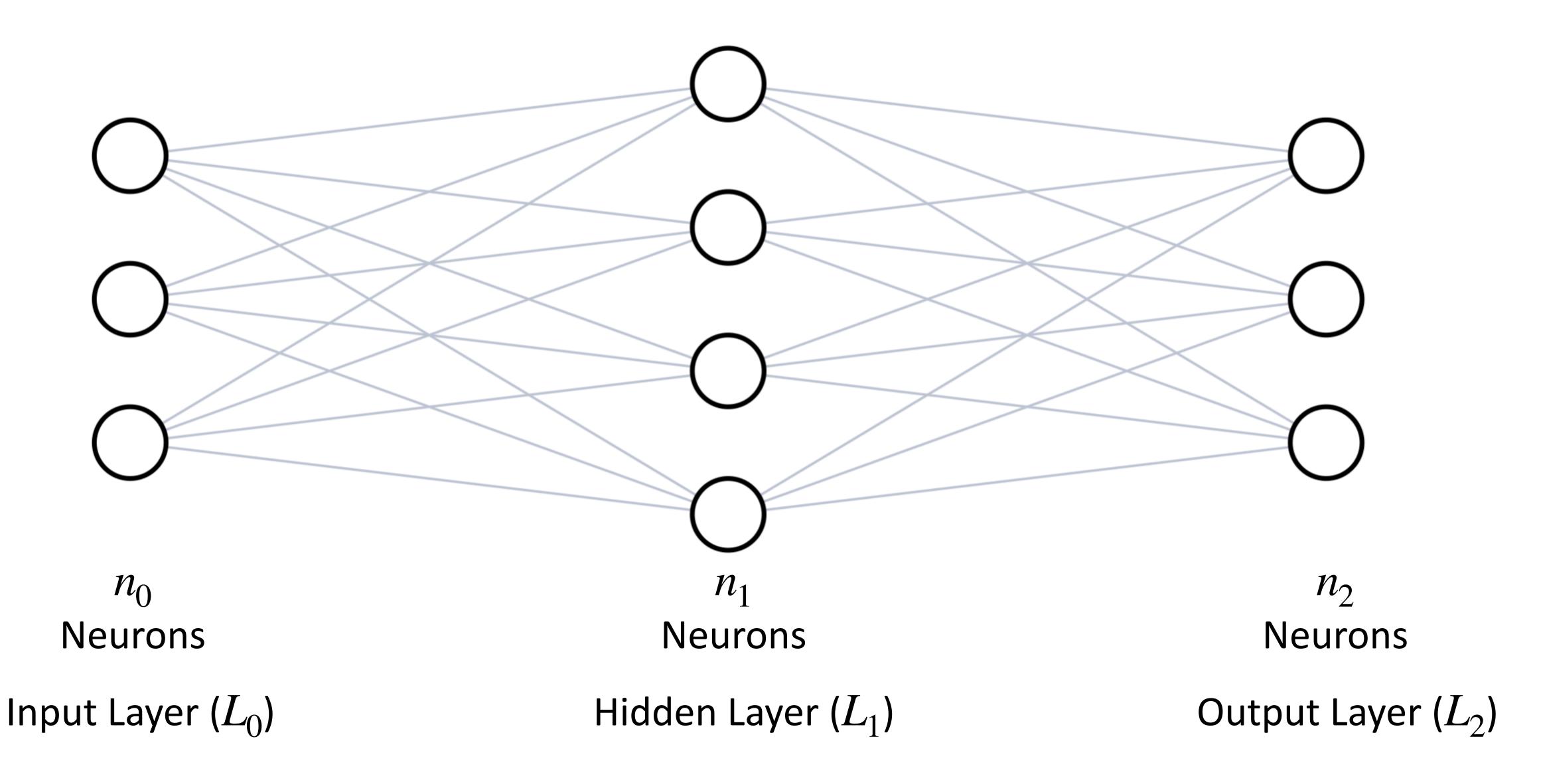
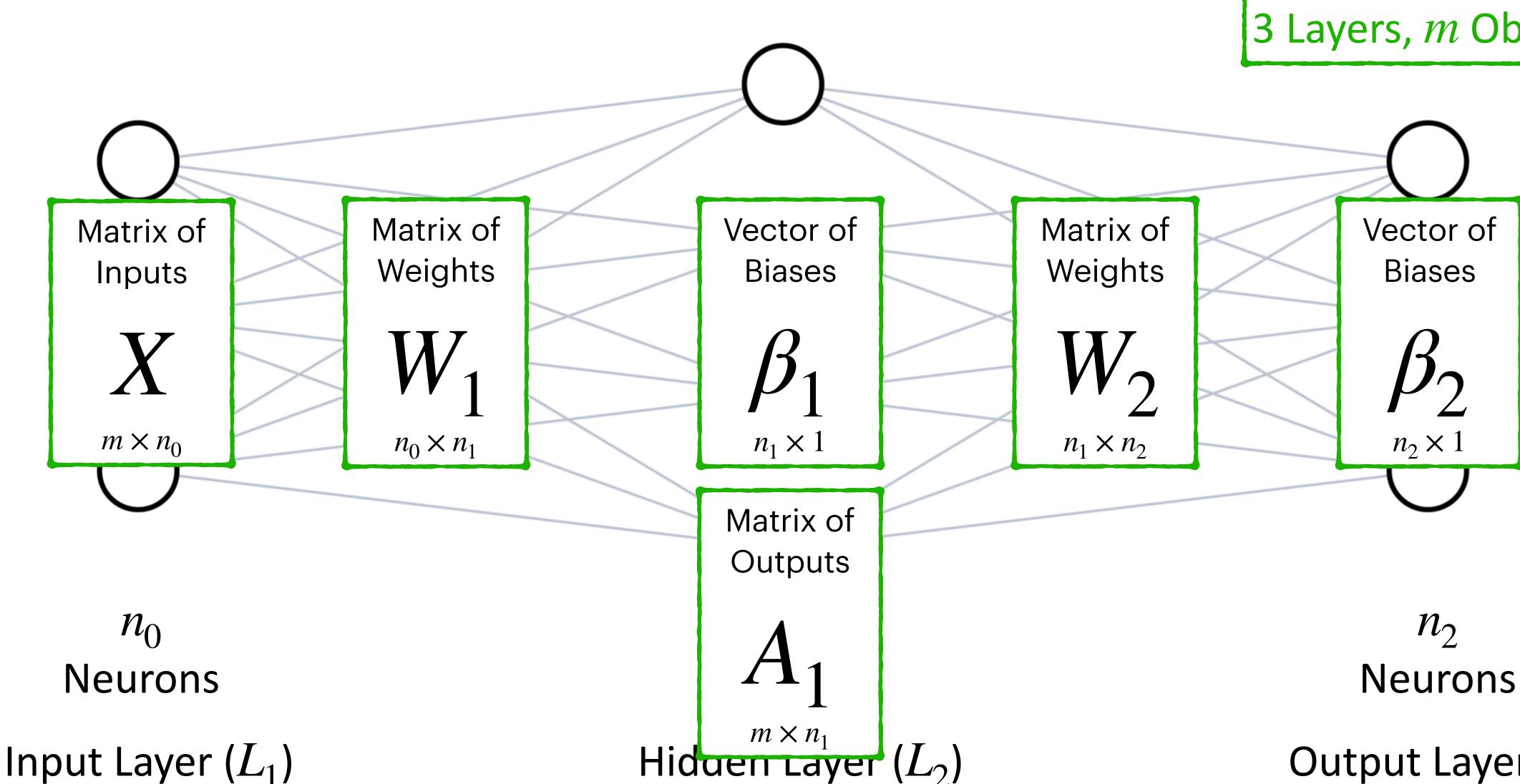
Back Propagation Equations for Binary Classification

