Neural Networks

Activation & Cost Functions

Rahul Singh
rsingh@arrsingh.com

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks
j\/ — ﬁ + Wlx

W ~
O O y
This is the simplest possible neural network

Multiply the input (x) with the Weight (w)
and add the Bias (/%) to compute the output (y)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

With multiple layers, the output at each
Layer is the input to the next layer

Zl — ﬁl + Wlx
Zp = Pp +wWhz

Multiply the input (x) with the Weight (w) Z3 — ﬁ3 + W3Z2
and add the Bias (/%) to compute the output (y) AN
Y = Py Wiz

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) 3

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

However, adding multiple layers has no effect if
we simply compute the linear combination of
variables and weights at each layer

All the layers can be reduced to a single linear
transformation
O e O O O
Zl — ﬂl + Wlx

Zp = Pp +wWhz

Multiply the input (x) with the Weight (w) {3 — ﬁ3 + WadH
and add the Bias (/%) to compute the output (y) AN
V= Py +wyzs

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 4

With multiple layers, the output at each
Layer is the input to the next layer

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

These two neural networks are equivalent Neural Networks
O O (% (% y
<1 = 'Bl T WX All the layers can be reduced to a single linear
{y = ﬁz + WhZ transformation

Z3 = Pz + w3
y = Py + wyzs

(——(s A
’ W5 = WiWoW3Wy
E— WeX
y = Ps+ ws Ps = Py + WPz + WwsDr + Wwaw,

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) >

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

These two neural networks are equivalent Neural Networks
Wi Wo Wi Wy N
O O (% (% y
<1 = 'Bl T WX All the layers can be reduced to a single linear
{n = ,52 + WhZ transformation

z3 = P53+ W32
Y = Pyt wyzs

Simple Linear transformations can only fit

simple lines and planes to data.
(lines in 2D, planes in 3D and hyper planes in higher dimensions)

(O——(A
’ W5 = WiWoW3Wy
V— WX
y = pPs+ ws Ps = Py + wWyps + wwspr, + wawsw,

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 6

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

To enable Neural Networks to learn complex
patterns we have to introduce non - linearity

We need an activation function on each neuron...

Activation functions introduce non-linearity by converting the linear

combinations of inputs into non-linear outputs.

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 7

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

A Simple Three Layer Neural Network Neural Networks

al e y

Rather than simply multiplying the output
at each layer and adding the bias, we first

Input Layer (L) Hidden Layer (L) Output Layer (L,) Nass the input to an activation funcﬁonf

71 = x w1 + P

a; = f(z1)
L =aw, + b,
y =1(2)

(x) is the activation function

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) 8

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

A Simple Three Layer Neural Network

w w

Input Layer (L) Hidden Layer (L) Output Layer (L,)

71 = x w1 + P

a; = f(z1)
L =aw, + b,
y =1(2)

(x) is the activation function

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/)

Neural Networks

Rather than simply multiplying the output
at each layer and adding the bias, we first

pass the input to an activation function f

Every neuron has its own activation
function, however all neurons in a given
layer have the same activation function

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

Lets go through the most common activation functions

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 10

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

Linear Activation Function

flx) = x

The Linear function (also known as the identity
function) doesn’t transform the input. Its
equivalent to having no activation.

Commonly used in Linear Regression
(as we've seen in the previous slides)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 11

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

Sigmoid Activation Function

()_;
Jx) ==

+ e

The Logistic function transforms the input to a
range between 0 and 1.

Commonly used in the output layer for binary
classification (also used in Logistic Regression)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 12

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

RelLU Activation Function
Rectified Linear Unit

f(x) = max(0,x)

The ReLU function returns O if x < 0 and
X otherwise. Transforms the input to a

range between O and oo

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) 13

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

Leaky RelLU Activation Function
Leaky Rectified Linear Unit

fx fx>0
Jx) = ax, ifx < 0

The Leaky ReLU function returns ax (instead of 0)
if Xx < 0 which provides a small slope for negative

values of x. Returns x for positive values of x

Helps provide a small gradient for negative values of x, which helps solve for the
Dying ReLU problem where the gradient falls to zero and the neuron doesn’t
activate anymore and back propagation fails to update gradients any more.

