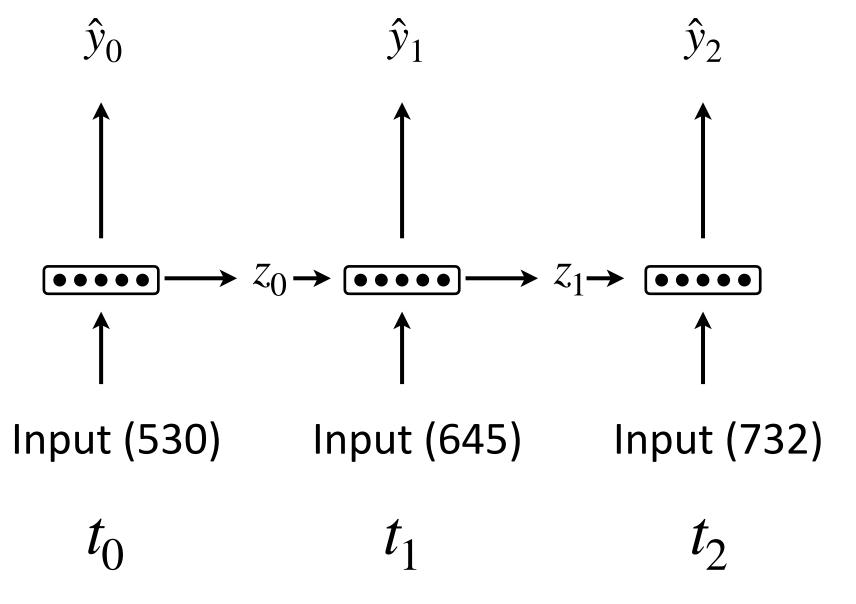
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Traffic
530
645
732
845
865
720
485
366



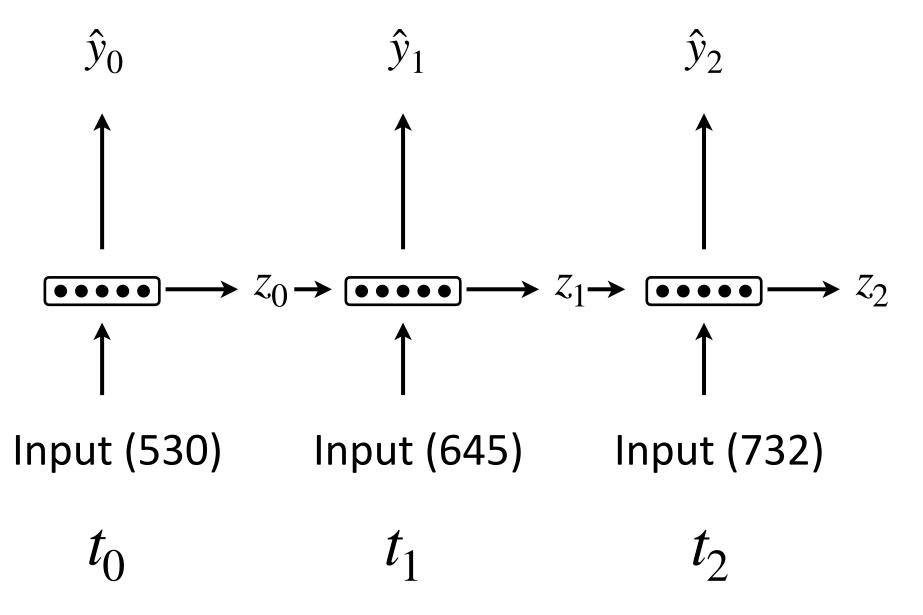
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



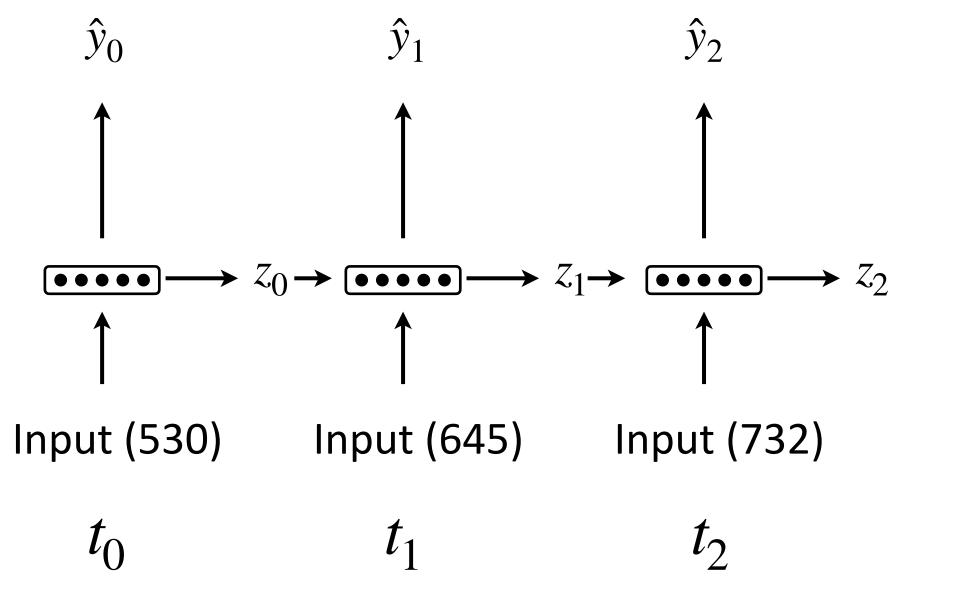
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



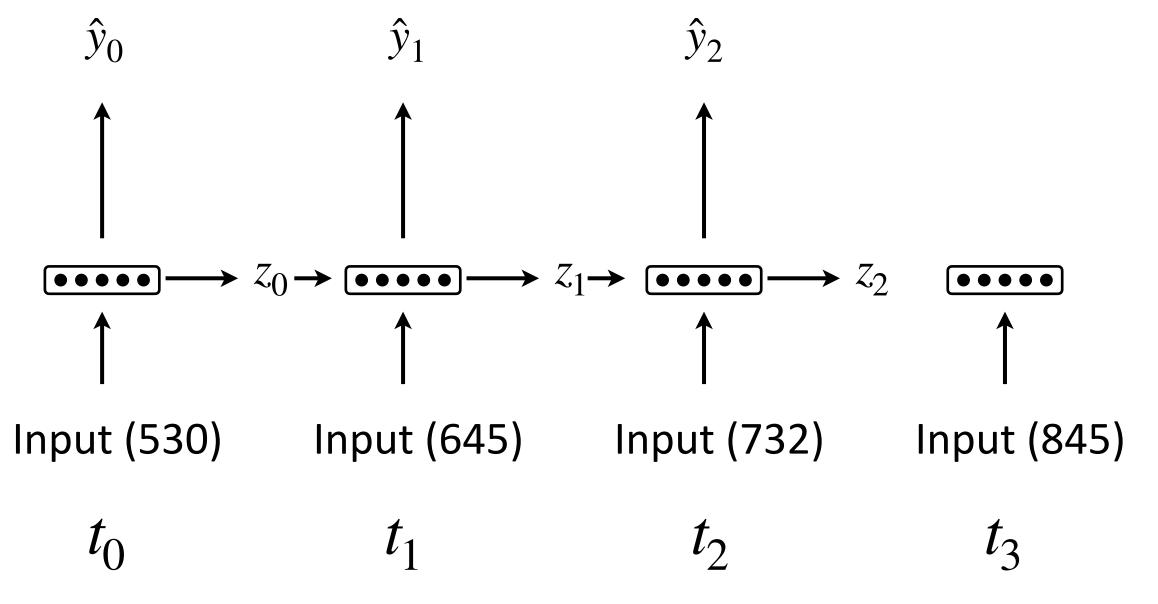
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



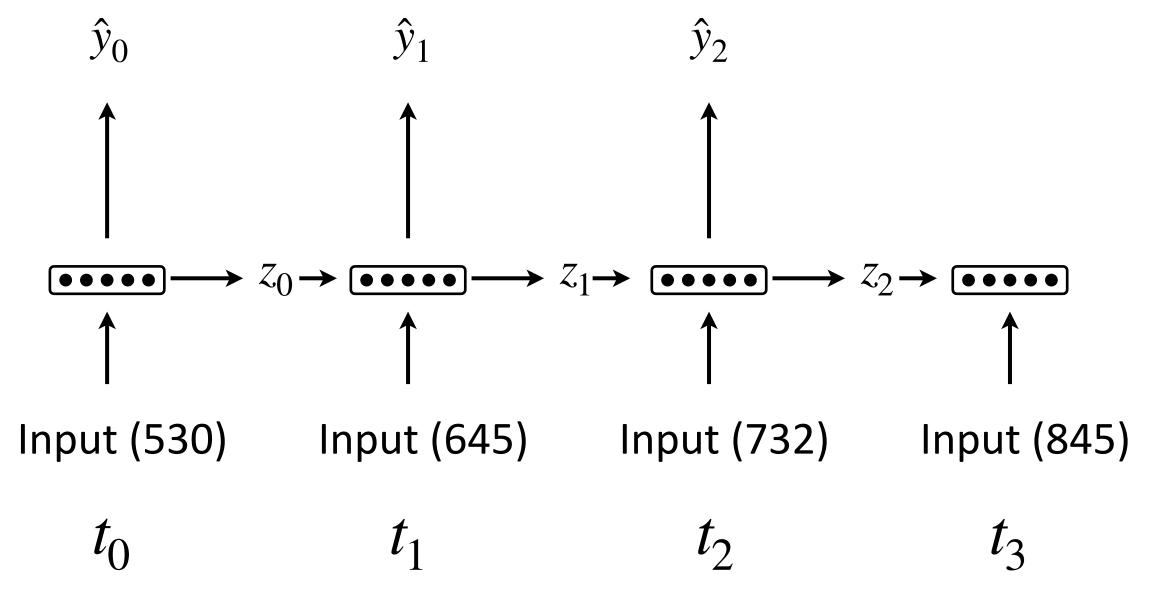
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

\hat{y}_0	$\boldsymbol{\hat{\mathcal{Y}}}_1$	$\hat{\mathcal{Y}}_2$	\hat{y}_3
$\bullet \bullet \bullet \bullet \bullet \longrightarrow Z$	$z_0 \rightarrow \bullet \bullet \bullet \bullet \longrightarrow z_0$	$z_1 \rightarrow \boxed{\bullet \bullet \bullet \bullet} \longrightarrow z_1$	$2 \rightarrow \bullet \bullet \bullet \bullet$
Input (530)	Input (645)	Input (732)	Input (845)
t_0	t_1	t_2	t_3

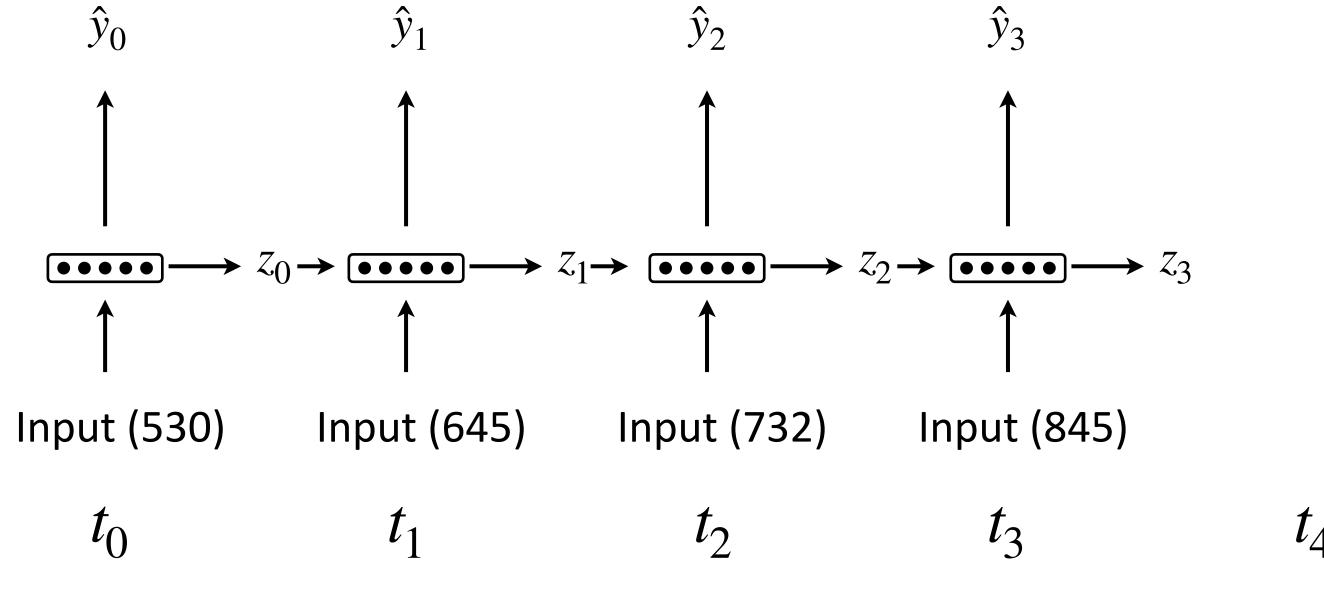
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

\hat{y}_0	$\boldsymbol{\hat{y}}_1$	$\boldsymbol{\hat{y}}_2$	\hat{y}_3
$\boxed{\bullet \bullet \bullet \bullet \bullet} \longrightarrow Z$	$z_0 \rightarrow \bullet \bullet \bullet \bullet \bullet \longrightarrow z_0$	$z_1 \rightarrow \boxed{\bullet \bullet \bullet \bullet} \longrightarrow z_1$	$Z_2 \rightarrow \boxed{\bullet \bullet \bullet \bullet} \longrightarrow Z_3$
Input (530)	Input (645)	Input (732)	Input (845)

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366

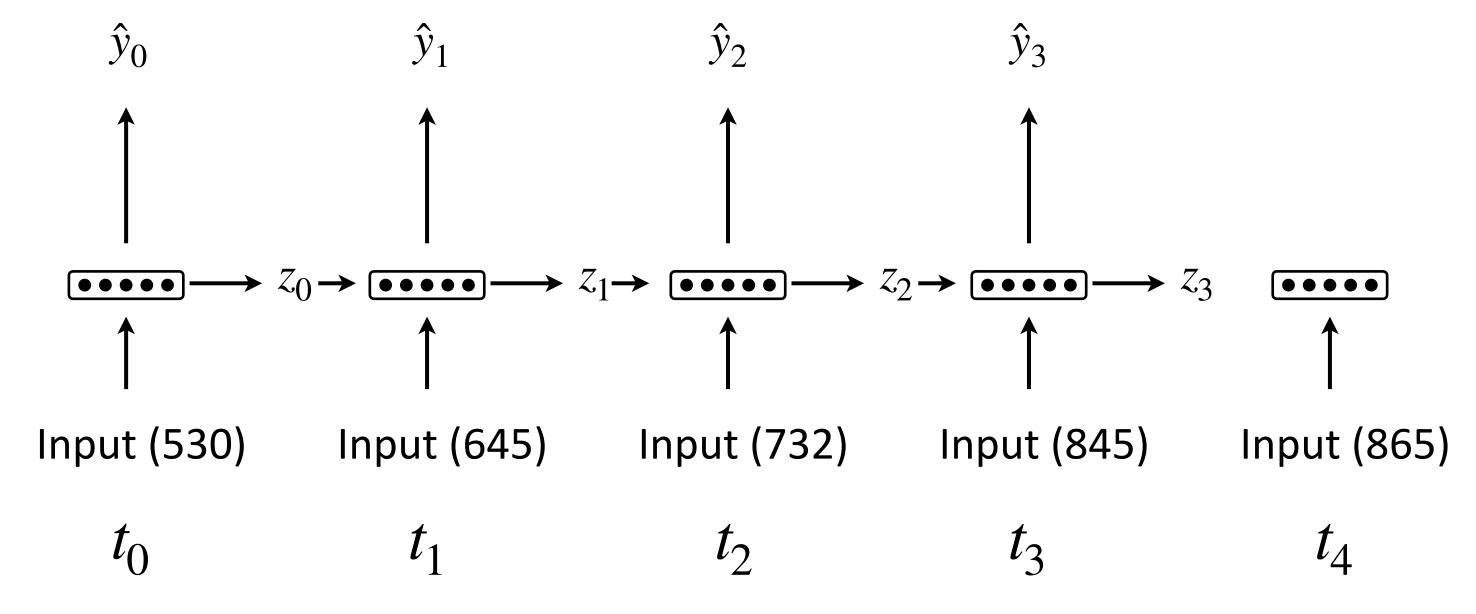
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



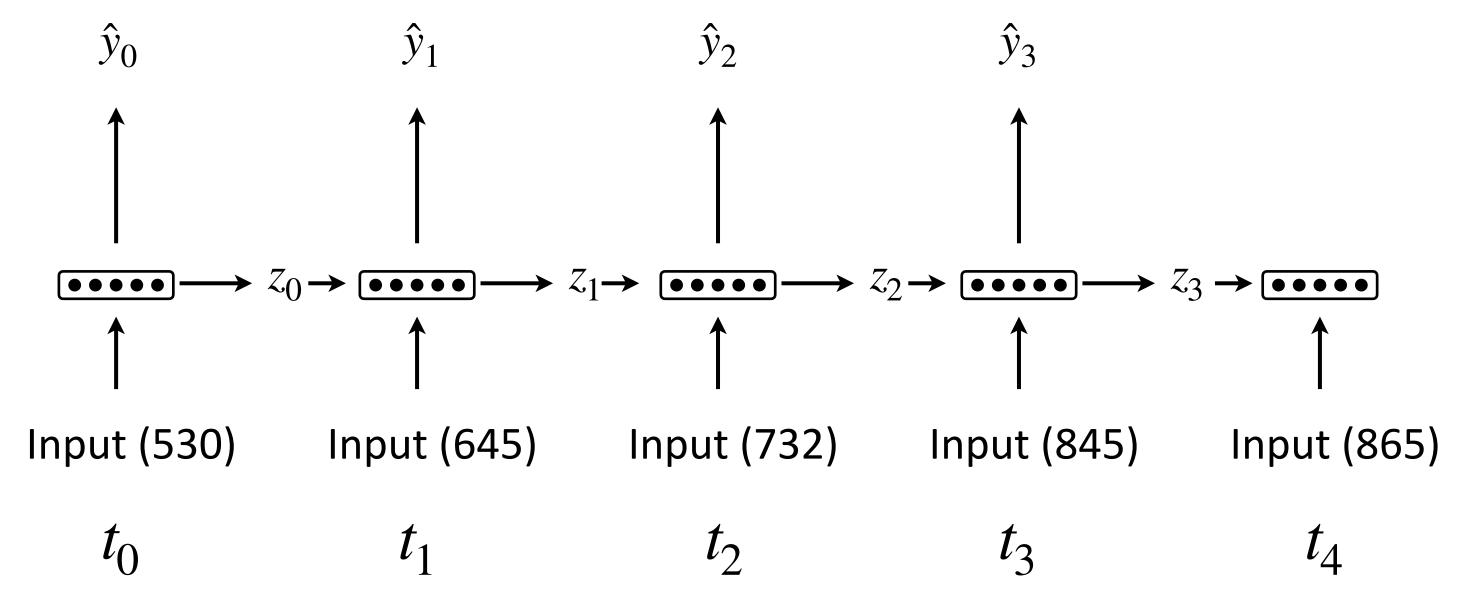
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