Rahul Singh rsingh@arrsingh.com



3 Layers, m Observations

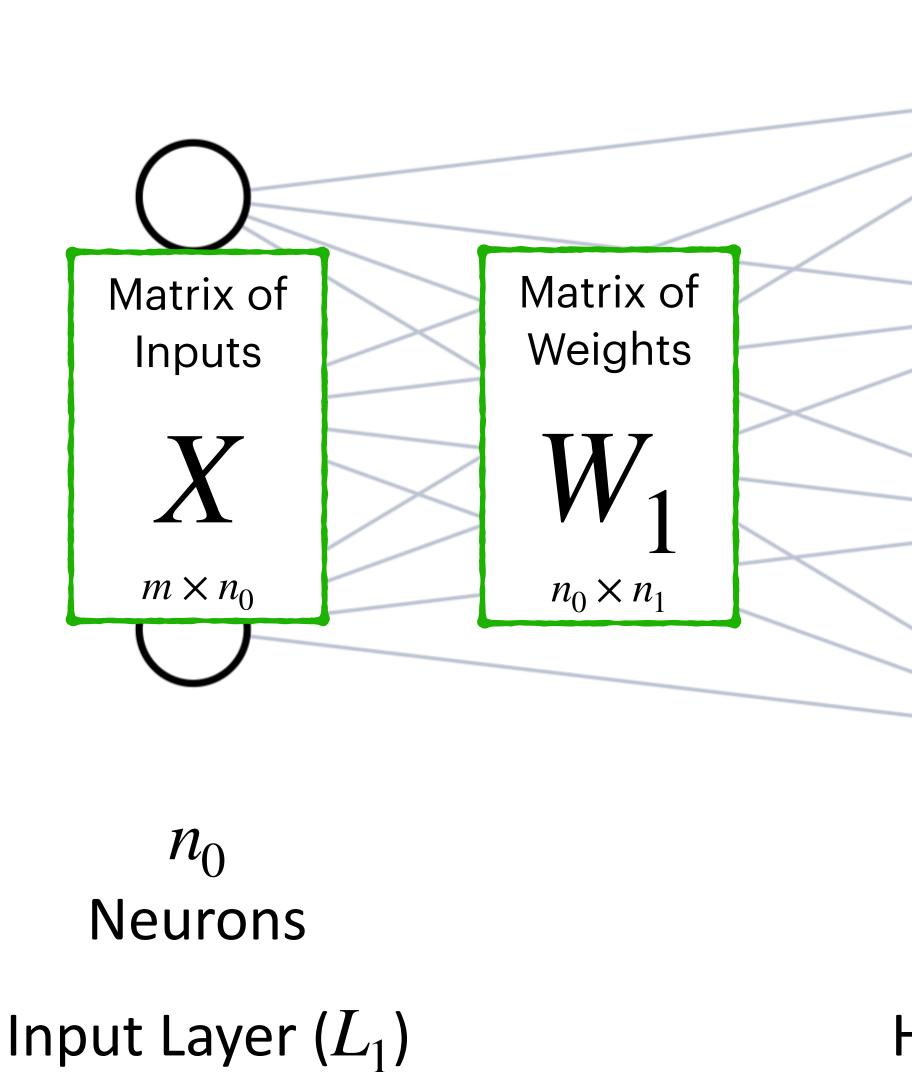


Matrix of Outputs

 $m \times n_2$

Output Layer (L_3)