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) 14

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

First derivative of tanh(x)

Tanh Activation Function
Hyperbolic Tangent

f(x) = tanh(x) = ﬁ — 1

0
—tanh(x) = 1 — tanh*(x)
ox

The Logistic function transforms the
input to a range between -1 and +1.

Commonly used in the hidden layers
given its zero centered output, which
makes mapping the output to strong
negative, neutral or strong positive

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) 15

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

The softmax function converts a tuple of K real
numbers into a probability distribution over K

Softmax Activation Function

K is the total number of classes
Z; is the output for the i™ class
e% is the exponent of the i output

K
) e¥is the sum of the exponents —

j=1

All outputs are between 0 and 1 Typically used in the output layers for
and sum to 1.0 multi class classification

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 16

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

Given a Neural Network with 3 output neurons
for multi class classification (i.e. 3 classes)

Softmax Activation Function
el

Nz) = A
> e
j=1

K is the total number of classes
Z; is the output for the i™ class
e% is the exponent of the i output

K
Z e is the sum of the exponents

j=1

All outputs are between O and 1
and sum to 1.0

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) 17

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Softmax Activation Function

K is the total number of classes
Z; is the output for the i™ class
e% is the exponent of the i output

K
Z e is the sum of the exponents

j=1

All outputs are between O and 1
and sum to 1.0

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/)

Neural Networks

Given a Neural Network with 3 output neurons
for multi class classification (i.e. 3 classes

21> 2y, 23 are the raw values from the outputs

17

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

Softmax Acﬁvaﬁonzfuncﬁon Given a Neural Network with 3 output neurons
€ for multi class classification (i.e. 3 classes

f(Zi) — K 21> 2y, 23 are the raw values from the outputs
2 €9
j=1

K is the total number of classes
Z; is the output for the i™ class
e% is the exponent of the i output

%75

Compute e for each z

Compute the Sum of the

K exponents:
Z e is the sum of the exponents K

i1 2 = el + 2 + €3

All outputs are between 0 and 1 /=1 . c
nd sum to 1.0 Softmax: Divide each e~ by 2

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) .]_ 1 17

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

Softmax Acﬁvaﬁonzfuncﬁon Given a Neural Network with 3 output neurons
€ for multi class classification (i.e. 3 classes

f(Zi) K 21> 2y, 23 are the raw values from the outputs

E eZ] - _
: 1 C) 21 el 4+ %2 4 e*3
J= O—» =12 softmax(Z) = | —— sz e
K is the total number of classes O 33 o3
ell + e%2 4 23

Z; is the output for the i class

. <
e% is the exponent of the i output Compute e* for each z,

Compute the Sum of the

K exponents:
Z e is the sum of the exponents K

i Z = el + e+ e

All outputs are between 0 and 1 /=1 . c
nd sum to 1.0 Softmax: Divide each e~ by 2

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) .]_ 1 17

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

Softplus Activation Function

Jfx) = log,(1 +¢e7)

The Softplus function transforms the input to a

range between O and 0o. The output is always
positive and differentiable at all points

(unlike ReLU which is not differentiable at x = ()

Softmax is typically used in hidden layers and avoids the hard transition of ReLU (at x = 0)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) 18

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

Swish Activation Function

f(x) = T o

Continuous and differentiable
at every point. Transforms the

input to a range between ()
and o0.

Swish is typically used in hidden layers and also avoids the hard transition of ReLU (at x = 0)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) 19

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

In addition to activation functions we also need a cost function

Different types of problems, require different cost functions:

Lets look at the different types of problems and the cost functions for each

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 20

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Neural Networks

Linear Regression

Neural networks used for regression, predict continuous values and have one neuron
in the output layer for each continuous value being predicted

Cost function is the Mean Squared Error (MSE):

1 Sometimes Mean Absolute
— ” Y — Xﬁ ”2 Error is also used
n

For more details see the tutorial on
Multiple Regression

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

1
—|l Y =X/ |
n

21

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://cdn.arrsingh.com/ai-tutorials/12-multiple-regression.pdf
https://cdn.arrsingh.com/ai-tutorials/12-multiple-regression.pdf