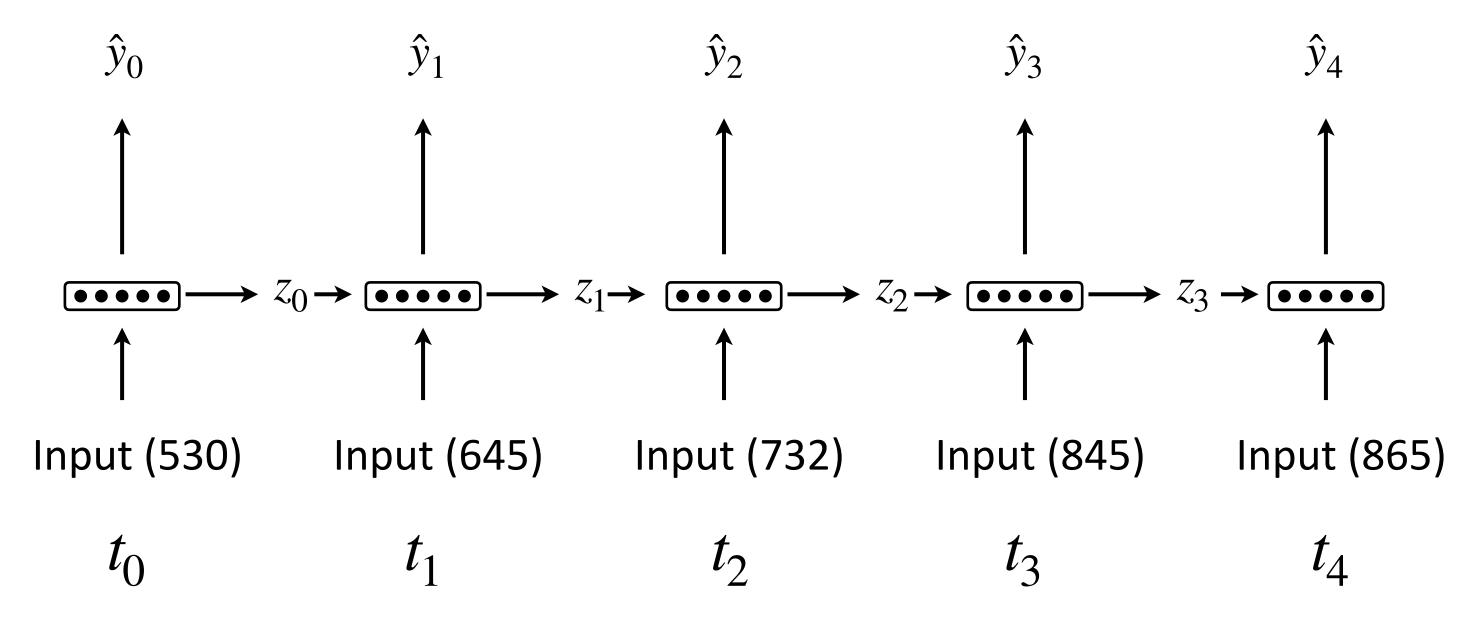
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



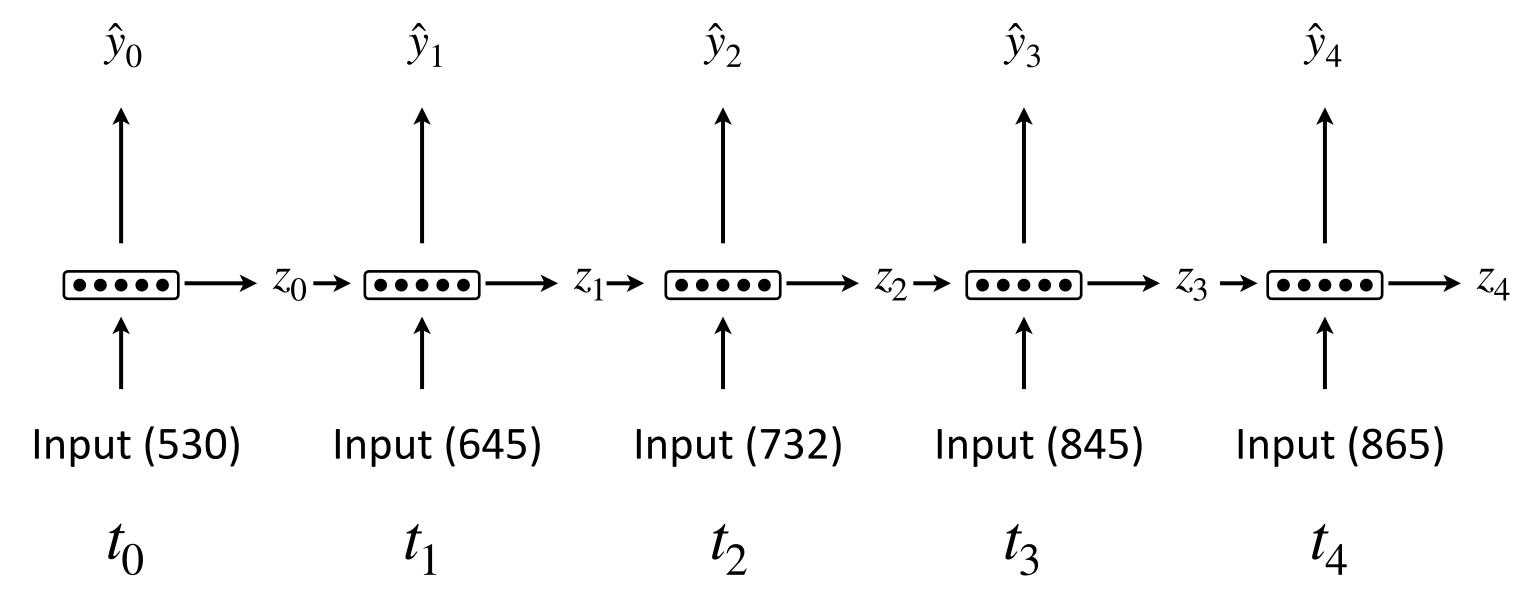
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



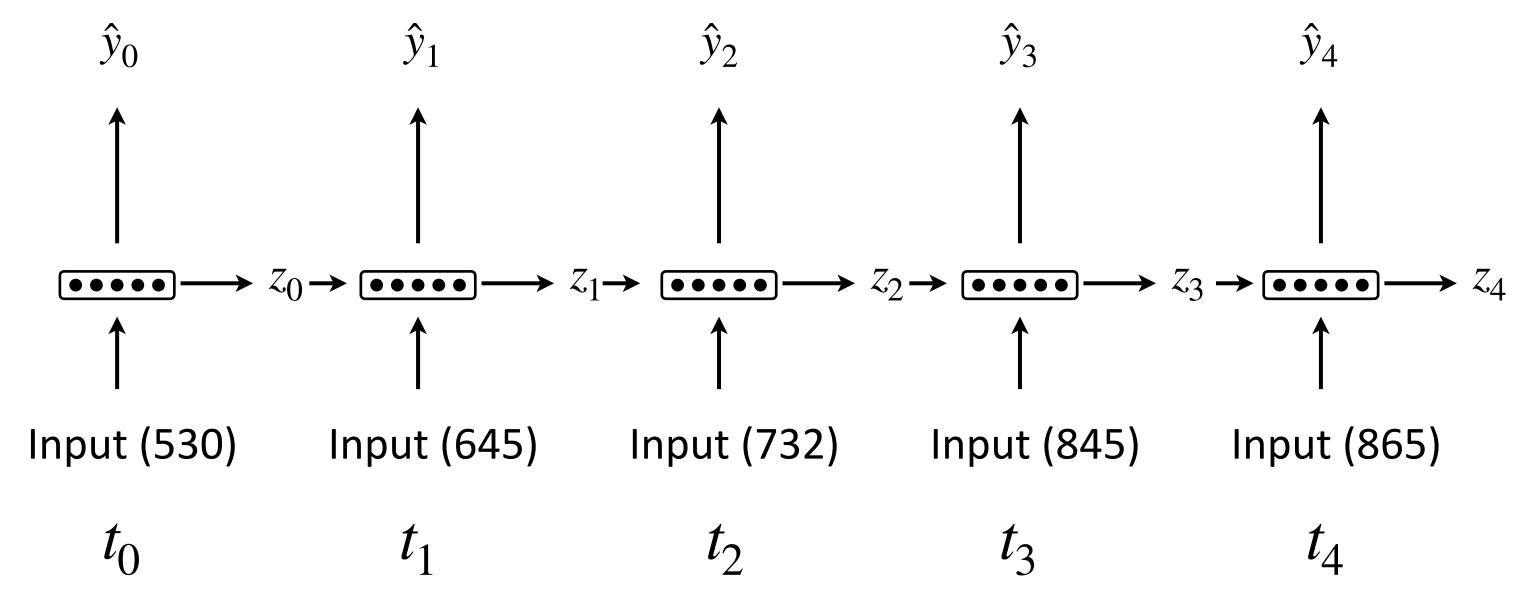
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



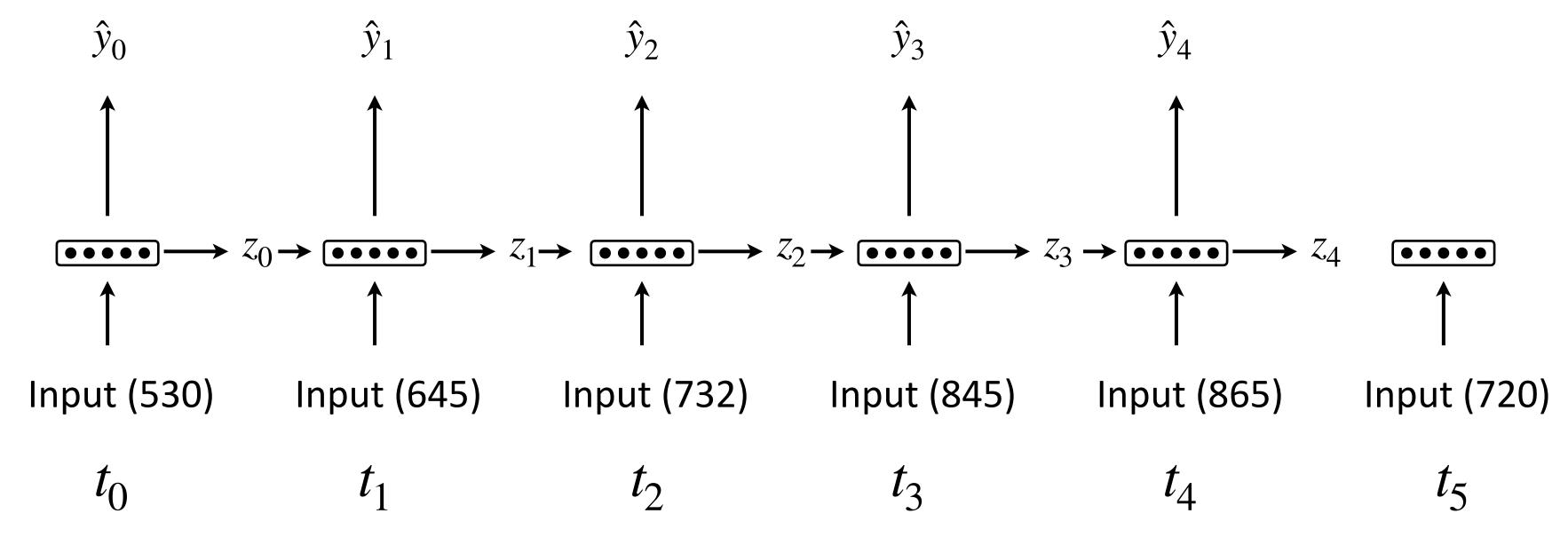
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



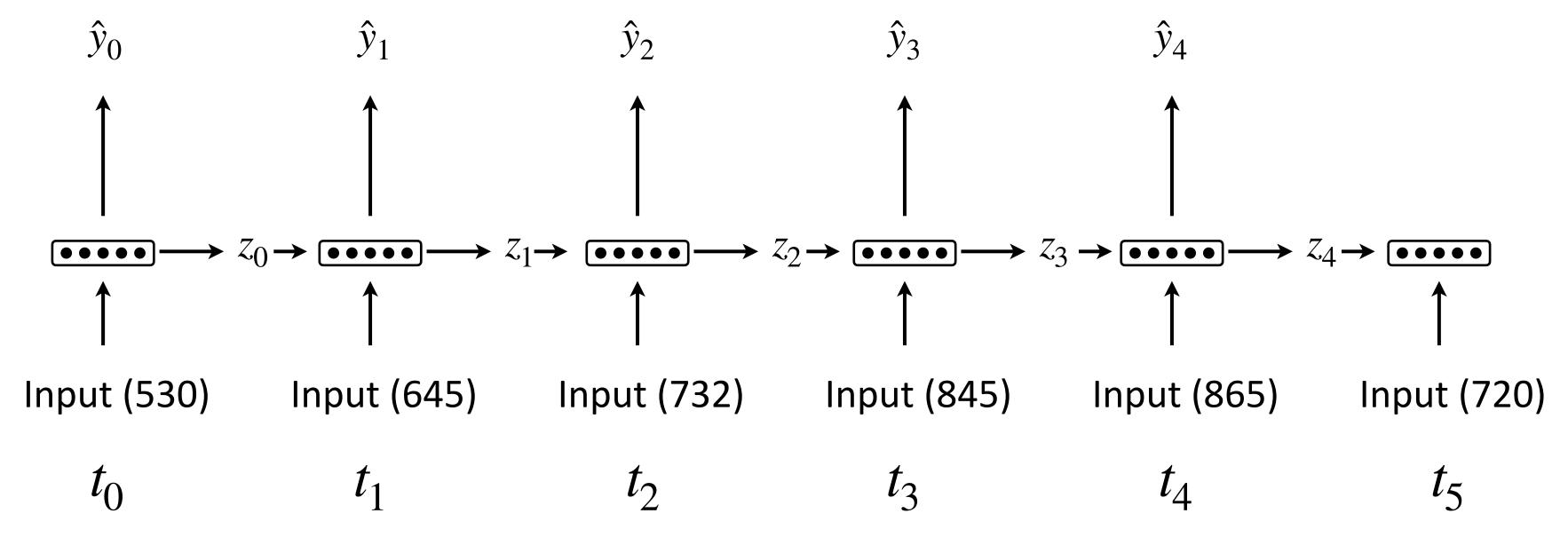
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



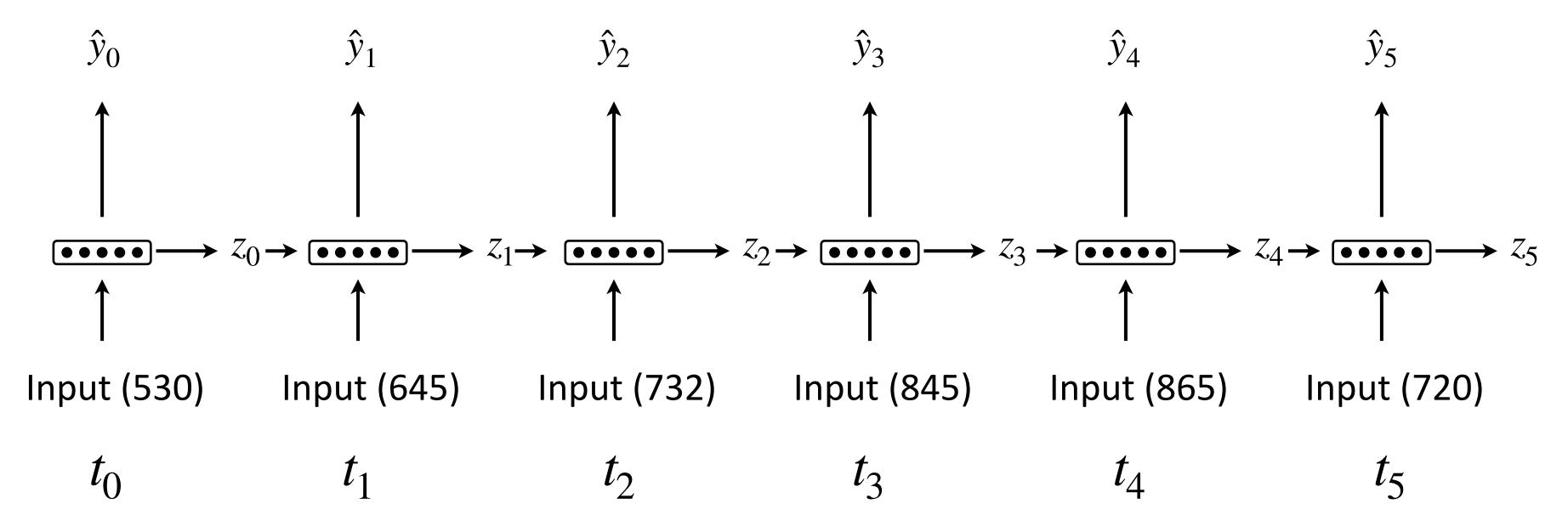
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

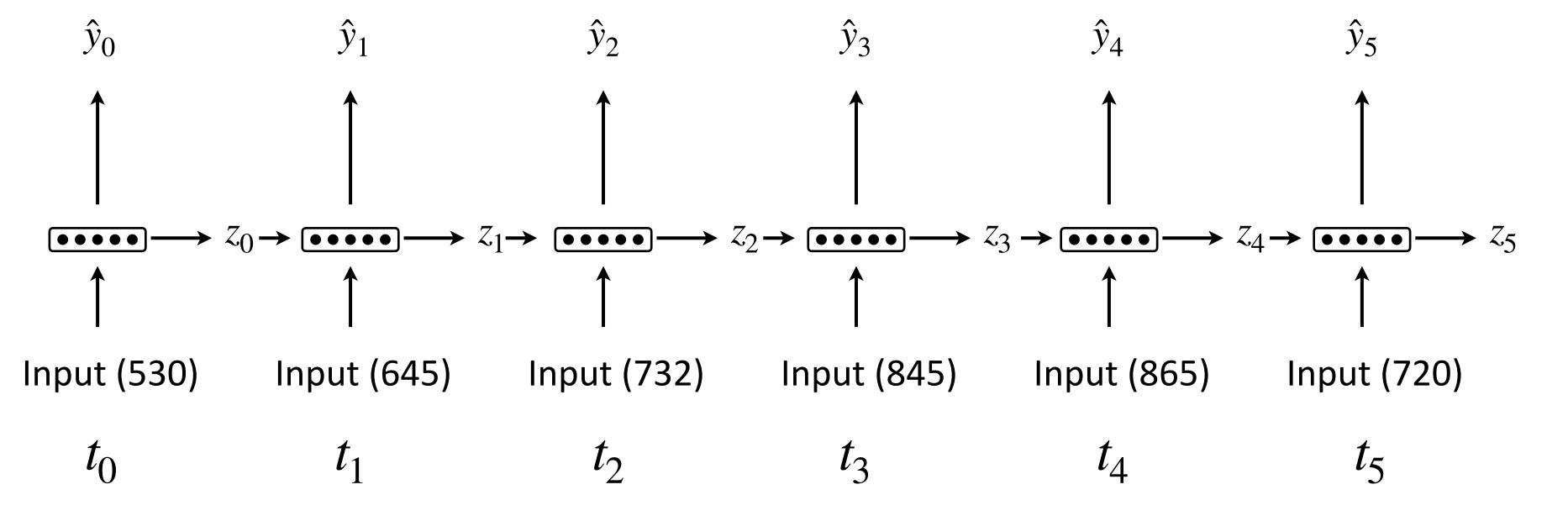
Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



*t*₆

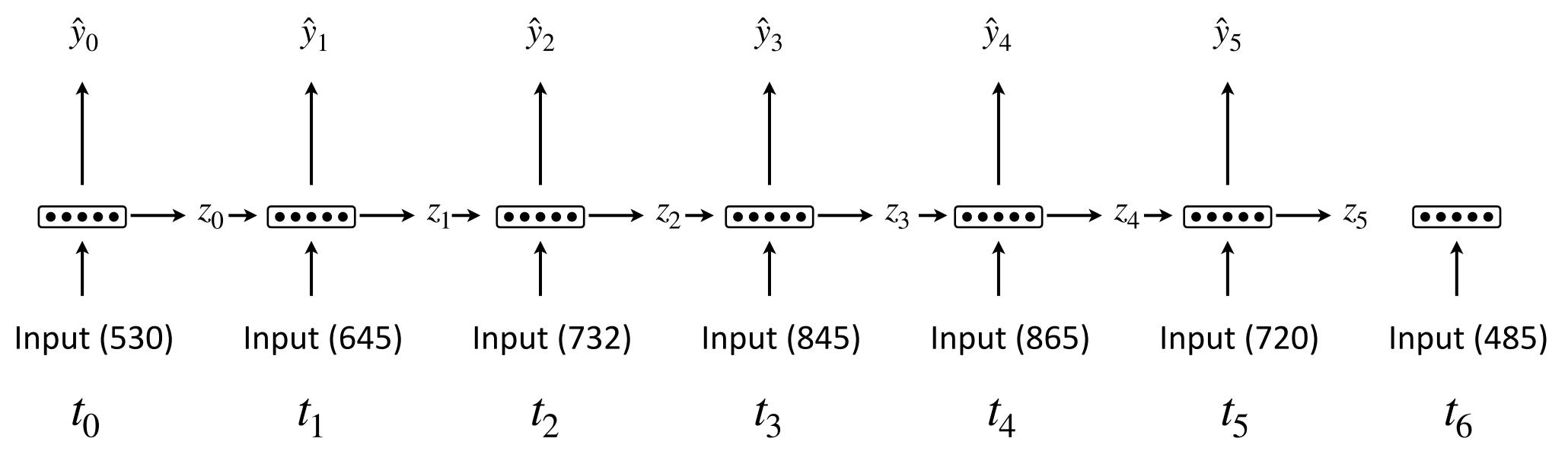
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