3 Layers, m Observations



Vector of Biases

 β_{1} $n_1 \times 1$

Matrix of Weights

 $\frac{W_2}{n_1 \times n_2}$

Vector of Biases

 β_2 $n_2 \times 1$

Matrix of Outputs

 $m \times n_2$

Matrix of Outputs

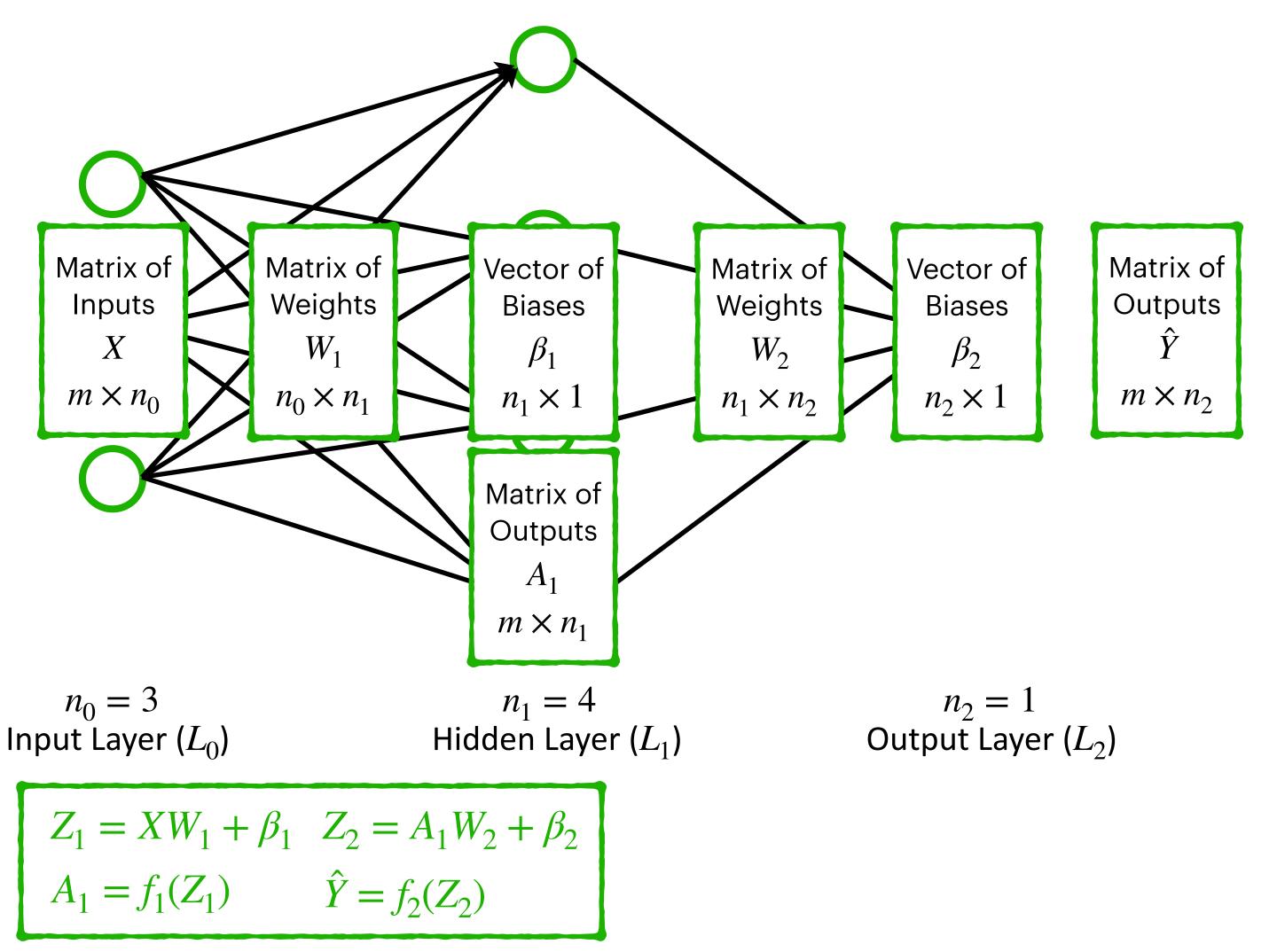
 A_1

liduen Laye

Matrix Equations to compute the Predicted values \hat{Y} given inputs X, Weights W_1 and W_2 and Biases β_1 and β_2

$$Z_1 = XW_1 + \beta_1$$
 $Z_2 = A_1W_2 + \beta_2$
 $A_1 = f(Z_1)$ $\hat{Y} = f_2(Z_2)$

 $A_1=f(Z_1) \qquad \hat{Y}=f_2(Z_2)$ $f_1(g) \ {\rm and} \ f_2(g) \ {\rm are \ the \ activation \ functions \ in \ Layers} \ L_1 \ {\rm and} \ L_2$



Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n}\sum_{i=1}^{n} [y \log_{e} \hat{y} + (1 - y) \log_{e} (1 - \hat{y})]$$

Loss function:

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

$$\hat{y} = f_2(x) = \frac{1}{1 + e^{-x}}$$

Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n} \sum_{i=1}^{n} \left[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y}) \right]$$

Loss function:

Problem Statement: Calculate the four partial derivatives:

$$\frac{\partial}{\partial \beta_2} cost$$
, $\frac{\partial}{\partial W_2} cost$, $\frac{\partial}{\partial \beta_1} cost$, $\frac{\partial}{\partial W_1} cost$

 $n_0 = 3$ Input Layer (L_0)

$$n_1 = 4$$
 Hidden Layer (L_1)

Outputs

 $m \times n_1$

$$n_2 = 1$$

Output Layer (L_2)

$$Z_1 = XW_1 + \beta_1$$
 $Z_2 = A_1W_2 + \beta_2$
 $A_1 = f_1(Z_1)$ $\hat{Y} = f_2(Z_2)$

$$\frac{\partial}{\partial W_2} L = \frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} \frac{\partial}{\partial W_2} z_2$$
 Chain Rule:
 L depends on \hat{y}, z_2 in that order

 $\frac{d}{dx}log_e x = \frac{1}{x}$

 $+y\hat{y}-y\hat{y}$ cancels out

First let's calculate
$$\frac{\partial}{\partial \hat{y}} L$$

$$\Rightarrow \frac{\partial}{\partial \hat{\mathbf{y}}} L = \frac{\partial}{\partial \hat{\mathbf{y}}} [-y \log_e \hat{\mathbf{y}} - (1 - y) \log_e (1 - \hat{\mathbf{y}})]$$

$$\Rightarrow \frac{\partial}{\partial \hat{\mathbf{y}}} L = -\frac{\mathbf{y}}{\hat{\mathbf{y}}} - \frac{(1-\mathbf{y})}{(1-\hat{\mathbf{y}})} (-1)$$

$$\Rightarrow \frac{\partial}{\partial \hat{y}} L = \frac{-y(1-\hat{y}) + \hat{y}(1-y)}{\hat{y}(1-\hat{y})}$$

$$\Rightarrow \frac{\partial}{\partial \hat{\mathbf{y}}} L = \frac{-\mathbf{y} + \mathbf{y}\hat{\mathbf{y}} + \hat{\mathbf{y}} - \mathbf{y}\hat{\mathbf{y}}}{\hat{\mathbf{y}}(1 - \hat{\mathbf{y}})}$$

$$\Rightarrow \frac{\partial}{\partial \hat{\mathbf{y}}} L = \frac{-\mathbf{y} + \hat{\mathbf{y}}}{\hat{\mathbf{y}}(1 - \hat{\mathbf{y}})}$$

$$\Rightarrow \frac{\partial}{\partial \hat{y}} L = \frac{\hat{y} - y}{\hat{y}(1 - \hat{y})}$$

Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log_e \hat{y}_i + (1 - y_i) \log_e (1 - \hat{y}_i) \right]$$

Loss function:

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

$$\hat{y} = f_2(x) = \frac{1}{1 + e^{-x}}$$

Next lets calculate
$$\frac{\partial}{\partial z_2} \hat{y}$$

$$\Rightarrow \frac{\partial}{\partial z_2} \hat{y} = \frac{\partial}{\partial z_2} \left(\frac{1}{1 + e^{-z_2}} \right)$$

$$\Rightarrow \frac{\partial}{\partial z_2} \hat{y} = \frac{\partial}{\partial z_2} (1 + e^{-z_2})^{-1}$$

$$\Rightarrow \frac{\partial}{\partial z_2} \hat{y} = (-1)(1 + e^{-z_2})^{-2} \frac{\partial}{\partial z_2} (1 + e^{-z_2})$$

$$\Rightarrow \frac{\partial}{\partial z_2} \hat{y} = (-1)(1 + e^{-z_2})^{-2}(-1)e^{-z_2}$$

$$\Rightarrow \frac{\partial}{\partial z_2} \hat{y} = \frac{e^{-z_2}}{(1 + e^{-z_2})^2}$$

$$\Rightarrow \frac{\partial}{\partial z_2} \hat{y} = \frac{\hat{y}^2 (1 - \hat{y})}{\hat{y}}$$

$$\Rightarrow \frac{\partial}{\partial z_2} \hat{y} = \hat{y}(1 - \hat{y})$$

Power Rule:

$$\frac{d}{dx}x^n = n \cdot x^{(n-1)}$$

$$\frac{d}{dx}e^{-x} = -e^{-x}$$

$$\hat{y} = \frac{1}{1 + e^{-z^2}}$$

$$\Rightarrow \hat{y}^2 = \frac{1}{(1 + e^{-z^2})^2}$$

$$\hat{y} = \frac{1}{1 + e^{-z^2}}$$

$$\Rightarrow e^{-z_2} = \frac{(1 - \hat{y})}{\hat{y}}$$

Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n}\sum_{i=1}^{n} [y_i \log_e \hat{y}_i + (1 - y_i) \log_e (1 - \hat{y}_i)]$$

Loss function:

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

$$\hat{y} = f_2(x) = \frac{1}{1 + e^{-x}}$$

Next lets calculate
$$\frac{\partial}{\partial W_2} z_2$$

$$\Rightarrow \frac{\partial}{\partial W_2} z_2 = \frac{\partial}{\partial W_2} (a_1 W_2 + \beta_2)$$

$$\Rightarrow \frac{\partial}{\partial W_2} z_2 = a_1$$

Putting all three terms together: $\frac{\partial}{\partial W_2} L = \frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} \frac{\partial}{\partial W_2} z_2$

$$\Rightarrow \frac{\partial}{\partial W_2} L = \frac{\hat{y} - y}{\hat{y}(1 - \hat{y})} \hat{y}(1 - \hat{y}) a_1$$

$$\Rightarrow \frac{\partial}{\partial W_2} L = (\hat{y} - y) a_1$$

Derivative of the cost over m observations:

$$\Rightarrow \frac{\partial}{\partial W_2} cost = \frac{1}{m} A_1^T (\hat{Y} - Y)$$

Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log_e \hat{y}_i + (1 - y_i) \log_e (1 - \hat{y}_i) \right]$$

Loss function:

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

Sigmoid Activation function

$$\hat{y} = f_2(x) = \frac{1}{1 + e^{-x}}$$

 A_1 is an $m \times n_1$ matrix \hat{Y} is a $m \times n_2$ matrix Y is a $m \times n_2$ matrix

$$\Rightarrow A_1^T$$
 is a $n_1 \times m$ matrix

$$\Rightarrow \frac{1}{m} A_1^T (\hat{Y} - Y) \text{ is a } n_1 \times n_2 \text{ matrix}$$

$$\frac{\partial}{\partial \beta_2} L = \frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} \frac{\partial}{\partial \beta_2} z_2$$

Chain Rule:

L depends on \hat{y}, z_2 in that order

$$\frac{\partial}{\partial \hat{y}} L = \frac{\hat{y} - y}{\hat{y}(1 - \hat{y})} \qquad \frac{\partial}{\partial z_2} \hat{y} = \hat{y}(1 - \hat{y})$$

Let's calculate $\frac{\partial}{\partial \beta_2} z_2$

$$\Rightarrow \frac{\partial}{\partial \beta_2} z_2 = \frac{\partial}{\partial \beta_2} (a_1 W_2 + \beta_2) = 1$$

Putting all three terms together: $\frac{\partial}{\partial \beta_2} L = \frac{\partial}{\partial \hat{v}} L \frac{\partial}{\partial z_2} \hat{y} \frac{\partial}{\partial \beta_2} z_2$

$$\Rightarrow \frac{\partial}{\partial \beta_2} L = \frac{\hat{y} - y}{\hat{y}(1 - \hat{y})} \hat{y}(1 - \hat{y})$$

$$\Rightarrow \frac{\partial}{\partial \beta_2} L = (\hat{y} - y)$$

Derivative of the cost over m observations:

$$\Rightarrow \frac{\partial}{\partial \beta_2} cost = \frac{1}{m} \sum_{i=1}^{m} (\hat{Y} - Y)$$

Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n}\sum_{i=1}^{n} \left[y_i \log_e \hat{y}_i + (1 - y_i) \log_e (1 - \hat{y}_i) \right]$$

Loss function:

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

Sigmoid Activation function

$$\hat{y} = f_2(x) = \frac{1}{1 + e^{-x}}$$

Y is a $m \times n_2$ matrix Y is a $m \times n_2$ matrix

$$\Rightarrow \frac{1}{m} \sum_{i=1}^{m} (\hat{Y} - Y) \text{ is a } 1 \times n_2 \text{ vector}$$

Summation from 1..m collapses the *m* dimension

$$\frac{\partial}{\partial W_1} L = \frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} \frac{\partial}{\partial a_1} z_2 \frac{\partial}{\partial z_1} a_1 \frac{\partial}{\partial W_1} z_1$$
Chain Rule:
$$L \text{ depends on } \hat{y}, z_2, a_1, z_1 \text{ in that order}$$

$$\frac{\partial}{\partial \hat{y}} L = \frac{\hat{y} - y}{\hat{y}(1 - \hat{y})} \qquad \frac{\partial}{\partial z_2} \hat{y} = \hat{y}(1 - \hat{y})$$

First let's calculate
$$\frac{\partial}{\partial a_1} z_2$$

$$\Rightarrow \frac{\partial}{\partial a_1} z_2 = \frac{\partial}{\partial a_1} (a_1 W_2 + \beta_2) = W_2$$

Next let's calculate $\frac{\partial}{\partial z_1}a_1$

$$\Rightarrow \frac{\partial}{\partial z_1} a_1 = \frac{\partial}{\partial z_1} f_1(z_1)$$

Next let's calculate $\frac{\partial}{\partial W_1} z_1$

$$\Rightarrow \frac{\partial}{\partial W_1} z_1 = \frac{\partial}{\partial W_1} (xW_1 + \beta_1) = x$$

Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n}\sum_{i=1}^{n} [y_i \log_e \hat{y}_i + (1 - y_i) \log_e (1 - \hat{y}_i)]$$

Loss function:

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

$$\hat{y} = f_2(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{\partial}{\partial W_1} L = \frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} \frac{\partial}{\partial a_1} z_2 \frac{\partial}{\partial z_1} a_1 \frac{\partial}{\partial W_1} z_1$$