Neural Networks

Binary Classification

Neural networks used for binary classification, predict one of two discrete values and
have one neuron in the output layer with a sigmoid activation function

Cost function is the Binary Cross Entropy:

] ¢))
— Z ylog,y + (1 —y)log,(1—=Y)
=1

For more details see the tutorial on
Logistic Regression

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons .org/licenses /by-nc-sa /4.0/) 22

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

| L Neural Networks
Multi - Class Classification

Neural networks used for multi class classification, predict one of several classes and
have one neuron in the output layer for each class

Cost function is the Categorical Cross Entropy:

Softmax is typically used as the

] R activation function in the
_Z Z 2 Yij tO8eYis output layer

i=1 j=1

y;i is the observed label in the one hot representation of the j™ class in the target vector for the i” observation

y;; is the predicted probability for the j™ class for the i observation

m is the total number of observations
K is the total number of classes

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 23

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

| L Neural Networks
Multi - Class Classification

Neural networks used for multi class classification, predict one of several classes and
have one neuron in the output layer for each class :

Cost function is the Categorical Cross Entropy: O
A Z 2 le lOgeylj O] 0.1 0x log(0.1)
& =1 j=I1 Y = [1] Y= 10.65| ylog(y) = |1x1log(0.65)
0 0.3 0xlog(0.3)

Negate and average over m samples

y;i is the observed label in the one hot esentation of the j class in the target vector for the i” observation

y;; is the predicted probability for the j™ class for pservation
m is the total number of observations

Note: log of a number between O and 1 is a negative
K is the total number of classes number so we negate to ensure that loss is positive.

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 24

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

| L Neural Networks
Multi - Class Classification

Neural networks used for multi class classification, predict one of several classes and
have one neuron in the output layer for each class -
() el + e*2 4+ e*3

Cost function is the Categorical Cross Entropy: O P = softmax(Z) = 62

el 4+ e*2 4+ e*3

1 m K O_’ il 4 ¢22 4 ¢33
Am Z 2 Vijlogeyy; H - o1 0 % l0g(0.1)”
Y = Y

i=1 j=1] 0.65| yog(31) = |1 Xx10g(0.65)
0 0.3 0xlog(0.3)

Negate and average over m samples

y;i is the observed label in the one hot esentation of the j class in the target vector for the i” observation

y;; is the predicted probability for the j™ class for pservation
m is the total number of observations

Note: log of a number between O and 1 is a negative
K is the total number of classes number so we negate to ensure that loss is positive.

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 24

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Related Tutorials & Textbooks

Neural Networks 7

An introduction to Neural Networks starting from a foundation of linear regression, logistic classification and multi class
classification models along with the matrix representation of a neural network generalized to / layers with n neurons

Forward and Back Propagation in Neural Networks CJ

A deep dive into how Neural Networks are trained using Gradient Descent. Output predictions, are compared to observations to
calculate loss and Backward propagation then computes gradients by working backward through the network

Gradient Descent for Multiple Regression €7

Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear
model in multiple dimensions.

Recommended Textbooks

Artificial Intelligence: A Modern Approach

by Peter Norvig, Stuart Russell

For a complete list of tutorials see:
https://arrsingh.com/ai-tutorials

Sturt [SSINSSEES
Russell BArtiTicialintelligence
i AWleelagn A oreric)
FoUrthiEGition)

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 25

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://arrsingh.com/ai-tutorials
https://cdn.arrsingh.com/ai-tutorials/40-neural-networks.pdf
https://cdn.arrsingh.com/21-gradient-descent-multiple-regression.pdf
https://www.amazon.com/Artificial-Intelligence-Modern-Approach-Global/dp/1292401133/145-7835510-0841302?pd_rd_w=iH9vD&content-id=amzn1.sym.4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_p=4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_r=HSCJ76PVENF07RXN137F&pd_rd_wg=8U3PC&pd_rd_r=1c660f60-a0d2-443c-b802-7f2e0720c983&pd_rd_i=1292401133&psc=1&linkCode=ll1&tag=arrsingh-20&linkId=213326aa44c97c9f0b4240fe1e56d1a2&language=en_US&ref_=as_li_ss_tl
https://cdn.arrsingh.com/ai-tutorials/41-forward-back-propagation-neural-networks.pdf