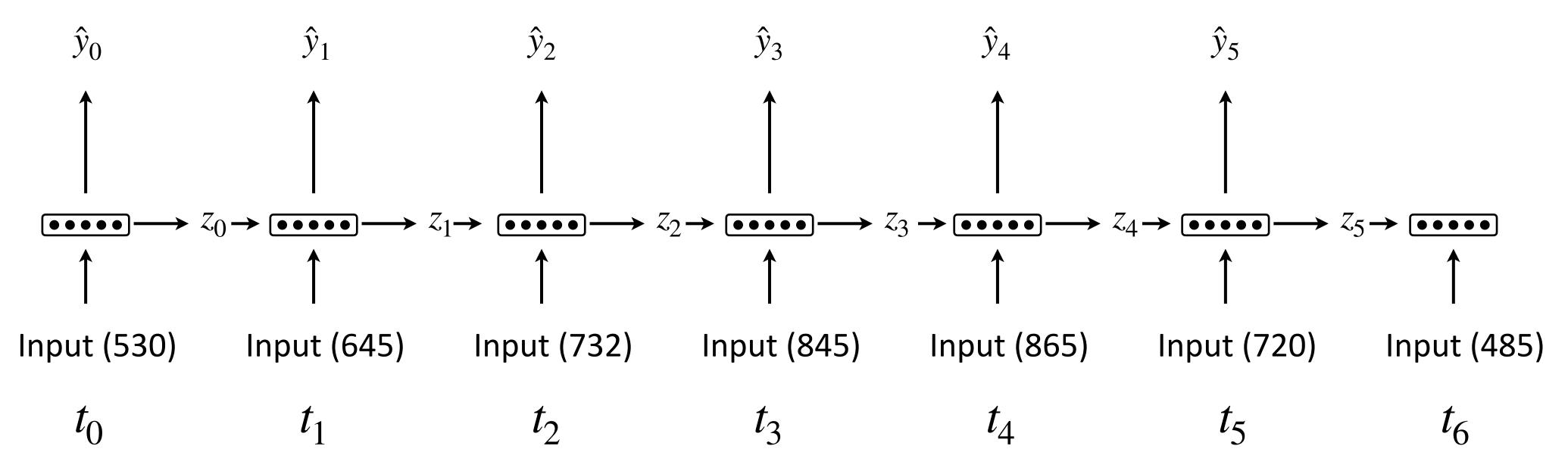
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



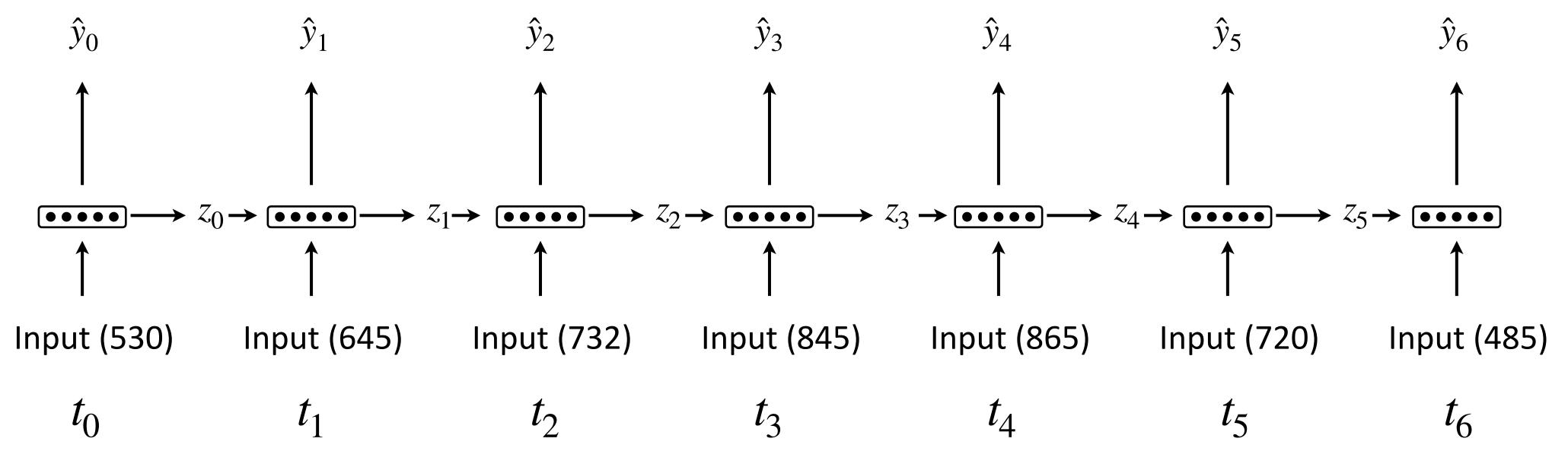
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



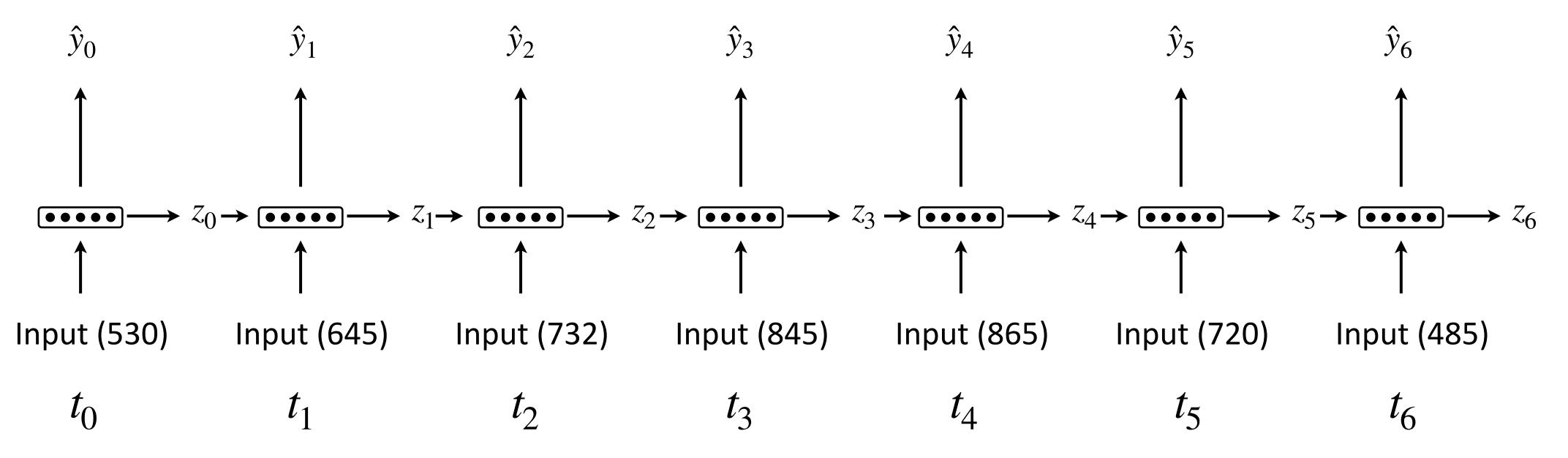
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



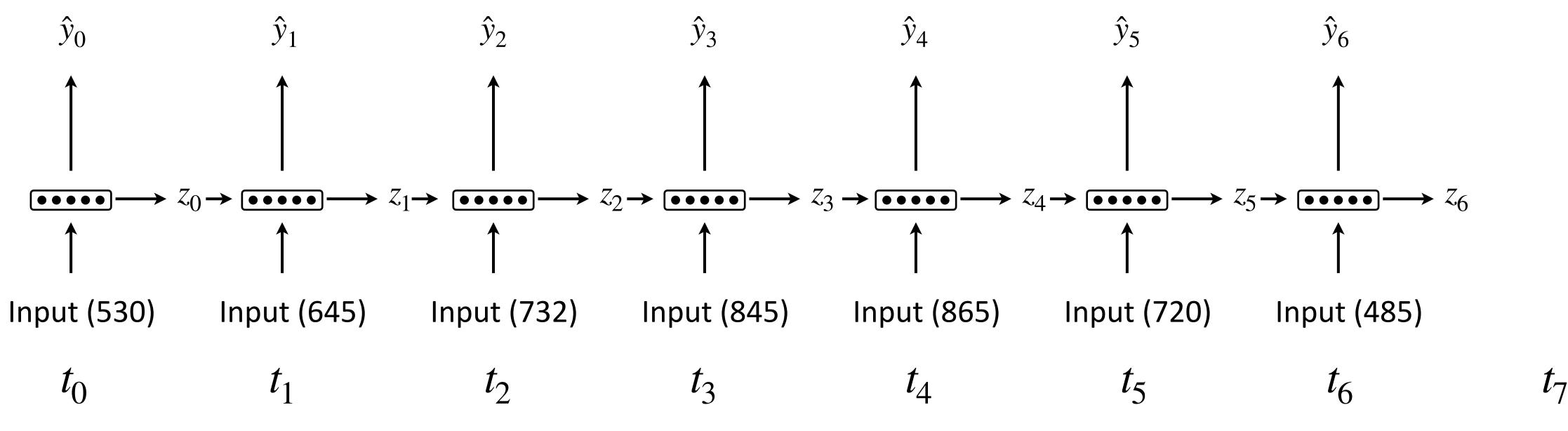
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



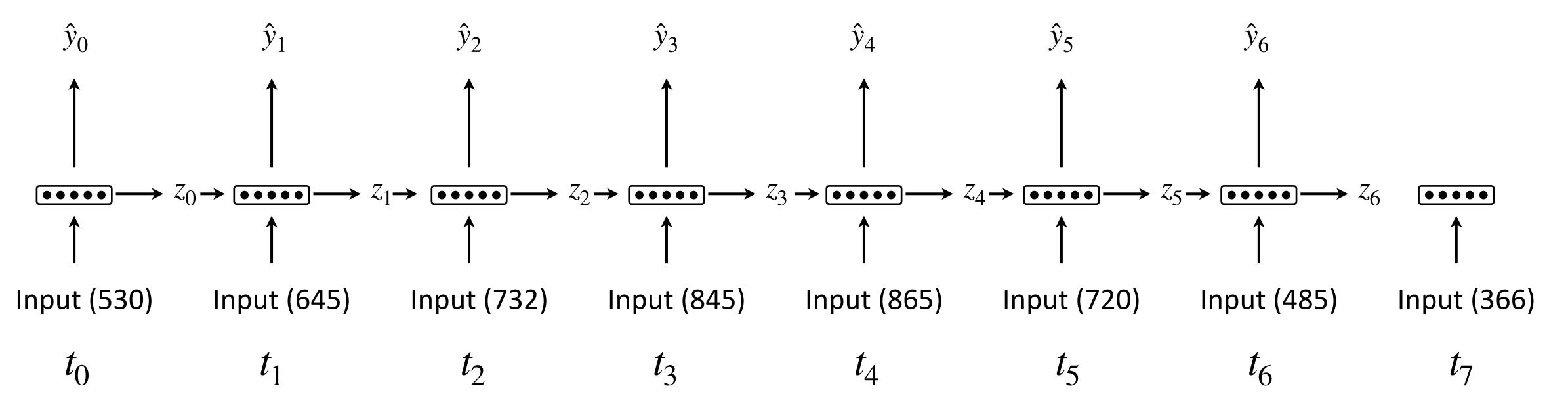
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



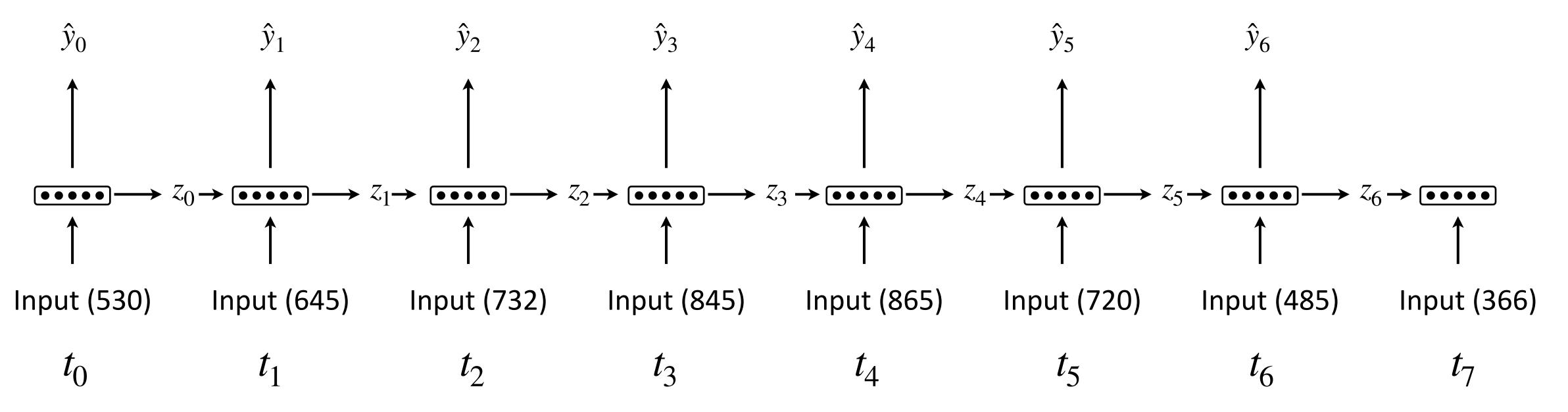
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



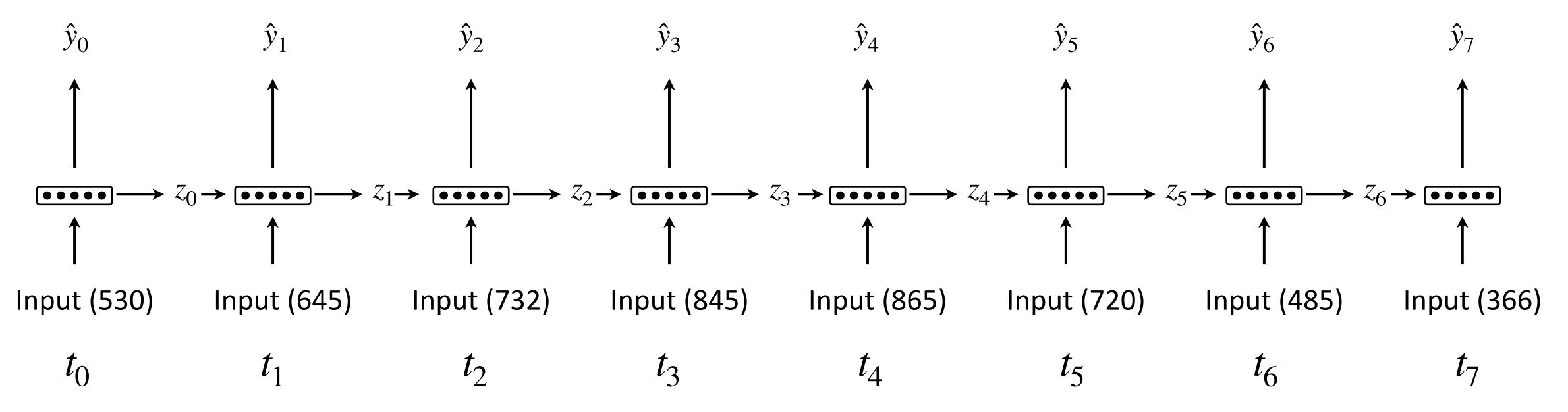
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



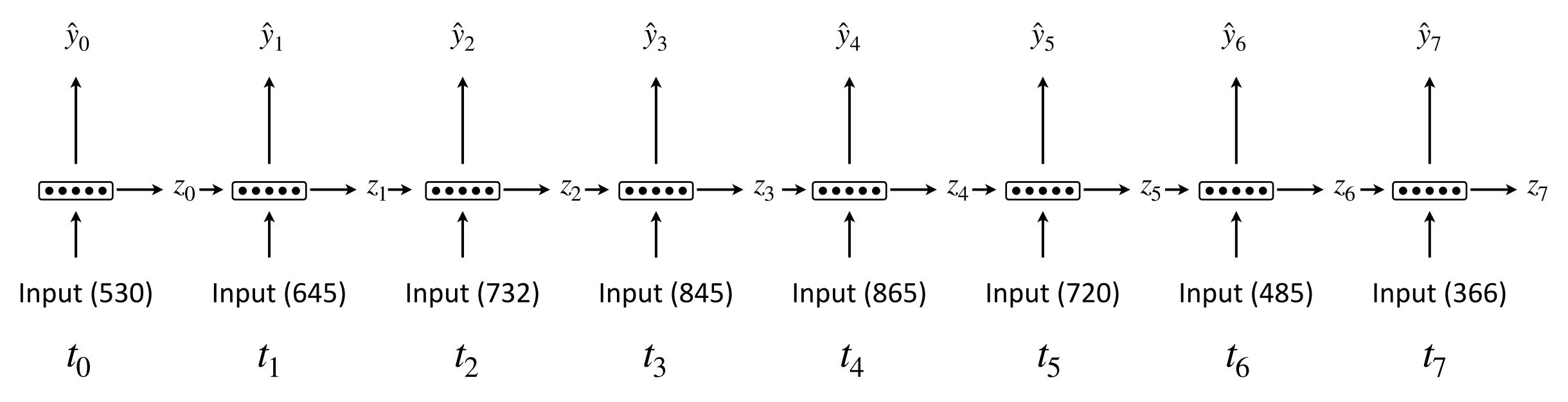
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