Putting all five terms together:

$$\Rightarrow \frac{\partial}{\partial W_1} L = \frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} \frac{\partial}{\partial a_1} z_2 \frac{\partial}{\partial z_1} a_1 \frac{\partial}{\partial W_1} z_1$$

$$\Rightarrow \frac{\partial}{\partial W_1} L = \frac{\partial}{\partial z_2} L \frac{\partial}{\partial a_1} z_2 \frac{\partial}{\partial z_1} a_1 \frac{\partial}{\partial W_1} z_1$$

$$\Rightarrow \frac{\partial}{\partial W_1} L = \left[\frac{\partial}{\partial z_1} L \right] x \longleftarrow$$

Derivative of the cost over m observations:

$$\Rightarrow \frac{\partial}{\partial W_1} cost = \frac{1}{m} X^T \left[\frac{\partial}{\partial Z_1} cost \right]$$

$$X^{T} \text{ is a } n_{0} \times m \text{ matrix}$$

$$\Rightarrow \frac{1}{m} X^{T} \left[\frac{\partial}{\partial Z_{1}} cost \right] \text{ is a } n_{0} \times n_{1} \text{ matrix}$$

Chain Rule:

L depends on \hat{y}, z_2, a_1, z_1 in that order

$$\frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} = \frac{\partial}{\partial z_2} L$$

$$\Rightarrow \frac{\partial}{\partial z_1} L = \frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} \frac{\partial}{\partial a_1} z_2 \frac{\partial}{\partial z_1} a_1$$

$$= \frac{\partial}{\partial z_2} L \frac{\partial}{\partial a_1} z_2 \frac{\partial}{\partial z_1} a_1$$

$$= \left(\left[\frac{\partial}{\partial z_2} L \right] W_2^T \right) \odot \left[\frac{\partial}{\partial z_1} f_1(z_1) \right]$$

$$\frac{\partial}{\partial Z_1} cost = \left(\left[\frac{\partial}{\partial Z_2} cost \right] W_2^T \right) \odot \left[\frac{\partial}{\partial Z_1} f_1(Z_1) \right]$$

$$\Rightarrow \frac{\partial}{\partial Z_1} cost = \left((\hat{Y} - Y) W_2^T \right) \odot \left[\frac{\partial}{\partial Z_1} f_1(Z_1) \right]$$

 $\frac{\partial}{\partial Z_1} cost$ is an $m \times n_1$ matrix

Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n}\sum_{i=1}^{n} \left[y_i \log_e \hat{y}_i + (1 - y_i) \log_e (1 - \hat{y}_i) \right]$$

Loss function:

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

Sigmoid Activation function

$$\hat{y} = f_2(x) = \frac{1}{1 + e^{-x}}$$

$$\Rightarrow \frac{\partial}{\partial z_2} L = \frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y}$$

$$= \frac{\hat{y} - y}{\hat{y}(1 - \hat{y})} \hat{y}(1 - \hat{y})$$

$$= \hat{y} - y$$

Vectorized over *m* observations

$$\Rightarrow \frac{\partial}{\partial Z_2} cost = \hat{Y} - Y$$

 $\hat{Y} - Y$ is an $m \times n_2$ matrix

$$\frac{\partial}{\partial \beta_1} L = \frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} \frac{\partial}{\partial a_1} z_2 \frac{\partial}{\partial z_1} a_1 \frac{\partial}{\partial \beta_1} z_1$$
Chain Rule:
$$L \text{ depends on } \hat{y}, z_2, a_1, z_1 \text{ in that order}$$

Chain Rule:

Putting all five terms together:

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} \frac{\partial}{\partial a_1} z_2 \frac{\partial}{\partial z_1} a_1 \frac{\partial}{\partial \beta_1} z_1$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \frac{\partial}{\partial z_2} L \frac{\partial}{\partial a_1} z_2 \frac{\partial}{\partial z_1} a_1 \frac{\partial}{\partial \beta_1} z_1$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \left[\frac{\partial}{\partial z_1} L \right] \frac{\partial}{\partial \beta_1} z_1$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \left[\frac{\partial}{\partial z_1} L \right] \frac{\partial}{\partial \beta_1} (xW_1 + \beta_1)$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} L = \frac{\partial}{\partial z_1} L$$

$$\frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} = \frac{\partial}{\partial z_2} L$$

$$\Rightarrow \frac{\partial}{\partial z_1} L = \frac{\partial}{\partial \hat{y}} L \frac{\partial}{\partial z_2} \hat{y} \frac{\partial}{\partial a_1} z_2 \frac{\partial}{\partial z_1} a_1$$

$$= \frac{\partial}{\partial z_2} L \frac{\partial}{\partial a_1} z_2 \frac{\partial}{\partial z_1} a_1$$

$$= \left(\left[\frac{\partial}{\partial z_2} L \right] W_2^T \right) \odot \left[\frac{\partial}{\partial z_1} f_1(z_1) \right]$$

Derivative of the cost over m observations:

$$\Rightarrow \frac{\partial}{\partial \beta_1} cost = \frac{1}{m} \sum_{1=1}^{m} \frac{\partial}{\partial z_1} L$$

Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n}\sum_{i=1}^{n} \left[y_i \log_e \hat{y}_i + (1 - y_i) \log_e (1 - \hat{y}_i) \right]$$

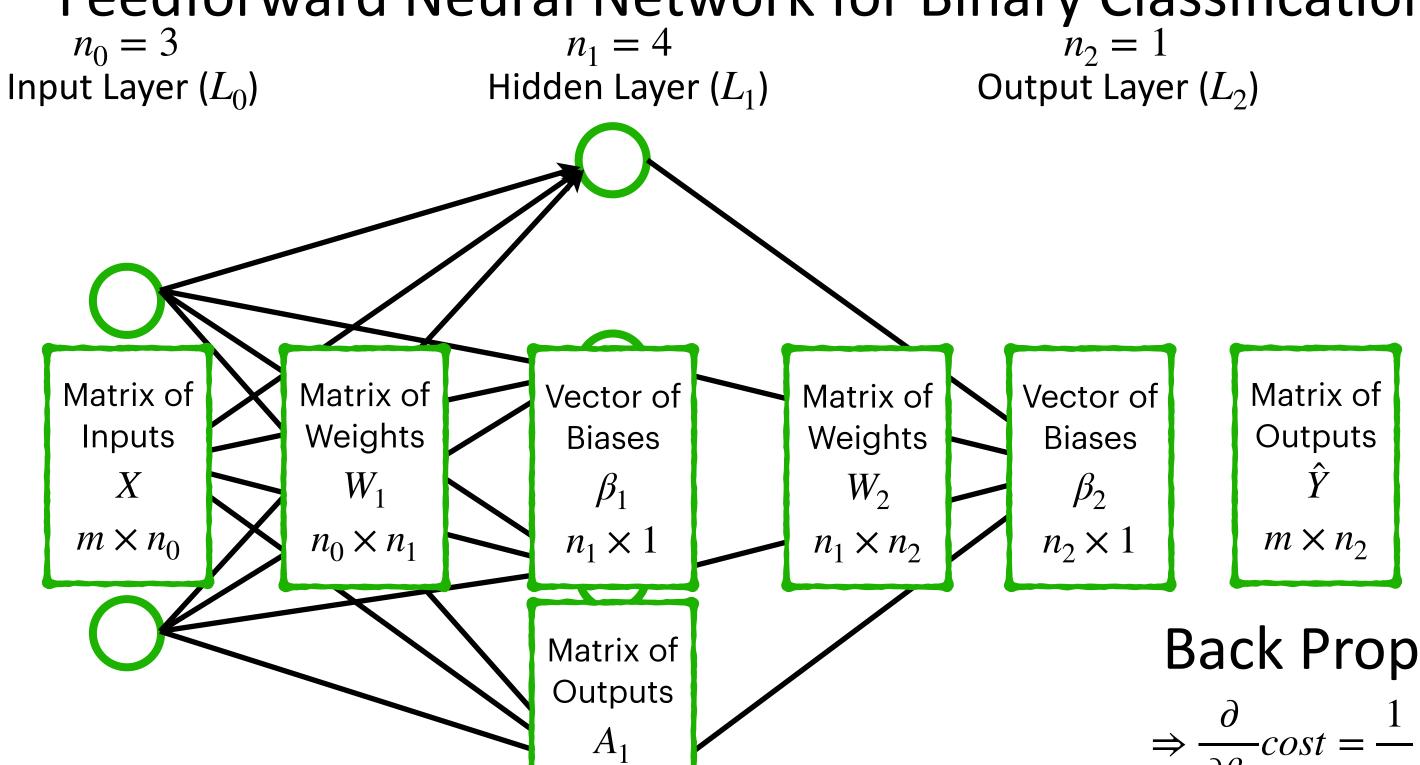
Loss function:

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

$$\hat{y} = f_2(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{\partial}{\partial z_1} L \text{ is a } n_1 \times 1 \text{ vector}$$

$$\frac{1}{m} \sum_{1=1}^{m} \frac{\partial}{\partial z_1} L \text{ is an } n_1 \times 1 \text{ vector}$$



Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n}\sum_{i=1}^{n} [y \log_{e} \hat{y} + (1-y) \log_{e} (1-\hat{y})]$$

Loss function:

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

Sigmoid Activation function

$$\hat{y} = f_2(x) = \frac{1}{1 + e^{-x}}$$

Back Propagation (Summary):

$$\Rightarrow \frac{\partial}{\partial \beta_2} cost = \frac{1}{m} \sum_{i=1}^{m} (\hat{Y} - Y)$$

$$\Rightarrow \frac{\partial}{\partial W_2} cost = \frac{1}{m} A_1^T (\hat{Y} - Y)$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_i} L$$

$$\Rightarrow \frac{\partial}{\partial W_1} cost = \frac{1}{m} X^T \left[\frac{\partial}{\partial Z_1} cost \right]$$

$$\Rightarrow \frac{\partial}{\partial \beta_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} (\hat{Y} - Y)$$

$$\Rightarrow \frac{\partial}{\partial \beta_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} (\hat{Y} - Y)$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} A_{1}^{T} (\hat{Y} - Y)$$

$$\Rightarrow \frac{\partial}{\partial \beta_{1}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} L$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} L$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} L$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} L$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} L$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} L$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} L$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial z_{1}} cost$$