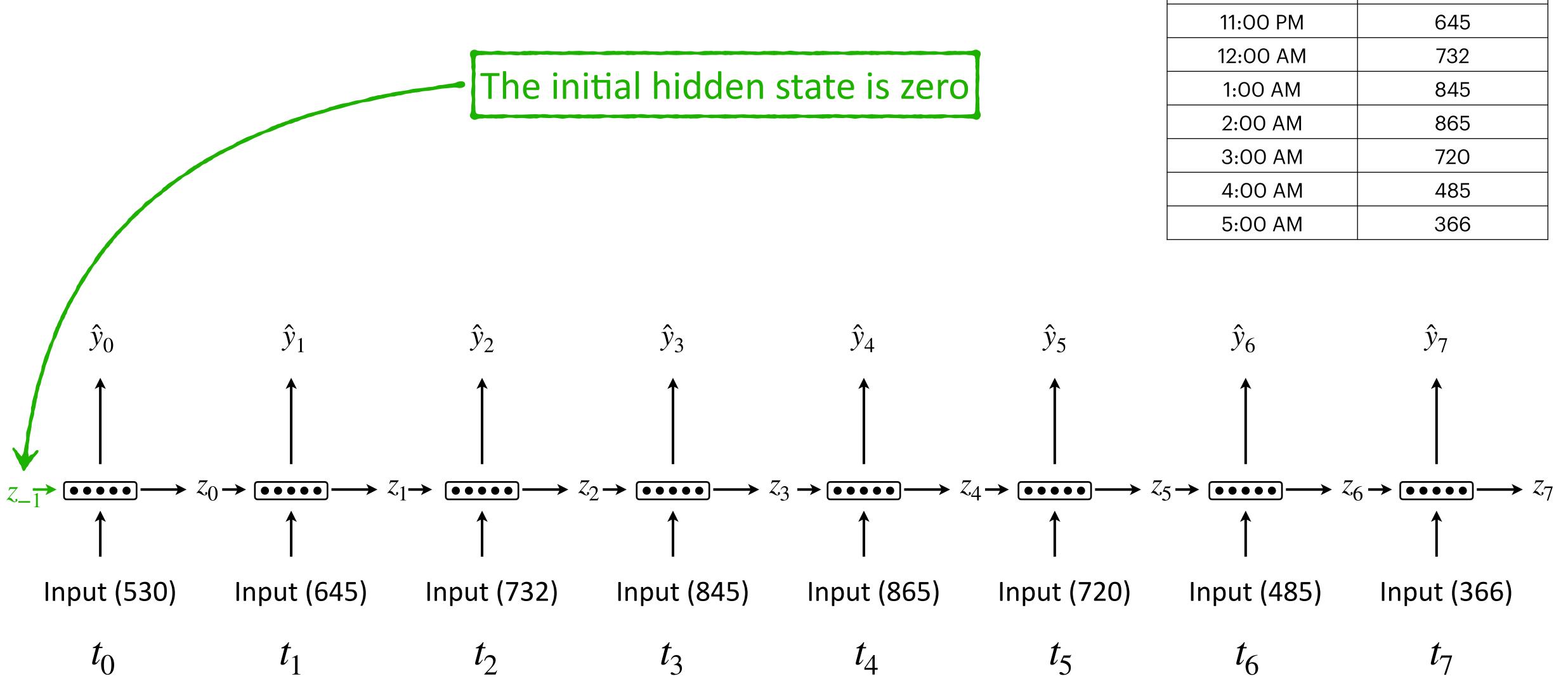
Hour

10:00 PM

Traffic

530

Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

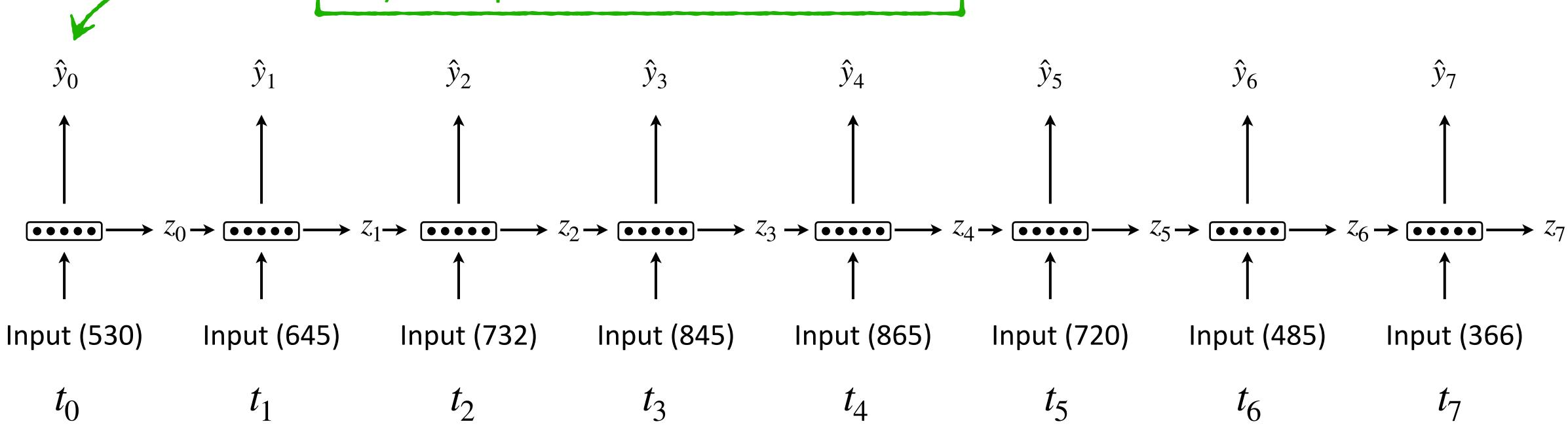


Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

The Output at each step is the predicted traffic at time t+1

 \hat{y}_0 Is the predicted traffic at t_1 (11:00 PM). Compare to actual value 645

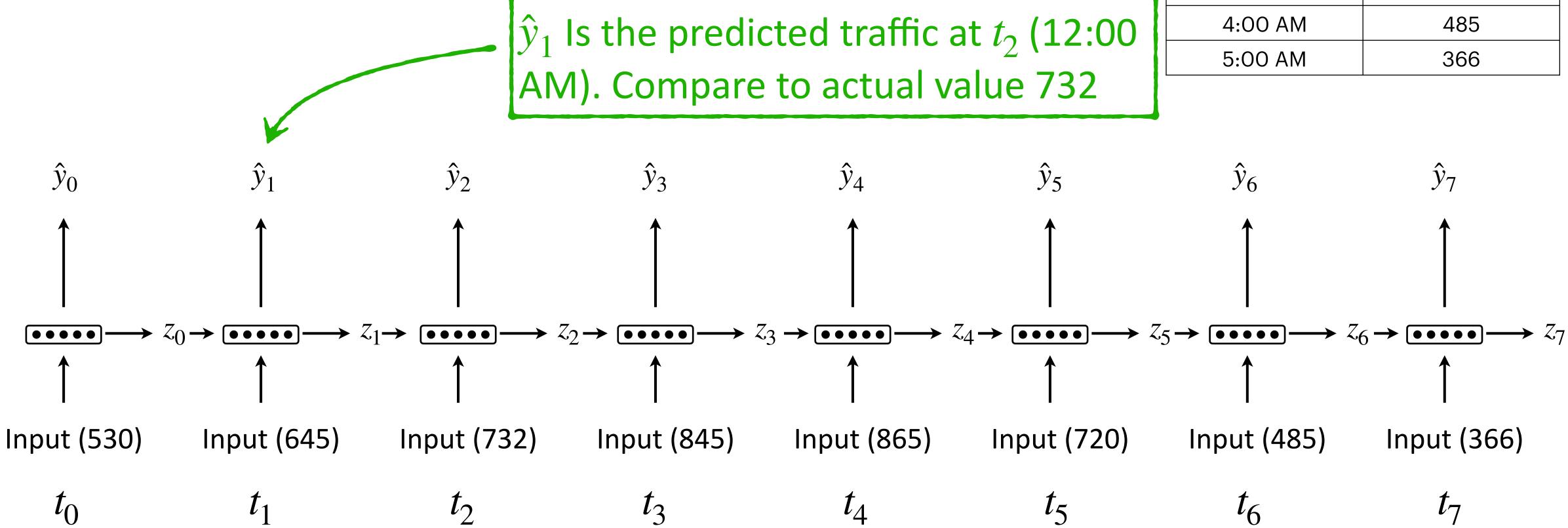
Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

The Output at each step is the predicted traffic at time t+1

Traffic Hour 10:00 PM 530 11:00 PM 645 12:00 AM 732 1:00 AM 845 2:00 AM 865 3:00 AM 720 4:00 AM 485



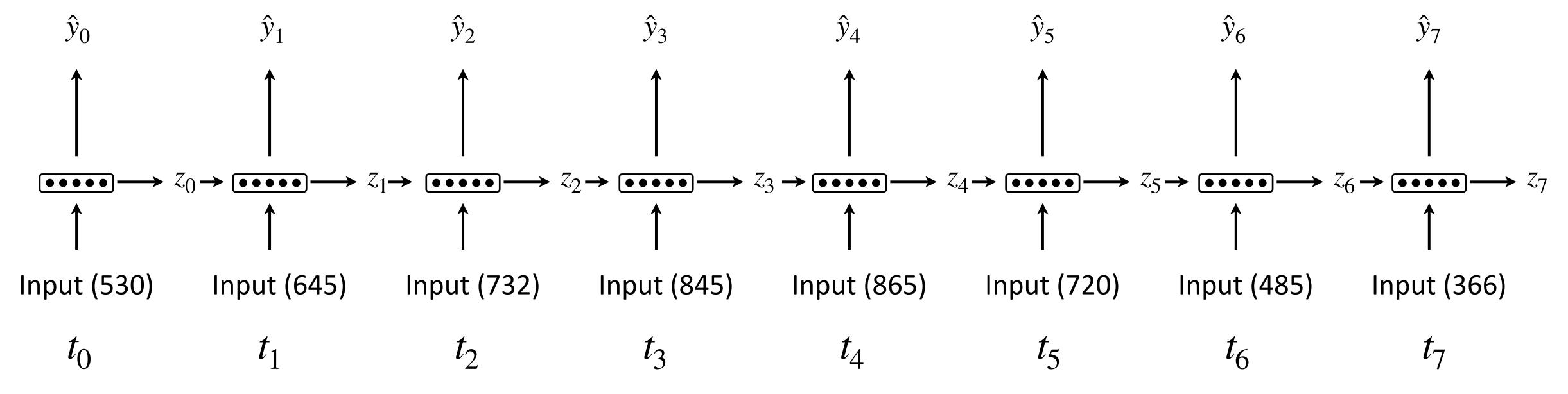
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

The Output at each step is the predicted traffic at time t+1

Original Question:

Can we predict the traffic at 6:00 AM?

Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



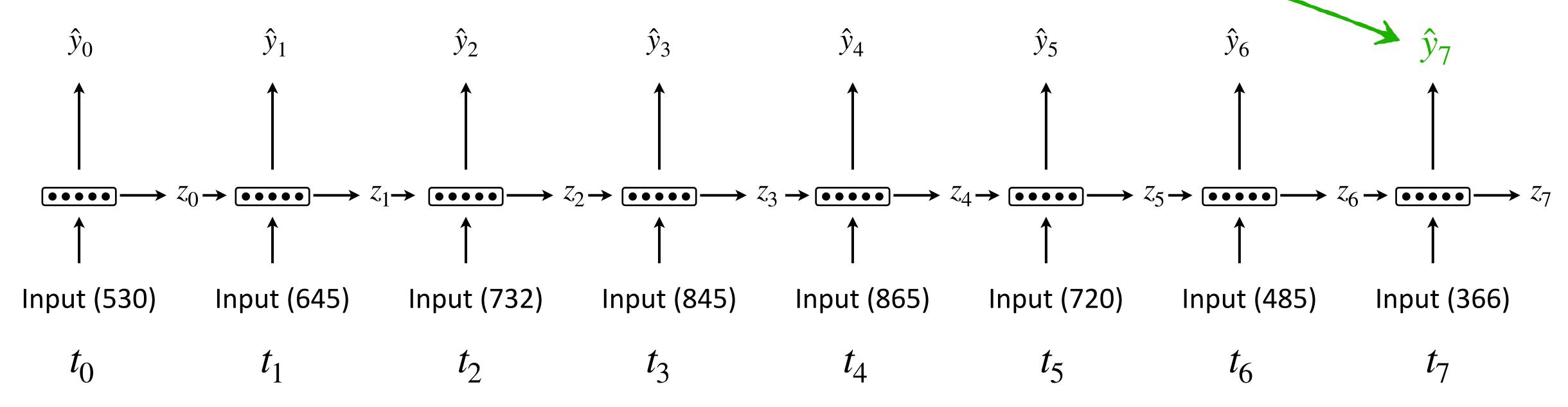
Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

The Output at each step is the predicted traffic at time t+1

Original Question:

Can we predict the traffic at 6:00 AM?

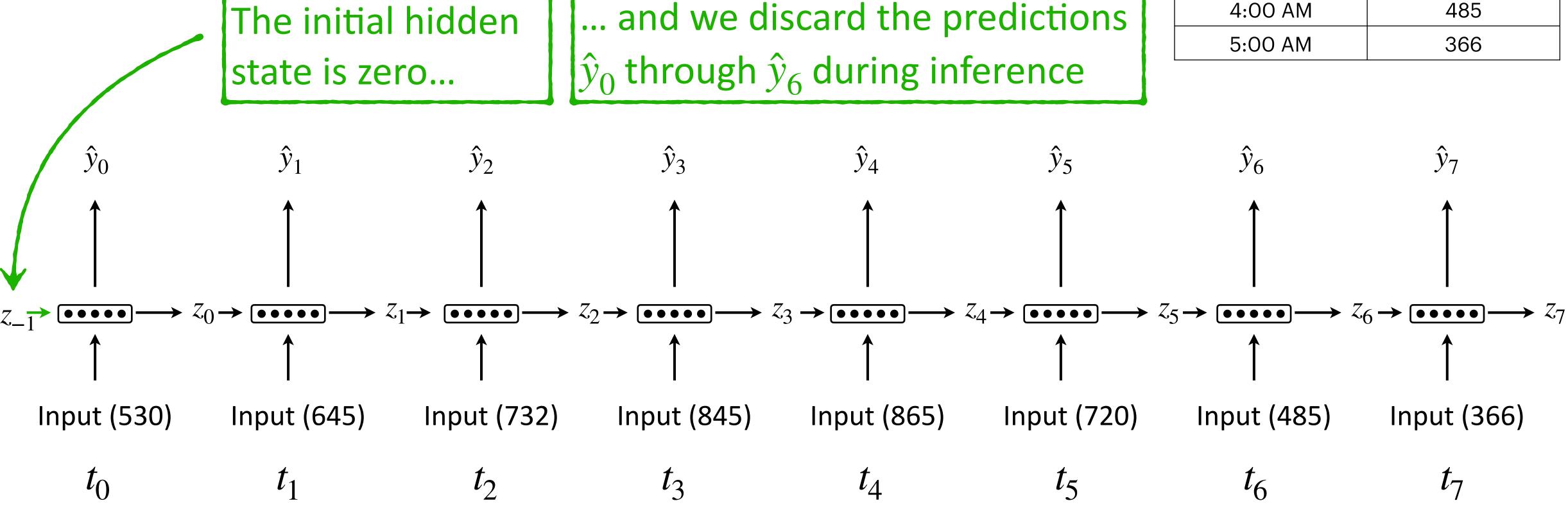
Hour	Traffic
10:00 PM	530
11:00 PM	645
12:00 AM	732
1:00 AM	845
2:00 AM	865
3:00 AM	720
4:00 AM	485
5:00 AM	366



Recurrent Neural Networks can model inputs that have a temporal dependency and ordering

The Output at each step is the predicted traffic at time t+1

Traffic Hour 10:00 PM 530 11:00 PM 645 12:00 AM 732 1:00 AM 845 2:00 AM 865 3:00 AM 720 4:00 AM 485

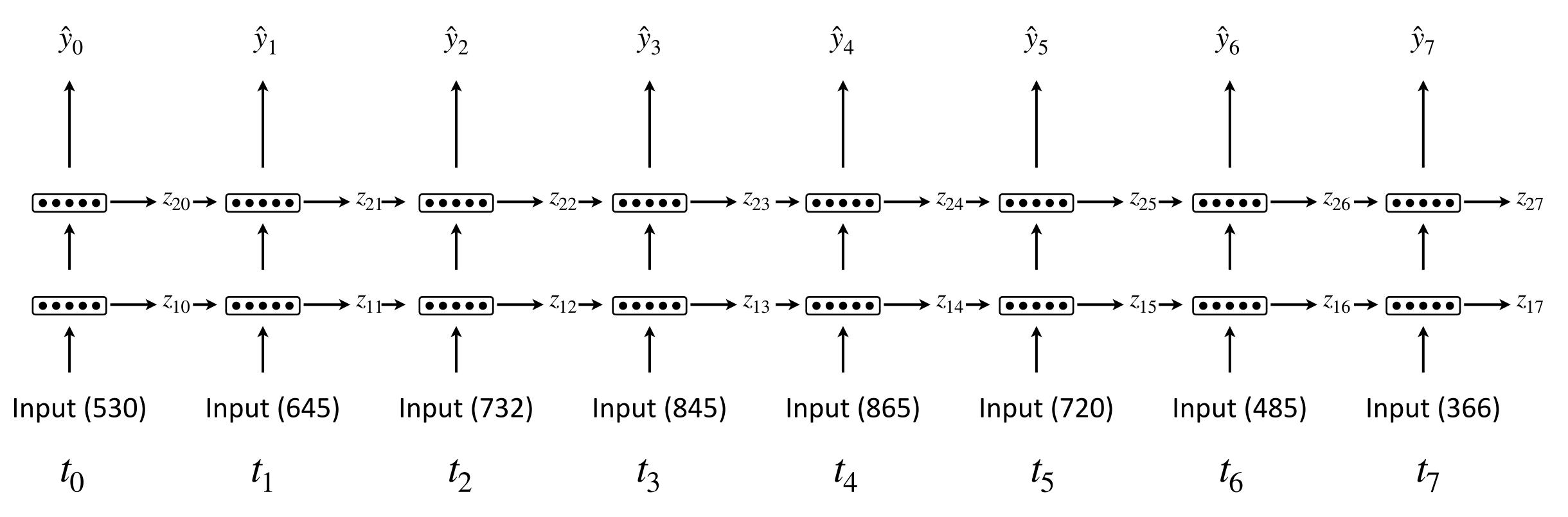


What if there are multiple hidden layers?

Multiple hidden layers, result in multiple RNN "cells"

Recurrent Neural Networks with multiple hidden layers, means multiple RNN "cells".

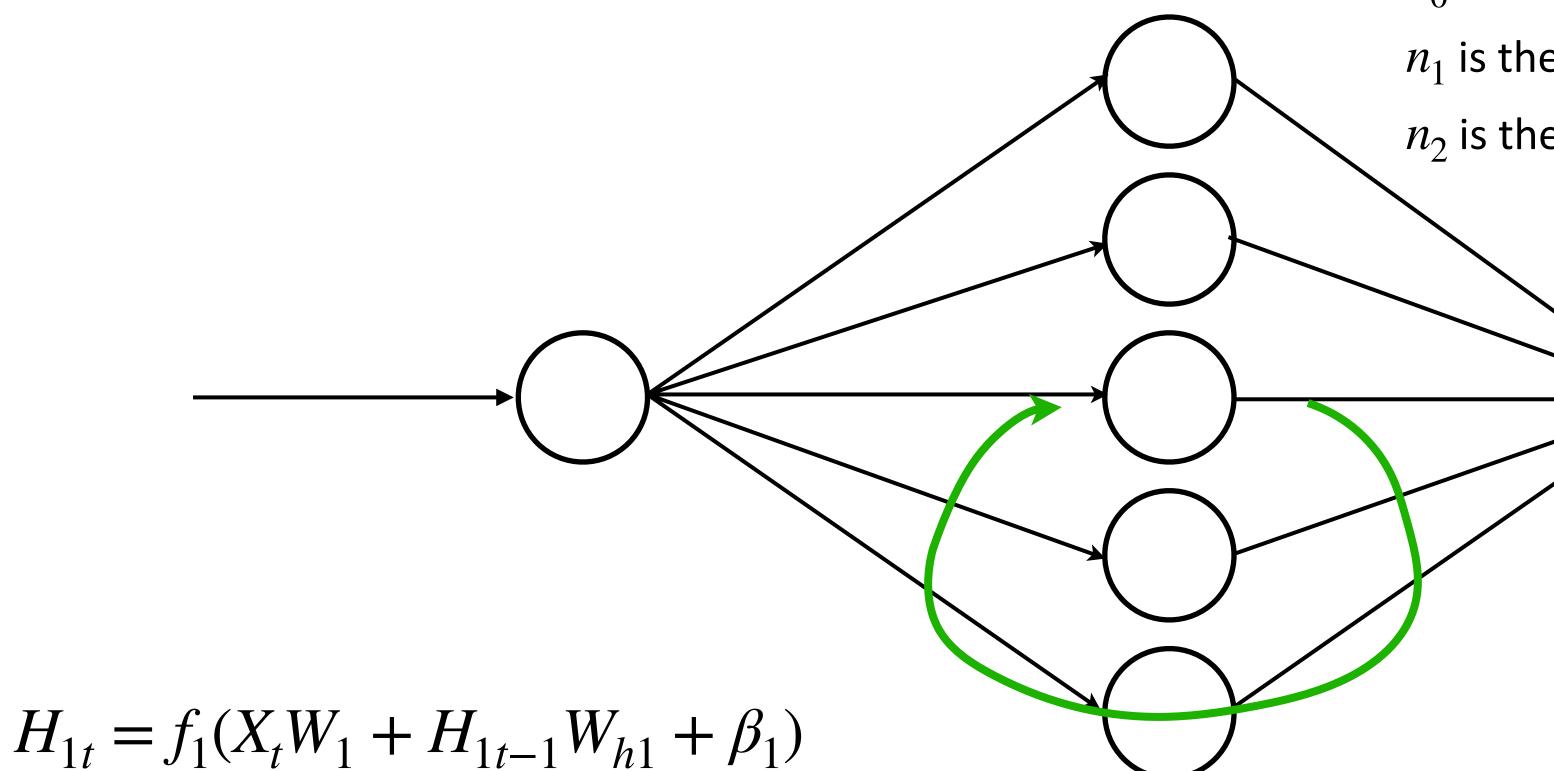
The Output from a given layer at time t is passed as input to the same layer at time t+1



How do we represent RNNs mathematically?

We compute the output of a hidden layer by:

- 1. Multiplying the current input with weights (W_i)
- 2. Multiplying the previous hidden state with weights (W_{hi})
- 3. Adding both together with a bias
- 4. Applying an activation function (typically *tanh*)



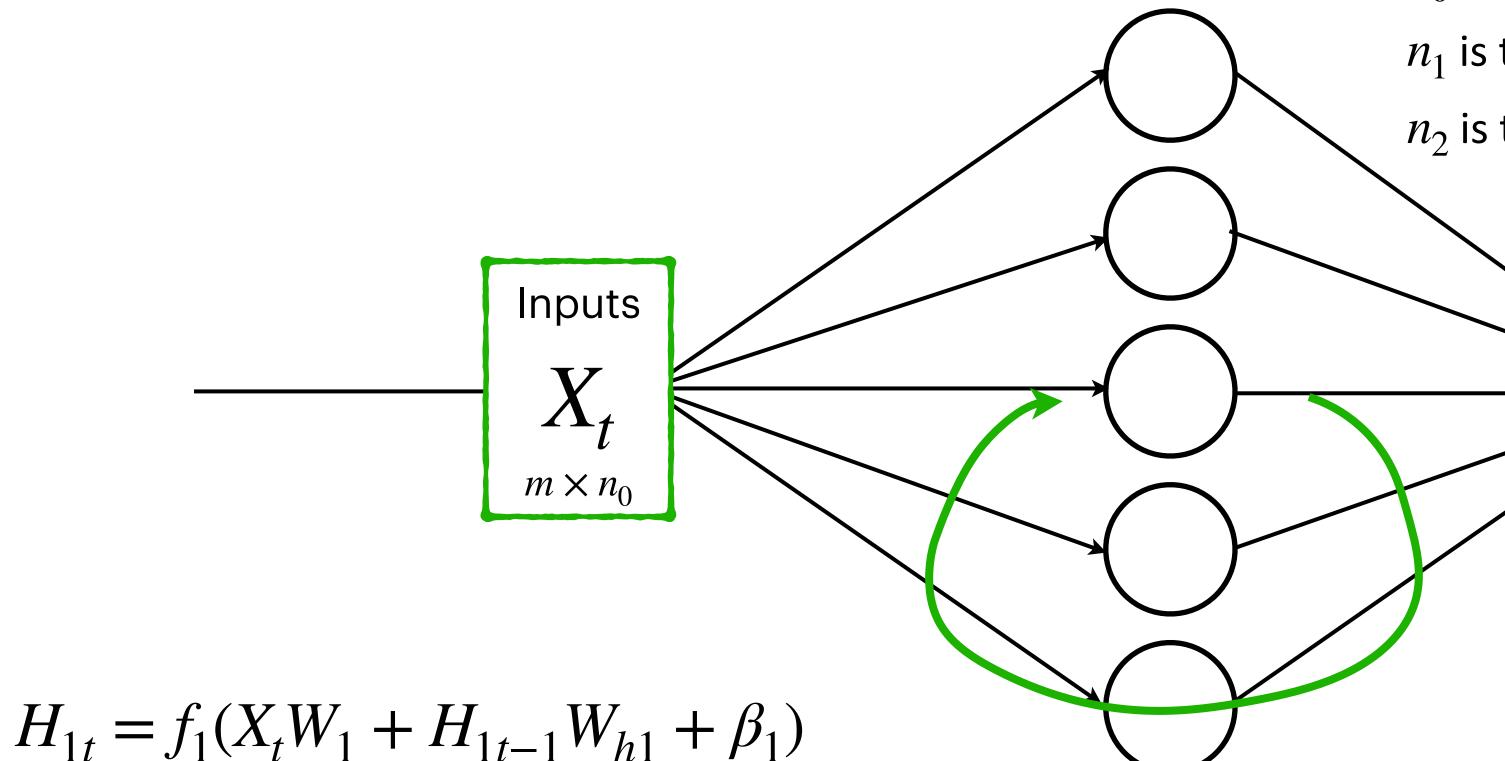
 f_1 is an activation function on Layer L_1 (typically tanh)

$$\hat{Y}_t = f_2(H_t W_2 + \beta_2)$$

 f_2 is an activation function on Layer L_2 (typically softmax for classification, or ReLU / Identity for regression)

Recurrent Neural Networks

 n_0 is the number of features in the input data n_1 is the number of neurons in the hidden layer L_1 n_2 is the number of neurons in the output layer L_2



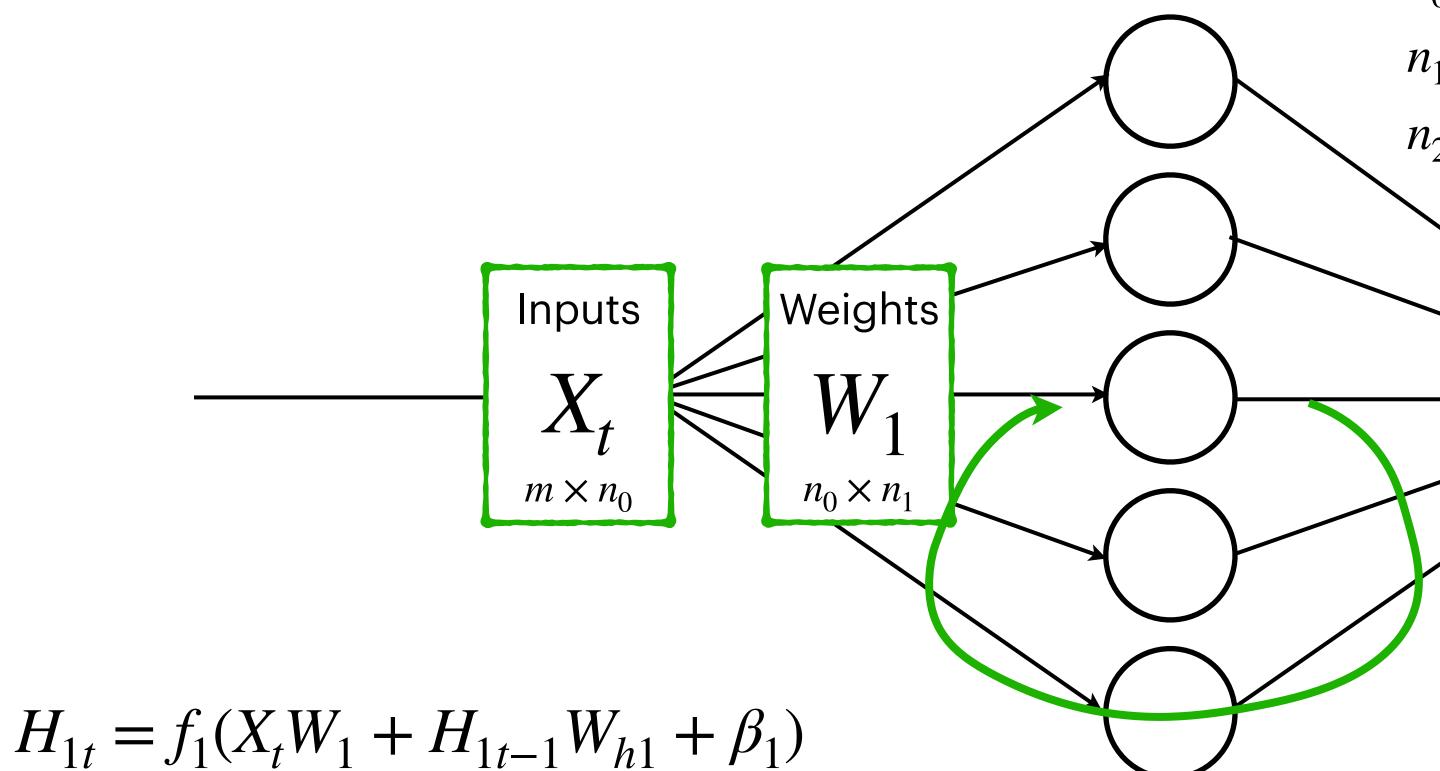
 f_1 is an activation function on Layer L_1 (typically tanh)

$$\hat{Y}_t = f_2(H_t W_2 + \beta_2)$$

 f_2 is an activation function on Layer L_2 (typically softmax for classification, or ReLU / Identity for regression)

Recurrent Neural Networks

 n_0 is the number of features in the input data n_1 is the number of neurons in the hidden layer L_1 n_2 is the number of neurons in the output layer L_2



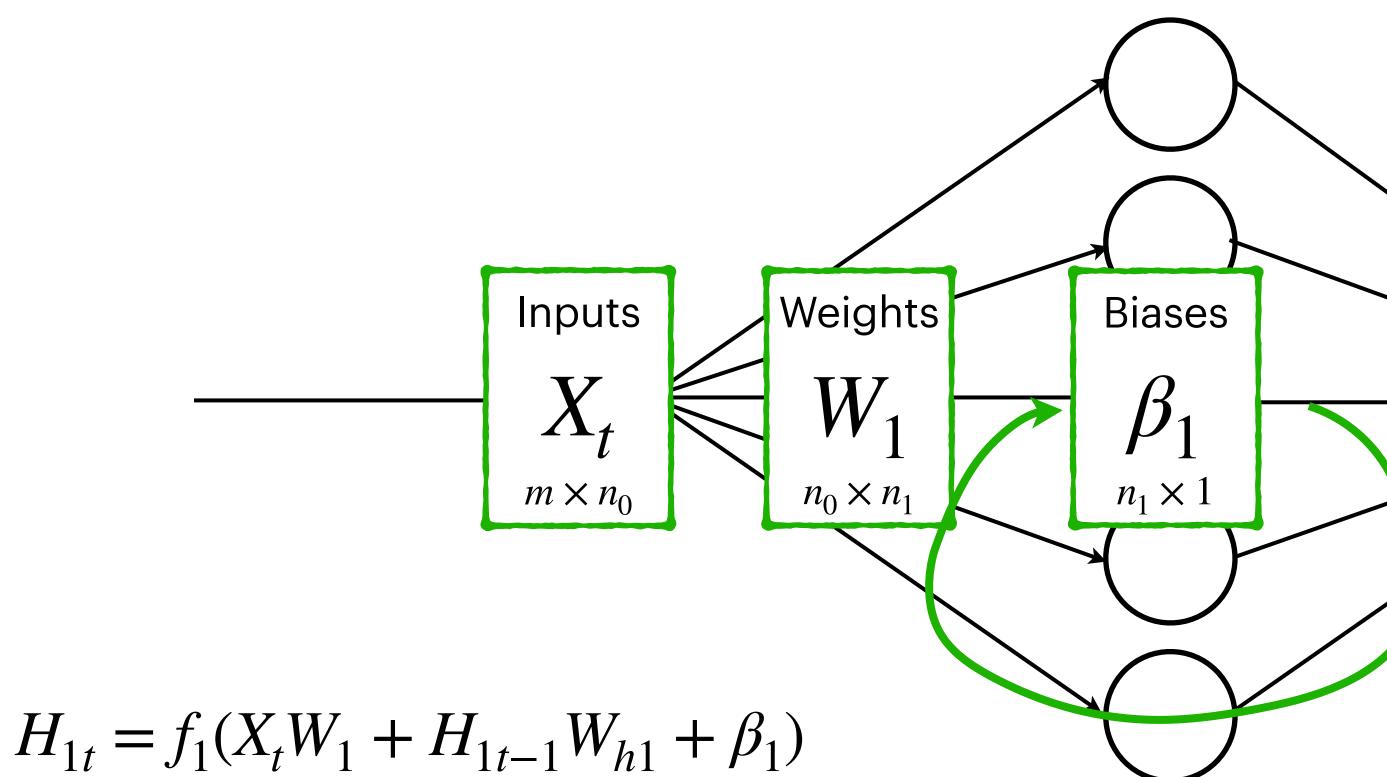
 f_1 is an activation function on Layer L_1 (typically tanh)

$$\hat{Y}_t = f_2(H_t W_2 + \beta_2)$$

 f_2 is an activation function on Layer L_2 (typically softmax for classification, or ReLU / Identity for regression)

Recurrent Neural Networks

 n_0 is the number of features in the input data n_1 is the number of neurons in the hidden layer L_1 n_2 is the number of neurons in the output layer L_2



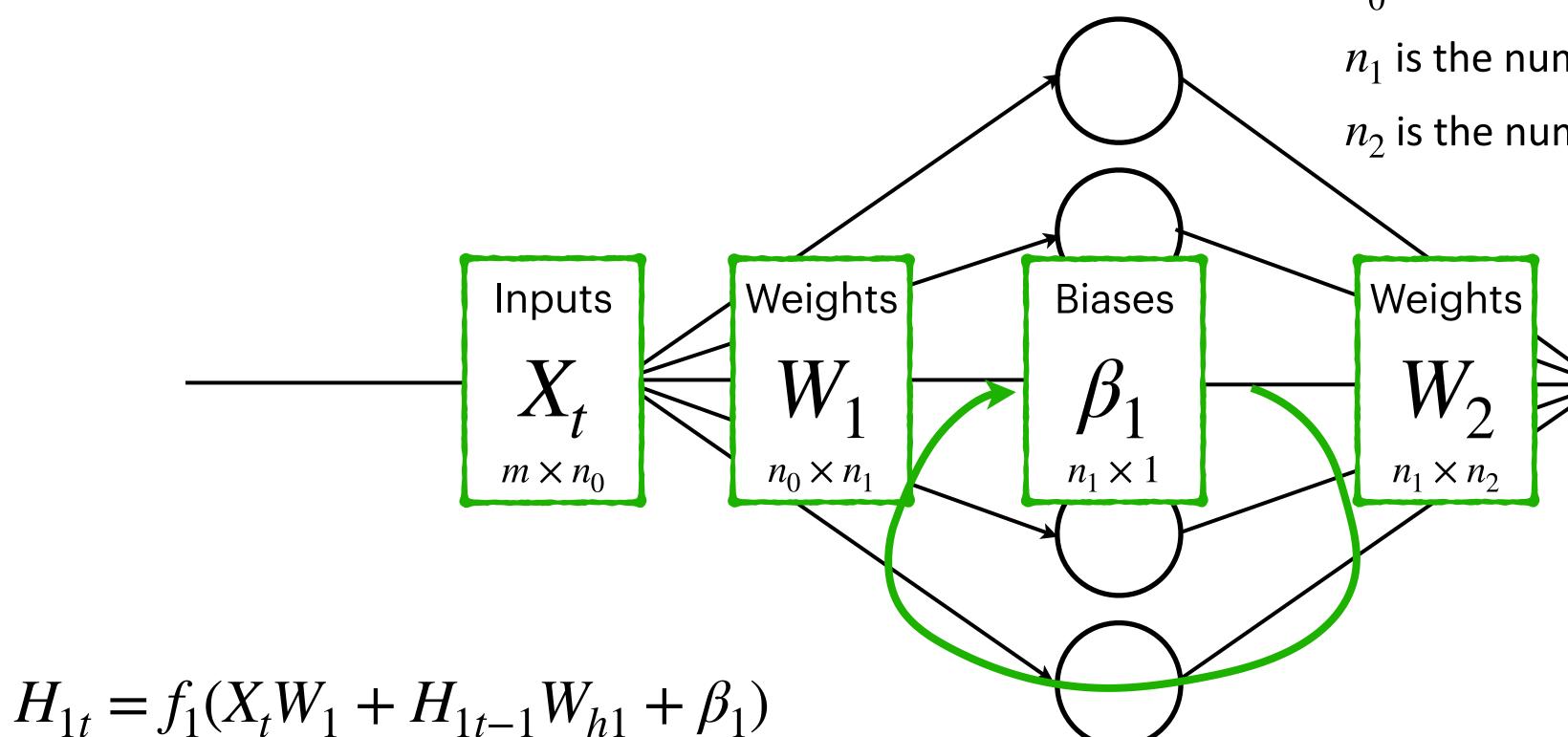
 f_1 is an activation function on Layer L_1 (typically tanh)

$$\hat{Y}_t = f_2(H_t W_2 + \beta_2)$$

 f_2 is an activation function on Layer L_2 (typically softmax for classification, or ReLU / Identity for regression)

Recurrent Neural Networks

 n_0 is the number of features in the input data n_1 is the number of neurons in the hidden layer L_1 n_2 is the number of neurons in the output layer L_2



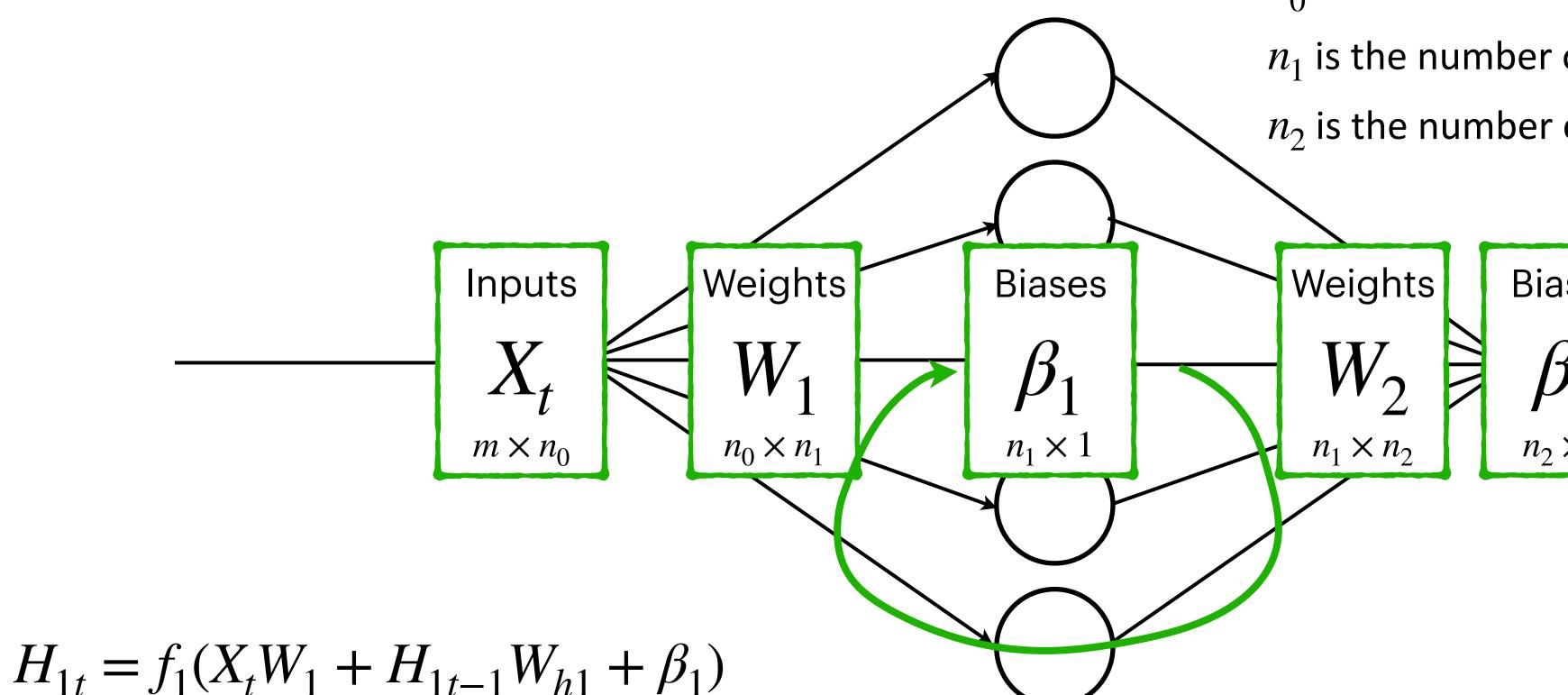
 f_1 is an activation function on Layer L_1 (typically tanh)

$$\hat{Y}_t = f_2(H_t W_2 + \beta_2)$$

 f_2 is an activation function on Layer L_2 (typically softmax for classification, or *ReLU / Identity* for regression)

Recurrent Neural Networks

 n_0 is the number of features in the input data n_1 is the number of neurons in the hidden layer L_1 n_2 is the number of neurons in the output layer L_2