 $m \times n_1$

Back Propagation (Summary for a 3 layer network):

$$\Rightarrow \frac{\partial}{\partial Z_2} cost = dZ_2 = \hat{Y} - Y$$

$$\Rightarrow \frac{\partial}{\partial \beta_2} cost = dB_2 = \frac{1}{m} \sum_{i=1}^{m} dZ_2$$

$$\Rightarrow \frac{\partial}{\partial W_2} cost = dW_2 = \frac{1}{m} A_1^T dZ_2$$

$$\beta_{2} = \beta_{2} - learning_rate \times \frac{\partial}{\partial \beta_{2}} cost$$

$$W_{2} = W_{2} - learning_rate \times \frac{\partial}{\partial W_{2}} cost$$

$$D_{3} = \beta_{1} - learning_rate \times \frac{\partial}{\partial \beta_{1}} cost$$

$$W_{4} = W_{1} - learning_rate \times \frac{\partial}{\partial \beta_{1}} cost$$

$$W_{5} = f_{2}(x) = \frac{1}{1 + e^{-x}}$$

$$\hat{y} = f_{2}(x) = \frac{1}{1 + e^{-x}}$$

Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n}\sum_{i=1}^{n} [y \log_{e} \hat{y} + (1 - y) \log_{e} (1 - \hat{y})]$$

Loss function:

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

Sigmoid Activation function

$$\hat{y} = f_2(x) = \frac{1}{1 + e^{-x}}$$

$$\Rightarrow \frac{\partial}{\partial \beta_1} cost = dB_1 = \frac{1}{m} \sum_{1=1}^m dZ_1$$

 $\Rightarrow \frac{\partial}{\partial W_1} cost = dW_1 = \frac{1}{m} X^T dZ_1$

 $\Rightarrow \frac{\partial}{\partial Z_1} cost = dZ_1 = \left(dZ_2 W_2^T \right) \odot \left| \frac{\partial}{\partial Z_1} f_1(Z_1) \right|$

Back Propagation (Summary for a 4 layer network):

$$\Rightarrow \frac{\partial}{\partial Z_{3}} cost = dZ_{3} = \hat{Y} - Y$$

$$\Rightarrow \frac{\partial}{\partial \beta_{3}} cost = dB_{3} = \frac{1}{m} \sum_{i=1}^{m} dZ_{3}$$

$$\Rightarrow \frac{\partial}{\partial W_{3}} cost = dW_{3} = \frac{1}{m} A_{2}^{T} dZ_{3}$$

$$\Rightarrow \frac{\partial}{\partial Z_{2}} cost = dZ_{2} = (dZ_{3} W_{3}^{T}) \odot \left[\frac{\partial}{\partial Z_{2}} f_{2}(Z_{2}) \right]$$

$$\Rightarrow \frac{\partial}{\partial W_{2}} cost = dW_{2} = \frac{1}{m} A_{1}^{T} dZ_{2}$$

$$\Rightarrow \frac{\partial}{\partial \beta_{2}} cost = dB_{2} = \frac{1}{m} \sum_{i=1}^{m} dZ_{2}$$

$$\Rightarrow \frac{\partial}{\partial Z_{1}} cost = dZ_{1} = (dZ_{2} W_{2}^{T}) \odot \left[\frac{\partial}{\partial Z_{1}} f_{1}(Z_{1}) \right]$$

$$\Rightarrow \frac{\partial}{\partial W_{1}} cost = dW_{1} = \frac{1}{m} X^{T} dZ_{1}$$

$$\Rightarrow \frac{\partial}{\partial \beta_{1}} cost = dB_{1} = \frac{1}{m} \sum_{i=1}^{m} dZ_{1}$$

$$\beta_{3} = \beta_{3} - learning_rate \times \frac{\partial}{\partial \beta_{3}} cost$$

$$W_{3} = W_{3} - learning_rate \times \frac{\partial}{\partial W_{3}} cost$$

$$\beta_{2} = \beta_{2} - learning_rate \times \frac{\partial}{\partial \beta_{2}} cost$$

$$W_{2} = W_{2} - learning_rate \times \frac{\partial}{\partial W_{2}} cost$$

$$\beta_{1} = \beta_{1} - learning_rate \times \frac{\partial}{\partial \beta_{1}} cost$$

$$W_{1} = W_{1} - learning_rate \times \frac{\partial}{\partial W_{1}} cost$$

Neural Networks

Cost function is the **Binary Cross Entropy**:

$$-\frac{1}{n}\sum_{i=1}^{n} [y \log_{e} \hat{y} + (1 - y) \log_{e} (1 - \hat{y})]$$

Loss function:

$$L = -[y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})]$$

$$\hat{y} = f_2(x) = \frac{1}{1 + e^{-x}}$$

Related Tutorials & Textbooks

Neural Networks

An introduction to Neural Networks starting from a foundation of linear regression, logistic classification and multi class classification models along with the matrix representation of a neural network generalized to I layers with n neurons

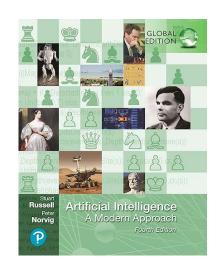
Forward and Back Propagation in Neural Networks

A deep dive into how Neural Networks are trained using Gradient Descent. Output predictions, are compared to observations to calculate loss and Backward propagation then computes gradients by working backward through the network

Gradient Descent for Multiple Regression

Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear model in multiple dimensions.

Recommended Textbooks



<u>Artificial Intelligence: A Modern Approach</u>

by Peter Norvig, Stuart Russell

For a complete list of tutorials see:

https://arrsingh.com/ai-tutorials