 $II_{1t} - J_1(II_{t''}) - II_{1t-1} + J_1 - II_{t-1} + J_1 - II_{t-1}$

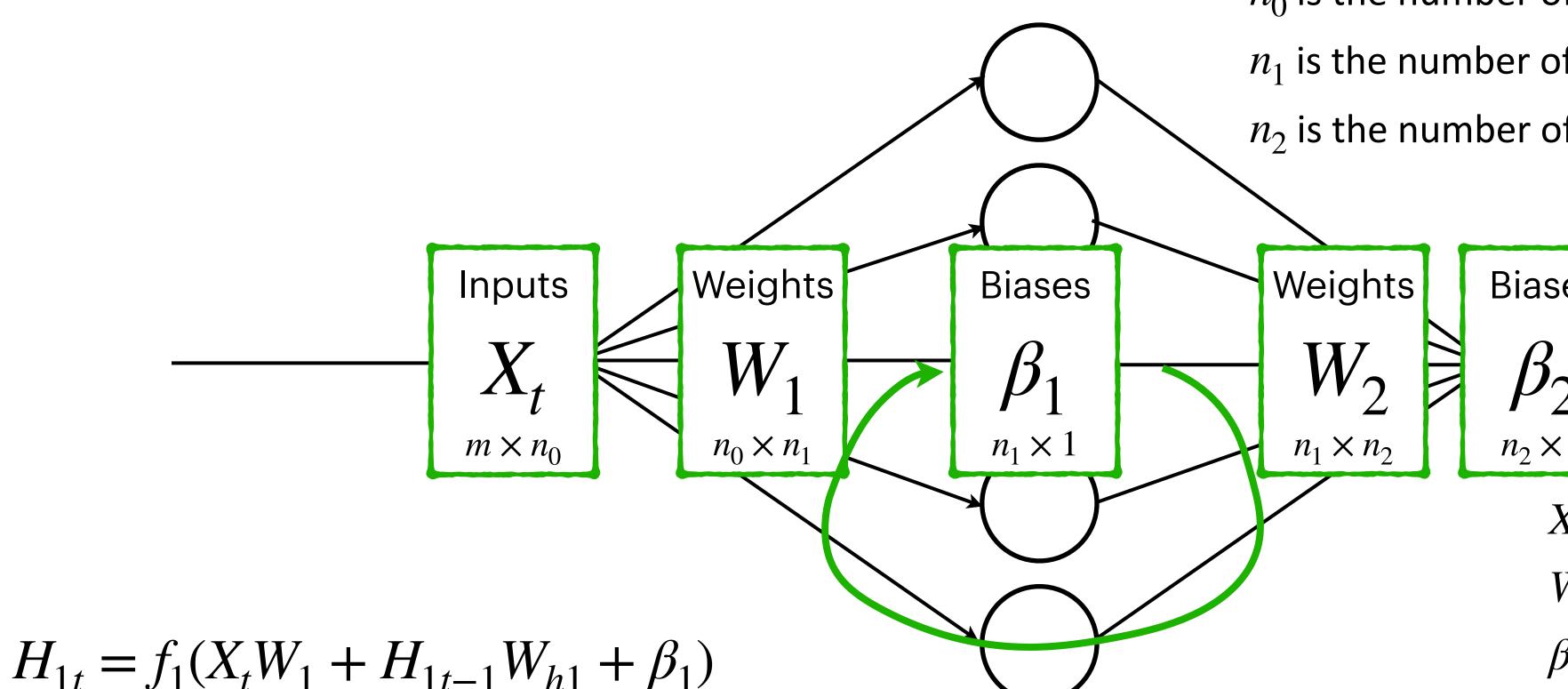
 f_1 is an activation function on Layer L_1 (typically tanh)

$$\hat{Y}_t = f_2(H_t W_2 + \beta_2)$$

 f_2 is an activation function on Layer L_2 (typically softmax for classification, or ReLU / Identity for regression)

Recurrent Neural Networks

 n_0 is the number of features in the input data n_1 is the number of neurons in the hidden layer L_1 n_2 is the number of neurons in the output layer L_2 Biases $n_2 \times 1$ X_t is $m \times n_0$ matrix W_1 is $n_0 \times n_1$ matrix β_1 is $n_1 \times 1$ vector W_{h1} is $n_1 \times n_1$ matrix H_{1t} is $m \times n_1$ matrix W_2 is $n_1 \times n_2$ matrix β_2 is $n_2 \times 1$ vector \hat{Y}_t is $m \times n_2$ matrix



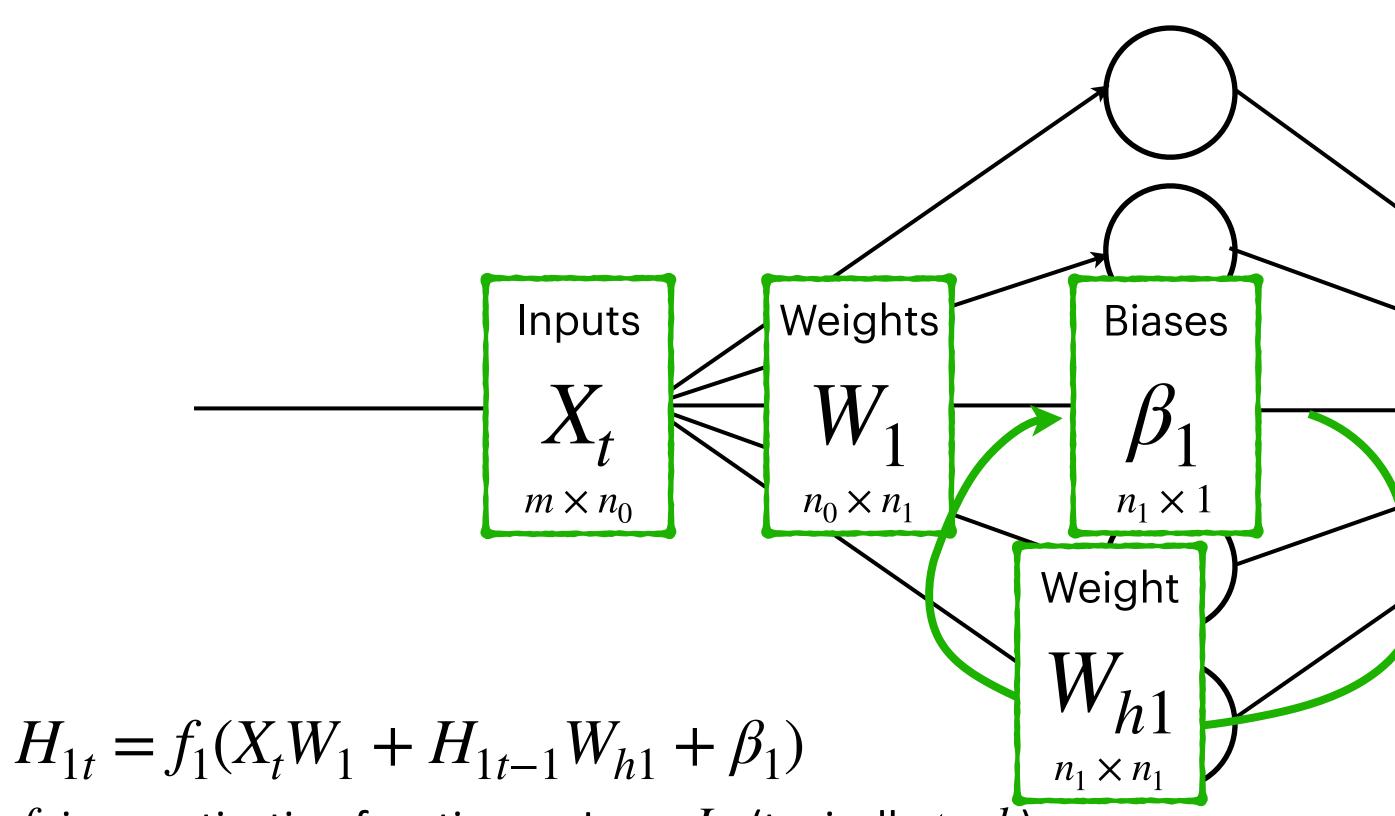
 f_1 is an activation function on Layer L_1 (typically tanh)

$$\hat{Y}_t = f_2(H_t W_2 + \beta_2)$$

 f_2 is an activation function on Layer L_2 (typically softmax for classification, or ReLU / Identity for regression)

Recurrent Neural Networks

 n_0 is the number of features in the input data n_1 is the number of neurons in the hidden layer L_1 n_2 is the number of neurons in the output layer L_2 Outputs Biases $n_2 \times 1$ $m \times n_2$ X_t is $m \times n_0$ matrix W_1 is $n_0 \times n_1$ matrix β_1 is $n_1 \times 1$ vector W_{h1} is $n_1 \times n_1$ matrix H_{1t} is $m \times n_1$ matrix W_2 is $n_1 \times n_2$ matrix β_2 is $n_2 \times 1$ vector \hat{Y}_t is $m \times n_2$ matrix



 f_1 is an activation function on Layer L_1 (typically tanh)

$$\hat{Y}_t = f_2(H_t W_2 + \beta_2)$$

 f_2 is an activation function on Layer L_2 (typically softmax for classification, or ReLU / Identity for regression)

Recurrent Neural Networks

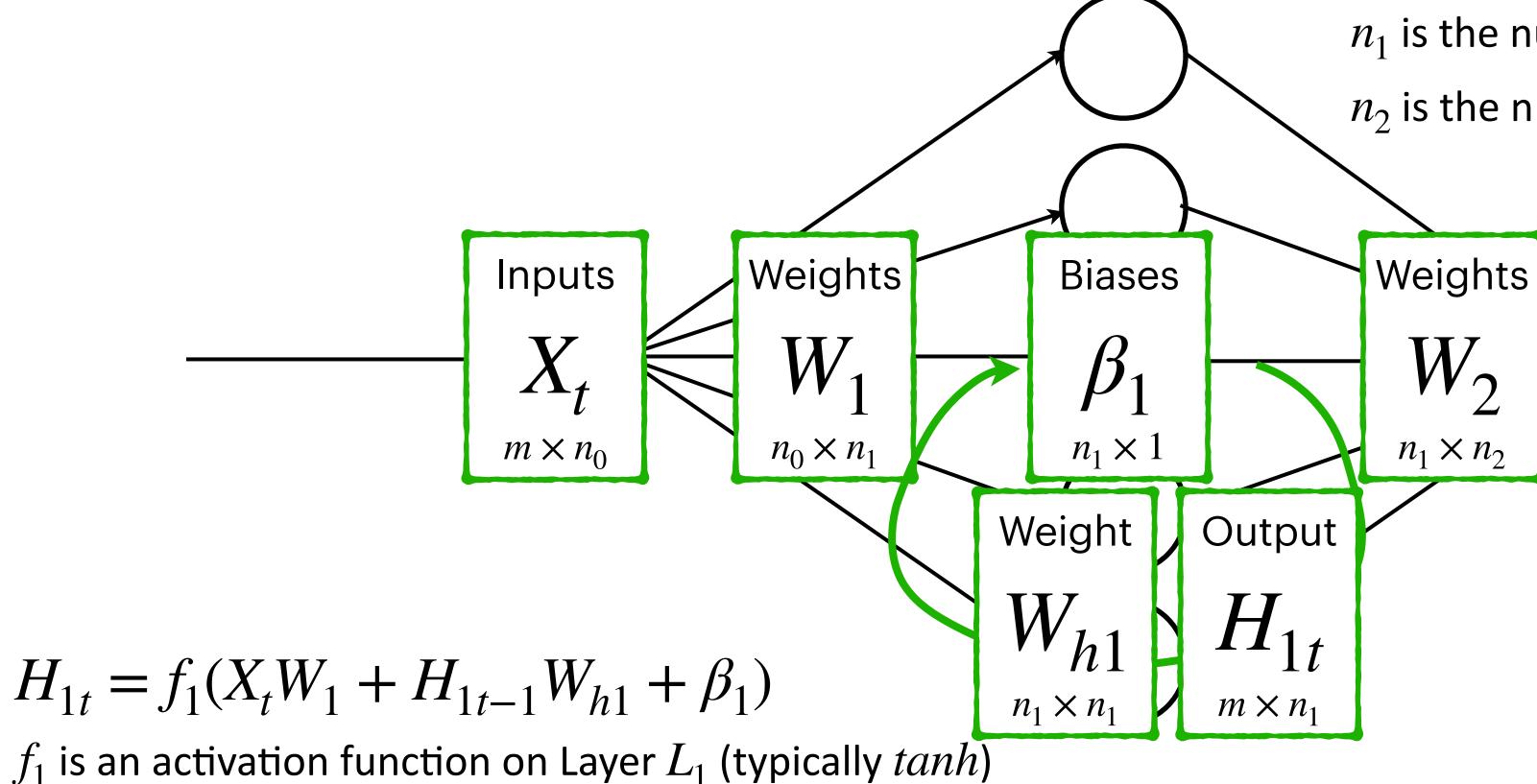
 n_0 is the number of features in the input data n_1 is the number of neurons in the hidden layer L_1 n_2 is the number of neurons in the output layer L_2 Weights M_2 M_2 M_2 $M_3 \times n_2$ $M_4 \times n_2$ $M_5 \times n_2 \times n_3 \times n_4$

Recurrent Neural Networks

 n_0 is the number of features in the input data n_1 is the number of neurons in the hidden layer L_1 n_2 is the number of neurons in the output layer L_2

Biases

 $n_2 \times 1$



 X_t is $m \times n_0$ matrix

 W_1 is $n_0 \times n_1$ matrix

 β_1 is $n_1 \times 1$ vector

 W_{h1} is $n_1 \times n_1$ matrix

 H_{1t} is $m \times n_1$ matrix

 W_2 is $n_1 \times n_2$ matrix

 β_2 is $n_2 \times 1$ vector

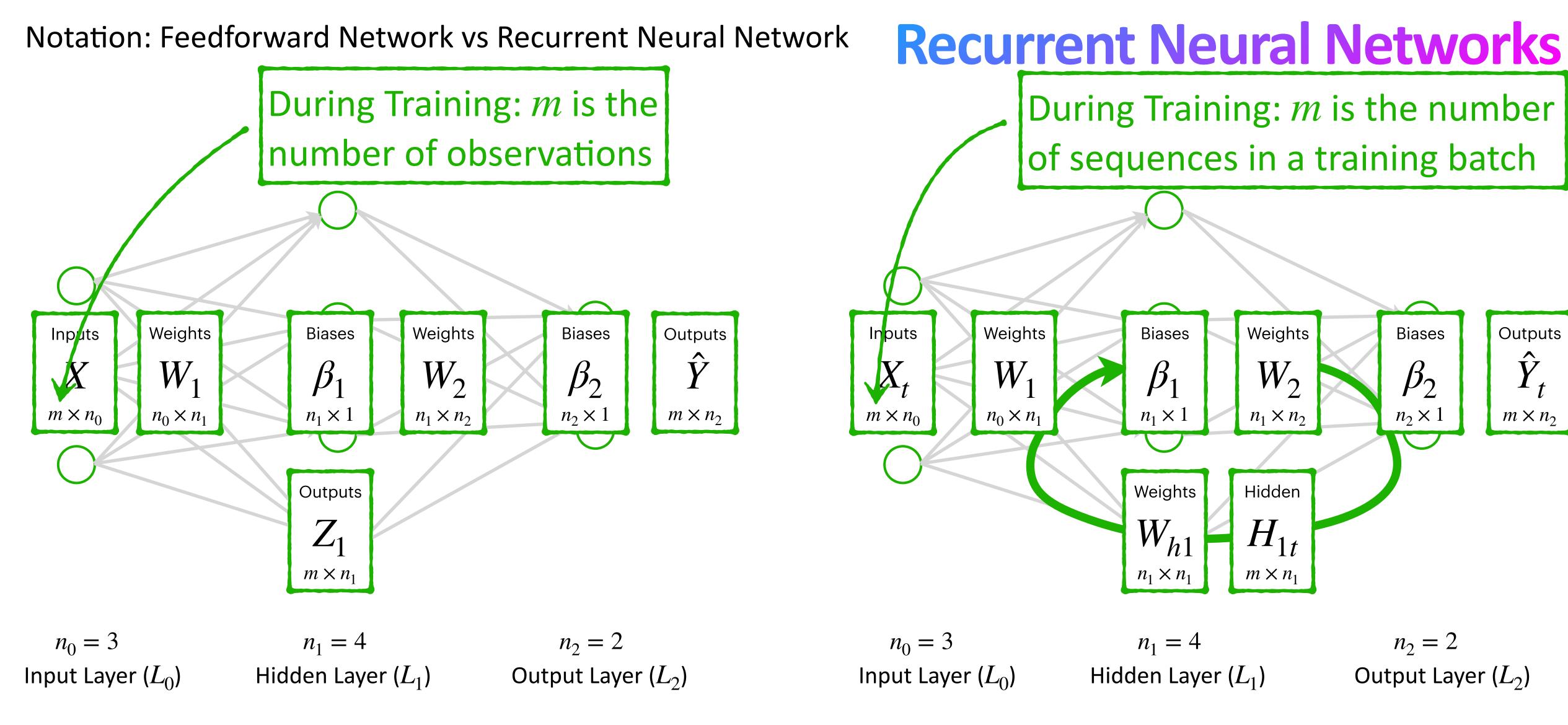
 \hat{Y}_t is $m \times n_2$ matrix

$\hat{Y}_t = f_2(H_t W_2 + \beta_2)$

 f_2 is an activation function on Layer L_2 (typically softmax for classification, or ReLU / Identity for regression)

Outputs

 $m \times n_2$



Feedforward Neural Network

During Training: *m* is the number of observations

$$X = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \\ \vdots & \vdots & \vdots \\ x_{1m} & x_{2m} & x_{3m} \end{bmatrix}$$

Inputs

 $m \times n_0$

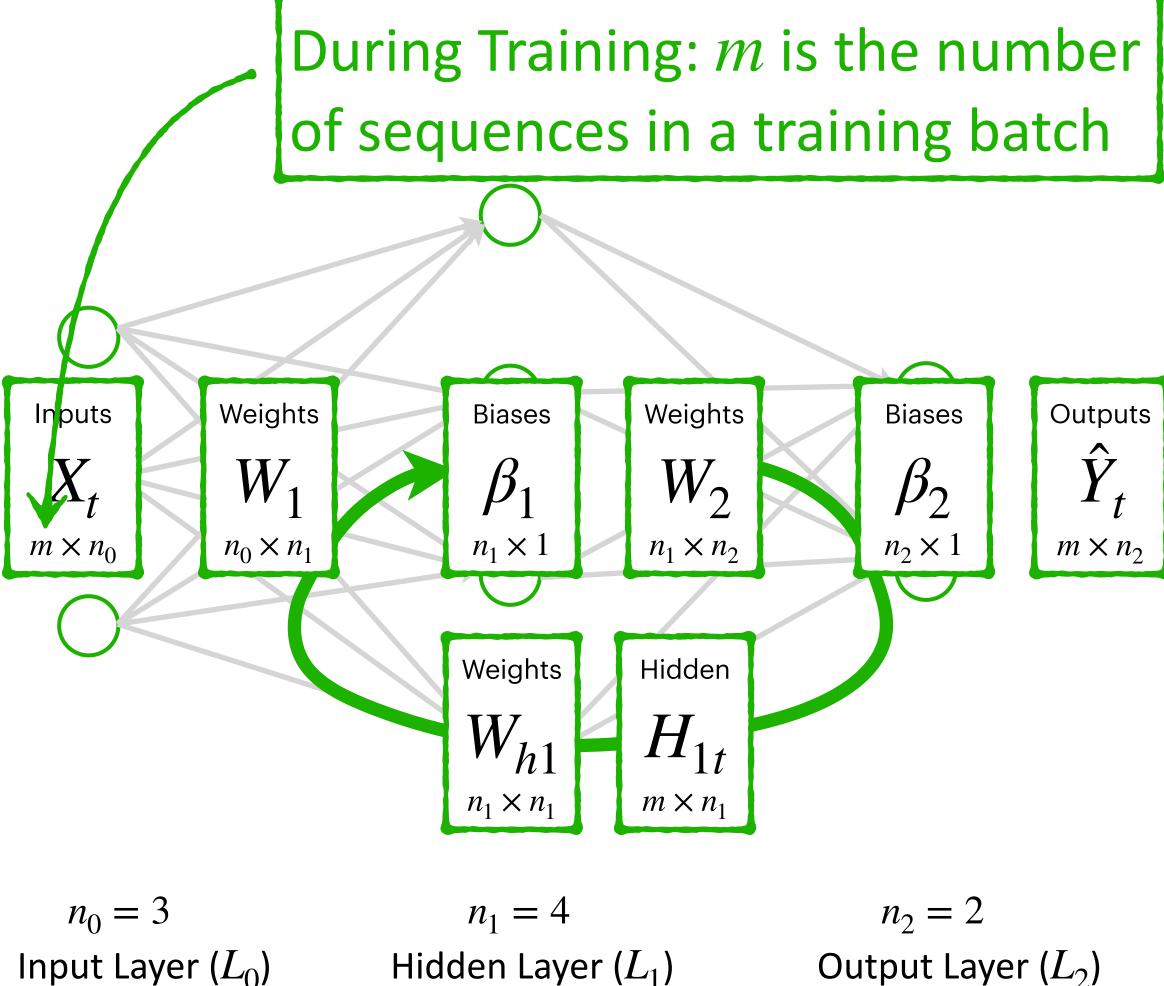
Input Layer

X is a $m \times 3$ matrix of inputs (L_0)

Each row in the matrix is training data for $n_0 = 3$ a single house for a total of m homes.

Feedforward Neural Network

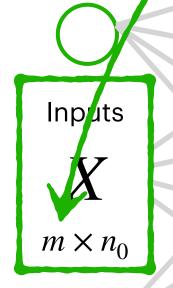
Recurrent Neural Networks During Training: m is the number



Recurrent Neural Networks

During Training: *m* is the number of observations

During Training: m is the number of sequences in a training batch



Example: House Price Prediction

$$X = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \\ \vdots & \vdots & \vdots \\ x_{1m} & x_{2m} & x_{3m} \end{bmatrix}$$

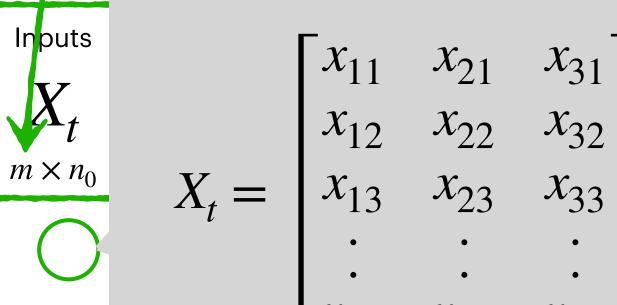
X is a $m \times 3$ matrix of inputs (L_0)

 $n_0 = 3$ Input Layer

Each row in the matrix is training data for a single house for a total of m homes.

Feedforward Neural Network

Example: Traffic Prediction



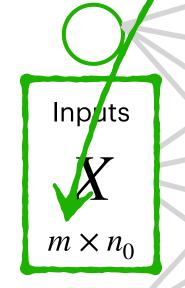
 X_t is a $m \times 3$ matrix of inputs (L_0)

 $n_0 = 3$ features for each sequence: Traffic Volume, Latency & Error Rate

 $n_0 = 1$

Each row in the matrix is one traffic sequence's data at time t with 3 features (e.g., volume, latency, error rate) for a total of m sequences in the training batch.

During Training: *m* is the number of observations



Example: House Price Prediction

$$X = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \\ \vdots & \vdots & \vdots \\ x_{1m} & x_{2m} & x_{3m} \end{bmatrix}$$

X is a $m \times 3$ matrix of inputs (L_0)

 $n_0 = 3$ Input Layer

Each row in the matrix is training data for a single house for a total of m homes.

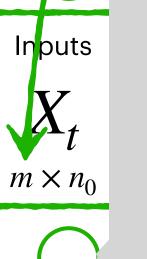
Feedforward Neural Network

The FNN is trained on data from m homes

Recurrent Neural Networks

During Training: m is the number of sequences in a training batch

Example: Traffic Prediction



$$X_{11} \quad X_{21} \quad X_{31} \\ X_{12} \quad X_{22} \quad X_{32} \\ X_{13} \quad X_{23} \quad X_{33} \\ \vdots \quad \vdots \quad \vdots \\ X_{1m} \quad X_{2m} \quad X_{3m} \end{bmatrix}$$

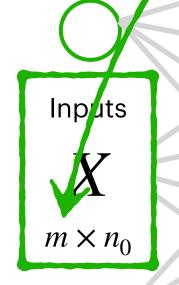
 X_t is a $m \times 3$ matrix of inputs (L_0)

 $n_0 = 3$ features for each sequence: Traffic Volume, Latency & Error Rate

 $n_0 = 1$

Each row in the matrix is one traffic sequence's data at time t with 3 features (e.g., volume, latency, error rate) for a total of m sequences in the training batch.

During Training: *m* is the number of observations



Example: House Price Prediction

$$X = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \\ \vdots & \vdots & \vdots \\ x_{1m} & x_{2m} & x_{3m} \end{bmatrix}$$

X is a $m \times 3$ matrix of inputs (L_0)

 $n_0 = 3$ Input Layer

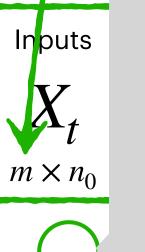
Each row in the matrix is training data for a single house for a total of m homes.

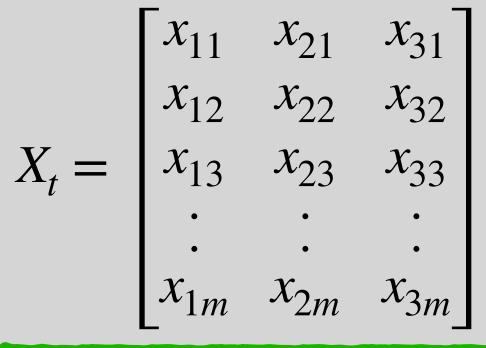
Feedforward Neural Network

The FNN is trained on data from m homes

Recurrent Neural Networks

During Training: m is the number of sequences in a training batch





 X_t is a $m \times 3$ matrix of inputs (L_0)

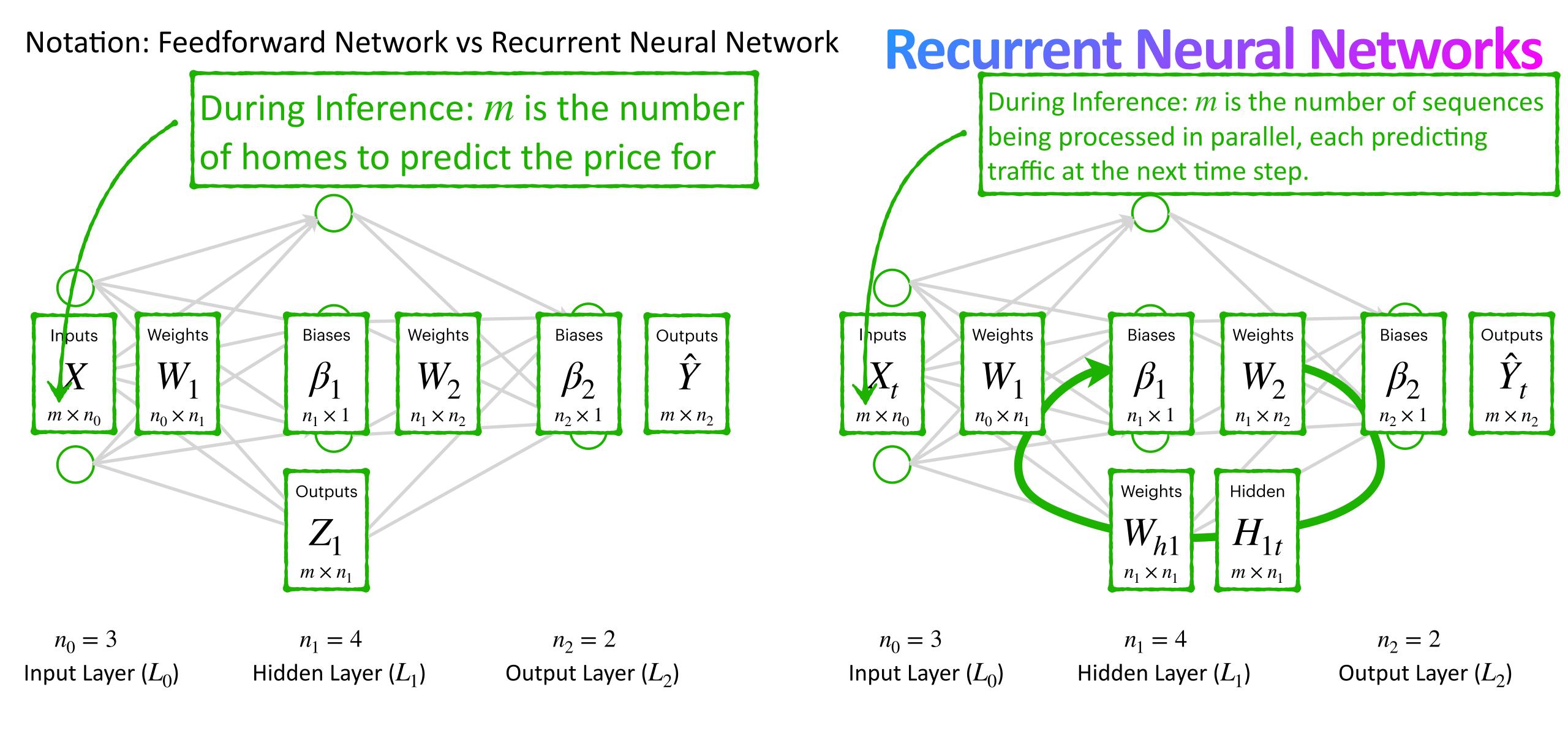
 $n_0 = 3$ features for each sequence: Traffic Volume, Latency & Error Rate

 $n_0 = 1$

Each row in the matrix is one traffic sequence's data at time t with 3 features (e.g., volume, latency, error rate) for a total of m sequences in the training batch.

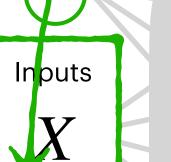
Recurrent Neural Network

The RNN is trained on traffic from m services in parallel, processing each sequence through T time steps



Feedforward Neural Network

During Inference: *m* is the number of homes to predict the price for



Example: House Price Prediction

$$X = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \\ \vdots & \vdots & \vdots \\ x_{1m} & x_{2m} & x_{3m} \end{bmatrix}$$

X is a $m \times 3$ matrix of inputs (L_0)

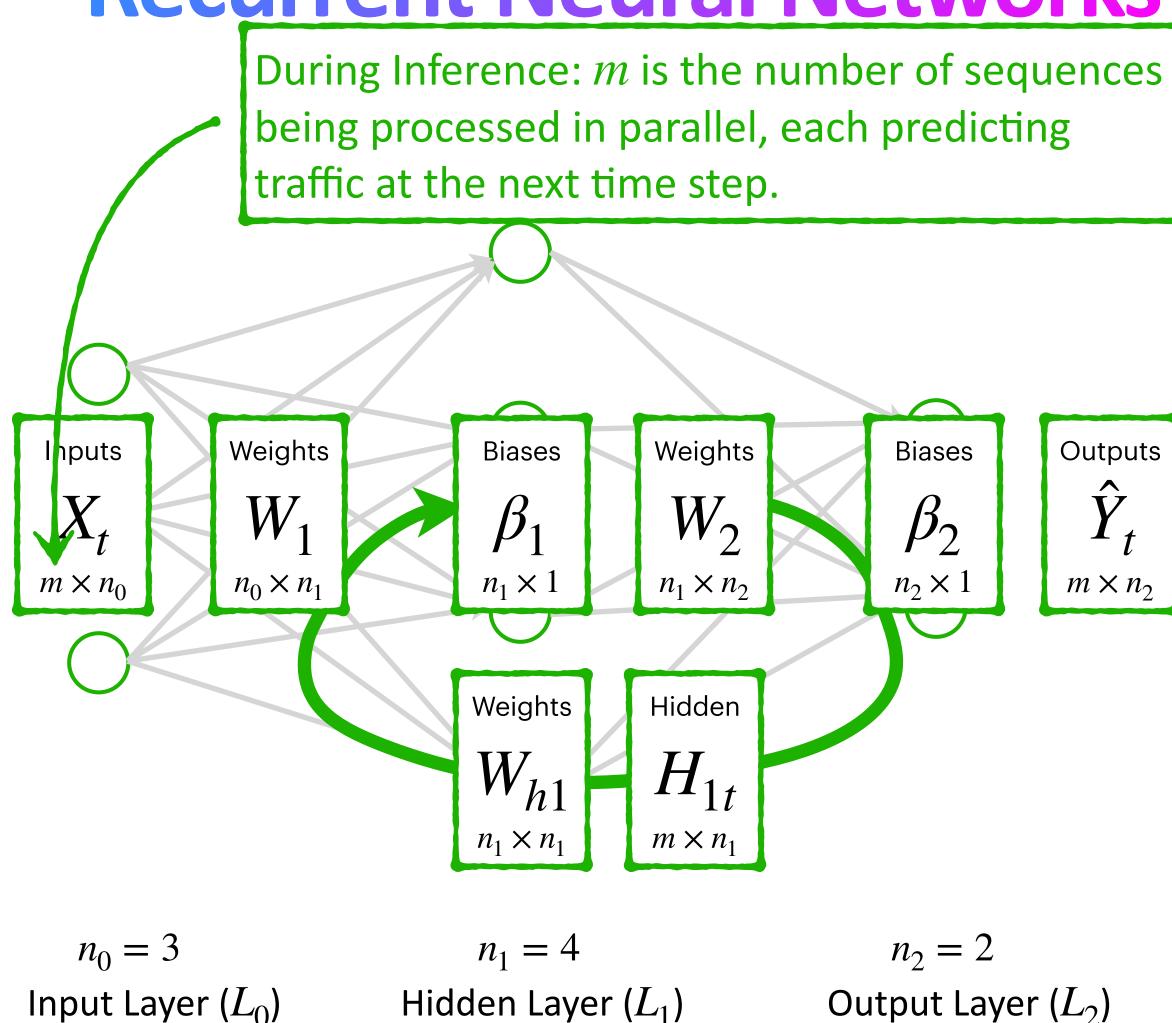
 $n_0 = 3$ Input Layer

 $m \times n_0$

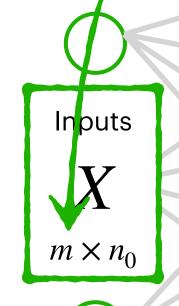
Each row in the matrix is input data to predict the price for a single house. The FNN predicts the prices for a total of m homes.

Feedforward Neural Network

Recurrent Neural Networks



During Inference: *m* is the number of homes to predict the price for



Example: House Price Prediction

$$X = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \\ \vdots & \vdots & \vdots \\ x_{1m} & x_{2m} & x_{3m} \end{bmatrix}$$

X is a $m \times 3$ matrix of inputs (L_0)

 $n_0 = 3$ Input Layer

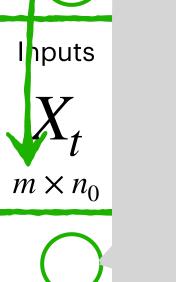
Each row in the matrix is input data to predict the price for a single house. The FNN predicts the prices for a total of m homes.

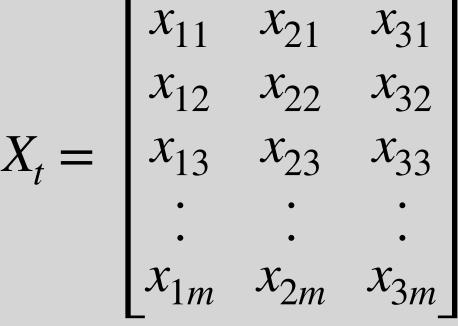
Feedforward Neural Network

Recurrent Neural Networks

During Inference: m is the number of sequences being processed in parallel, each predicting traffic at the next time step.

Example: Traffic Prediction





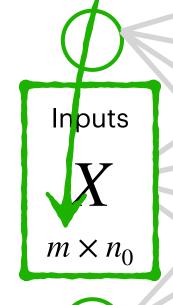
 X_t is a $m \times 3$ matrix of inputs (L_0)

 $n_0 = 3$ features for each sequence: Traffic Volume, Latency & Error Rate

 $n_0 = 1$

Each row in the matrix is input data (3 features) to predict the traffic for one service for the next time step. The RNN predicts the traffic for m services in parallel for the next time step.

During Inference: *m* is the number of homes to predict the price for



Example: House Price Prediction

$$X = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \\ \vdots & \vdots & \vdots \\ x_{1m} & x_{2m} & x_{3m} \end{bmatrix}$$

X is a $m \times 3$ matrix of inputs (L_0)

 $n_0 = 3$ Input Layer

Each row in the matrix is input data to predict the price for a single house. The FNN predicts the prices for a total of m homes.

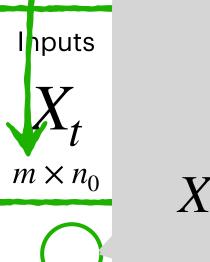
Feedforward Neural Network

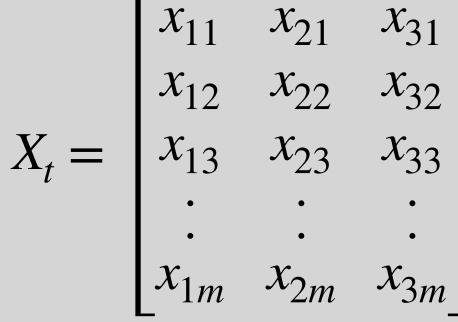
The FNN predicts the price for m homes

Recurrent Neural Networks

During Inference: m is the number of sequences being processed in parallel, each predicting traffic at the next time step.

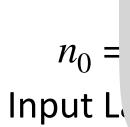
Example: Traffic Prediction





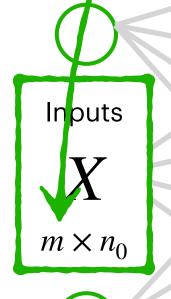
 X_t is a $m \times 3$ matrix of inputs (L_0)

 $n_0 = 3$ features for each sequence: Traffic Volume, Latency & Error Rate



Each row in the matrix is input data (3 features) to predict the traffic for one service for the next time step. The RNN predicts the traffic for m services in parallel for the next time step.

During Inference: *m* is the number of homes to predict the price for



Example: House Price Prediction

$$X = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \\ \vdots & \vdots & \vdots \\ x_{1m} & x_{2m} & x_{3m} \end{bmatrix}$$

X is a $m \times 3$ matrix of inputs (L_0)

 $n_0 = 3$ Input Layer

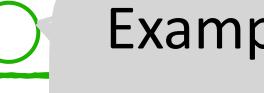
Each row in the matrix is input data to predict the price for a single house. The FNN predicts the prices for a total of m homes.

Feedforward Neural Network

The FNN predicts the price for m homes

Recurrent Neural Networks

During Inference: m is the number of sequences being processed in parallel, each predicting traffic at the next time step.



Example: Traffic Prediction

$$X_{11} \quad X_{21} \quad X_{31}$$

$$X_{12} \quad X_{22} \quad X_{32}$$

$$X_{t} = \begin{bmatrix} x_{13} & x_{23} & x_{33} \\ \vdots & \vdots & \vdots \\ x_{1m} & x_{2m} & x_{2m} \end{bmatrix}$$

 X_t is a $m \times 3$ matrix of inputs (L_0)

 $n_0 = 3$ features for each sequence: Traffic Volume, Latency & Error Rate

 $n_0 = 1$

Inputs

 $m \times n_0$

Each row in the matrix is input data (3 features) to predict the traffic for one service for the next time step. The RNN predicts the traffic for m services in parallel for the next time step.

Recurrent Neural Network

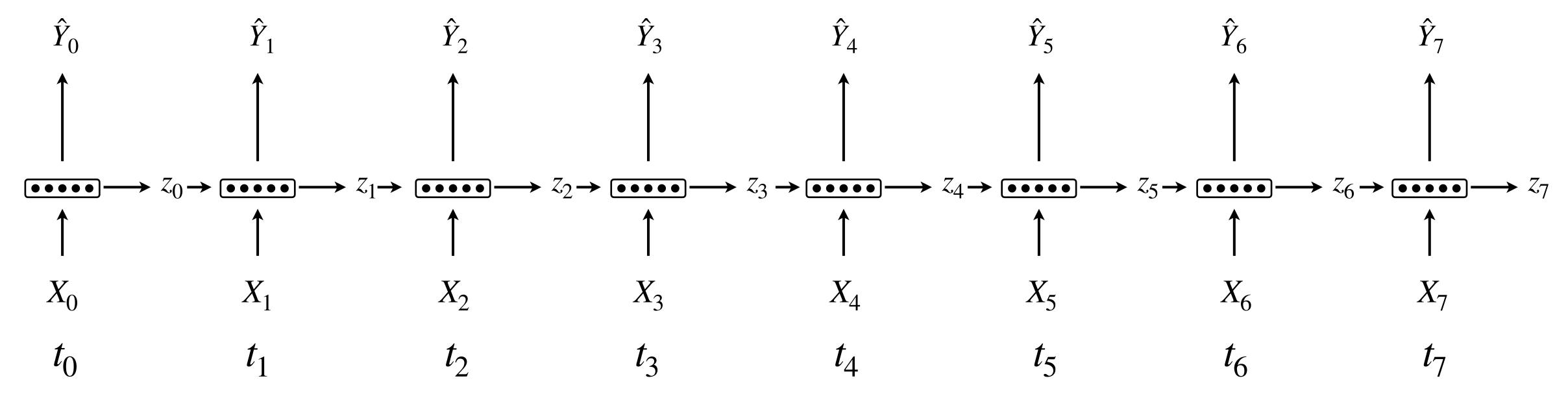
The RNN predicts the traffic for m services in parallel for the next time step.

There are several different types of RNNs depending on the application...

Sequence to Sequence: For each input at a given time step (t) the RNN produces an output for that time step.

Typical Application: Stock Price Prediction, Traffic Prediction or Energy Demand Forecasting

Also known as many-to-many.
The input sequence produces an output sequence

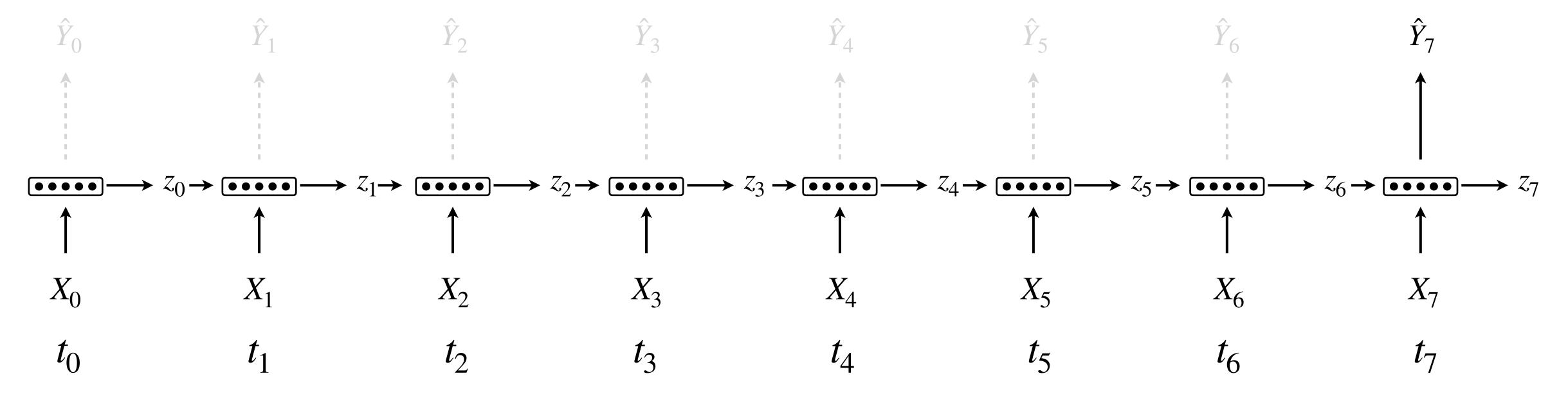


Sequence to Vector: The RNN processes the entire input sequence and produces a single output at the final time step.

Typical Application: Sentiment Analysis, Fraud Detection, Spam Filtering or Document Classification

Also known as many-to-one. The input sequence produces a single output at the last time step

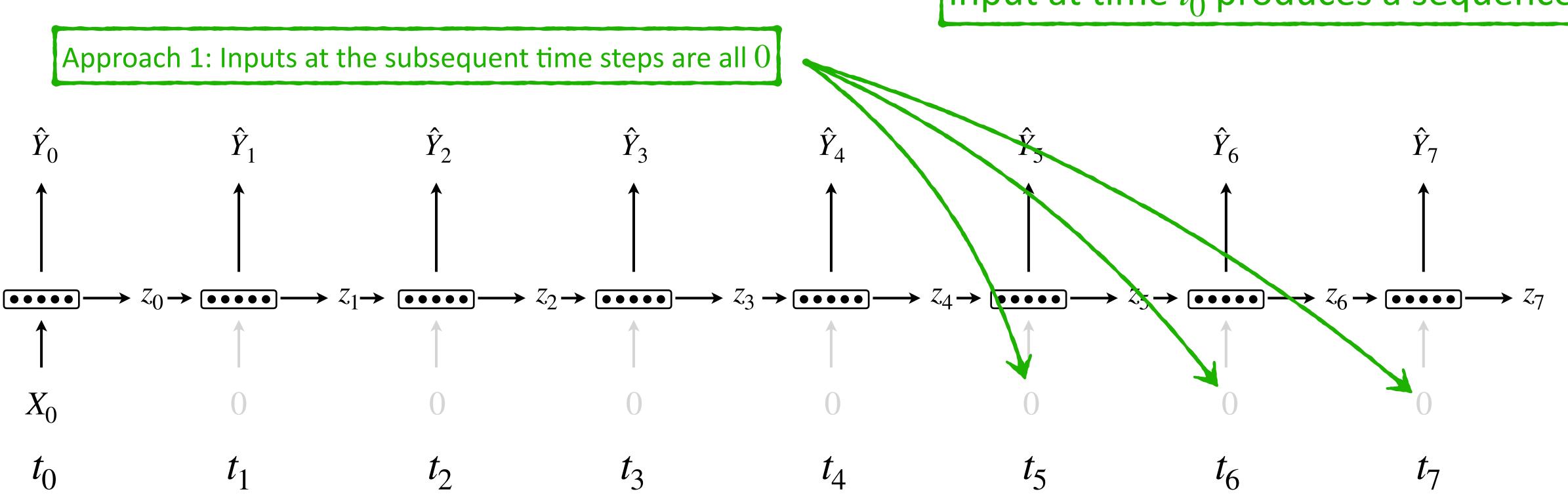
Intermediate outputs are ignored



Vector to Sequence: The RNN processes a single initial input and produces a sequence of outputs at subsequent time steps.

Typical Application: Image Captioning, Music Generation, Video Description

Also known as one-to-many. The input at time t_0 produces a sequence

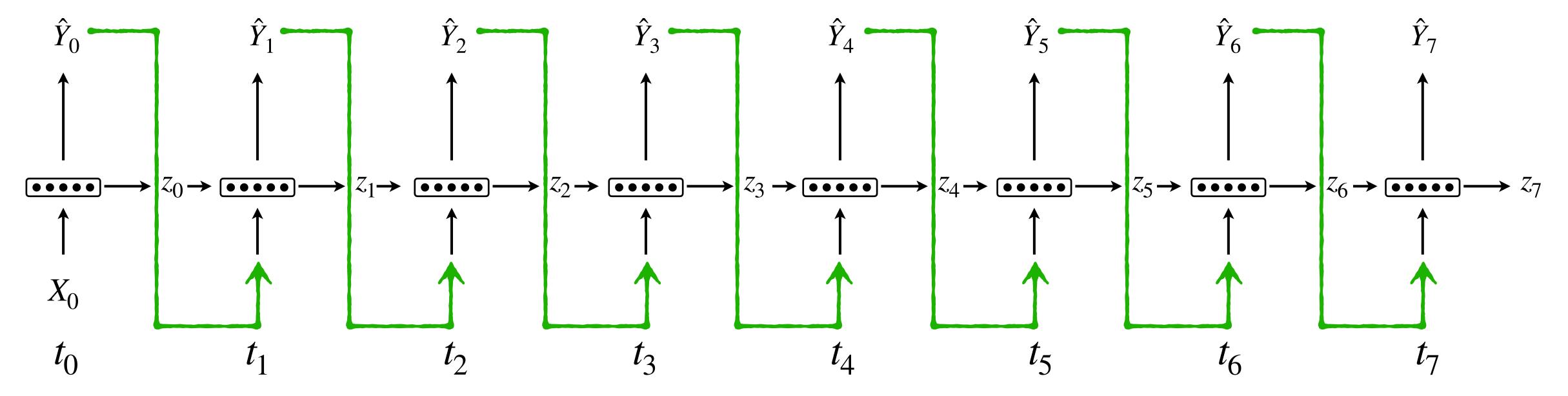


Vector to Sequence: The RNN processes a single initial input and produces a sequence of outputs at subsequent time steps.

Typical Application: Image Captioning, Music Generation, Video Description

Also known as one-to-many. The input at time t_0 produces a sequence

Approach 2: Output from a time step t is fed back as input at the subsequent time steps

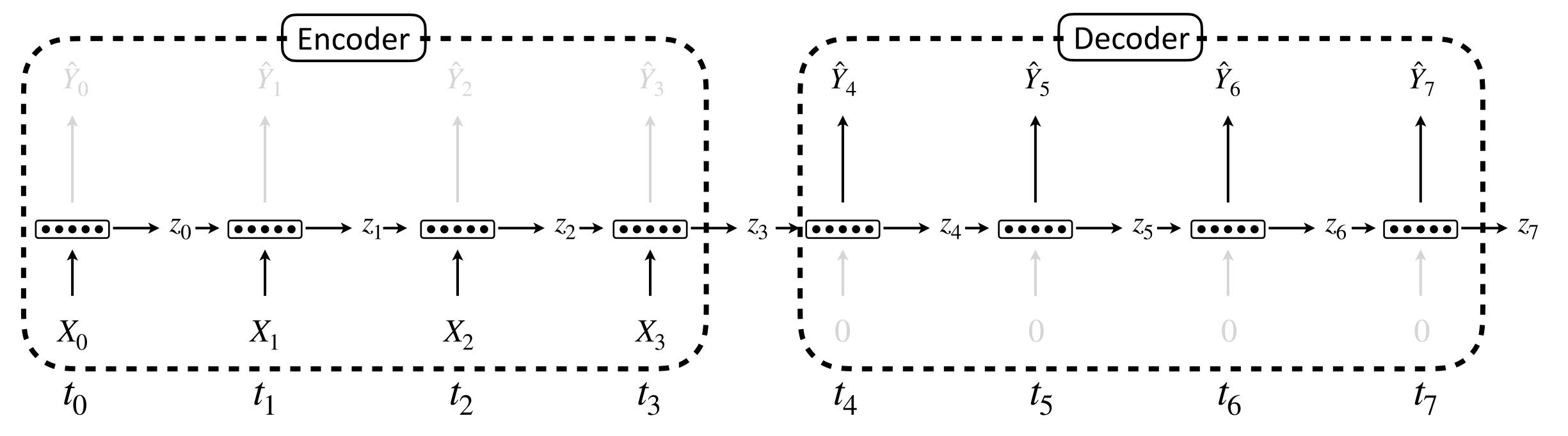


Encoder / Decoder: The RNN processes inputs over several time steps and then starts producing outputs over subsequent time steps.

Typical Application: Machine Translation, Text Summarization and Question to Answer

Also known as many-to-many. The encoder reads the input sequence, then the decoder generates the output sequence.

(input & output sequences can be of different lengths).

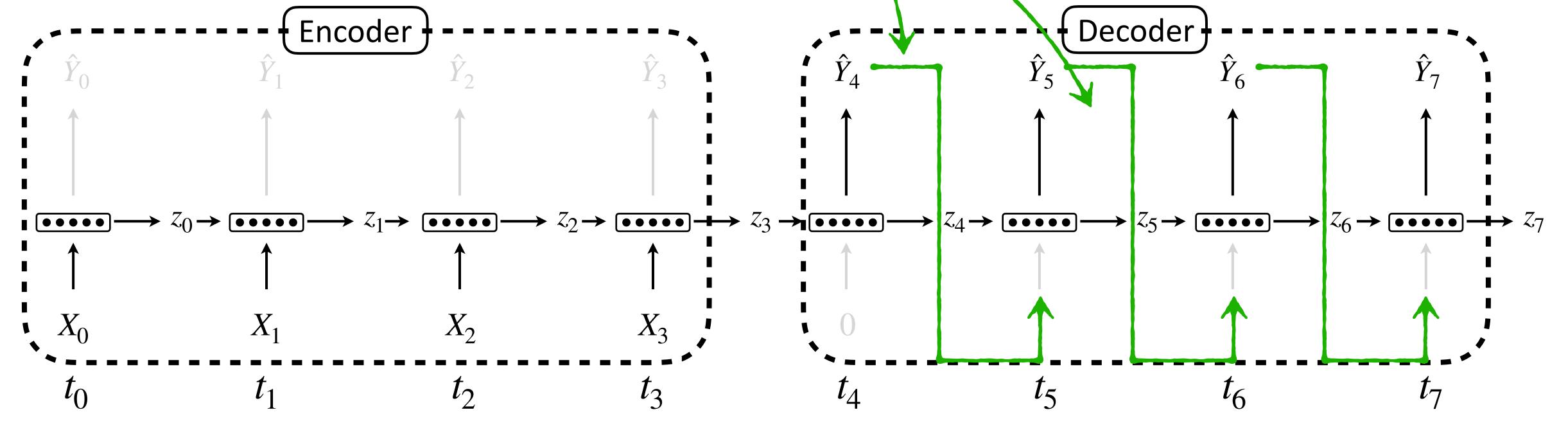


Encoder / Decoder: The RNN processes inputs over several time steps and then starts producing outputs over subsequent time steps.

The output of each time step in the Typical App decoder can also be fed back as Summarizatinput to the next time step.

Also known as many-to-many. The encoder reads the input sequence, then the decoder generates the output sequence.

(input & output sequences can be of different lengths).

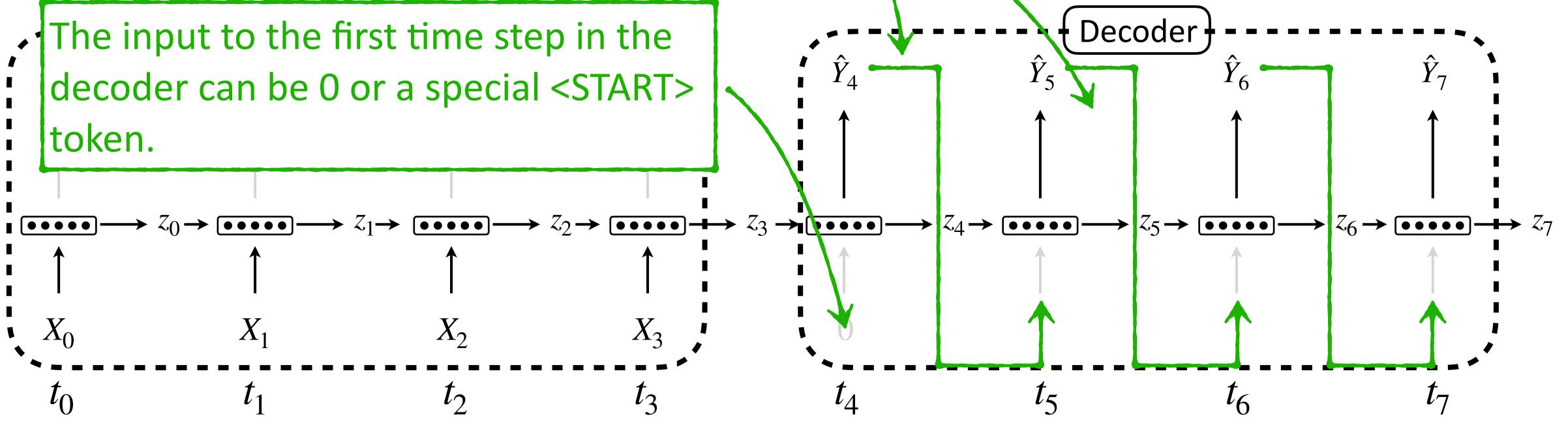


Encoder / Decoder: The RNN processes inputs over several time steps and then starts producing outputs over subsequent time steps.

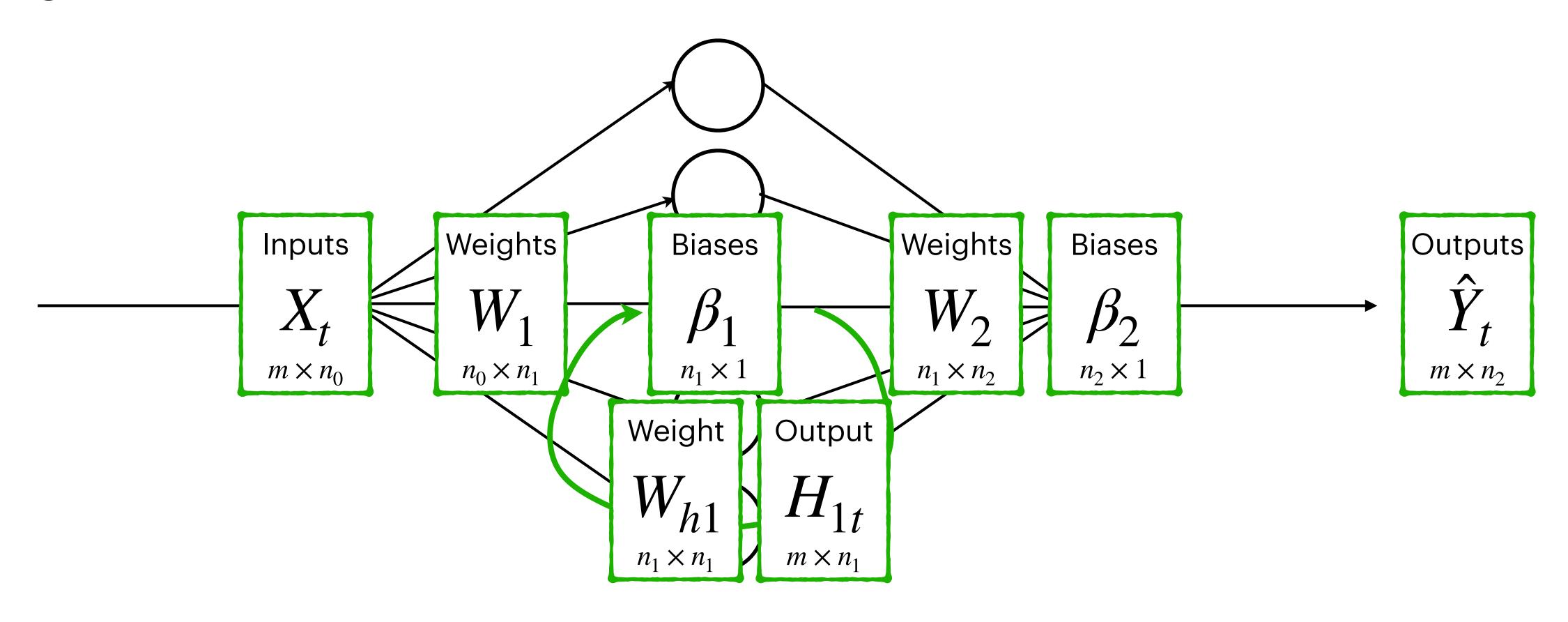
The output of each time step in the Typical App decoder can also be fed back as Summarizatinput to the next time step.

Also known as many-to-many. The encoder reads the input sequence, then the decoder generates the output sequence.

(input & output sequences can be of different lengths).



Training a Recurrent Neural Network



Problem Statement: Optimize the weights (W_1, W_2, W_{h1}) and Biases (β_1, β_2) to minimize the error between the predictions (\hat{Y}) and the observations (Y)

Question: How do we train a Recurrent Neural Network

(We'll use Gradient Descent with a technique known as Backpropagation Through Time (BPTT) to compute gradients across time steps)

Related Tutorials & Textbooks

Neural Networks

An introduction to Neural Networks starting from a foundation of linear regression, logistic classification and multi class classification models along with the matrix representation of a neural network generalized to I layers with n neurons

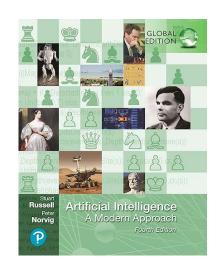
Forward and Back Propagation in Neural Networks

A deep dive into how Neural Networks are trained using Gradient Descent. Output predictions, are compared to observations to calculate loss and Backward propagation then computes gradients by working backward through the network

Gradient Descent for Multiple Regression

Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear model in multiple dimensions.

Recommended Textbooks



<u>Artificial Intelligence: A Modern Approach</u>

by Peter Norvig, Stuart Russell

For a complete list of tutorials see:

https://arrsingh.com/ai-tutorials