
Rahul Singh	
rsingh@arrsingh.com

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Neural Networks

1

Activation & Cost Functions

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 2

̂y = β + w1x

x ̂yw1 β

This is the simplest possible neural network

Neural Networks

Multiply the input () with the Weight ()
and add the Bias () to compute the output ()

x w1
β ̂y

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 3

Multiply the input () with the Weight ()
and add the Bias () to compute the output ()

x w1
β ̂y

With multiple layers, the output at each
Layer is the input to the next layer

Neural Networks

x ̂yw1 β1 β2 β3
w2 w3 w4

z1 = β1 + w1x
z2 = β2 + w2z1
z3 = β3 + w3z2

̂y = β4 + w4z3

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 4

Multiply the input () with the Weight ()
and add the Bias () to compute the output ()

x w1
β ̂y

With multiple layers, the output at each
Layer is the input to the next layer

Neural Networks

x ̂yw1 β1 β2 β3
w2 w3 w4

z1 = β1 + w1x
z2 = β2 + w2z1
z3 = β3 + w3z2

̂y = β4 + w4z3

However, adding multiple layers has no effect if
we simply compute the linear combination of
variables and weights at each layer

All the layers can be reduced to a single linear
transformation

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 5

Neural Networks

x ̂yw1 β1 β2 β3
w2 w3 w4

z1 = β1 + w1x
z2 = β2 + w2z1

z3 = β3 + w3z2

̂y = β4 + w4z3

x ̂yw5 β5

̂y = β5 + w5x

These two neural networks are equivalent

w5 = w1w2w3w4

β5 = β4 + w4β3 + w4w3β2 + w4w3w2β1

All the layers can be reduced to a single linear
transformation

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 6

Neural Networks

x ̂yw1 β1 β2 β3
w2 w3 w4

z1 = β1 + w1x
z2 = β2 + w2z1

z3 = β3 + w3z2

̂y = β4 + w4z3

x ̂yw5 β5

̂y = β5 + w5x

These two neural networks are equivalent

w5 = w1w2w3w4

β5 = β4 + w4β3 + w4w3β2 + w4w3w2β1

All the layers can be reduced to a single linear
transformation

Simple Linear transformations can only fit
simple lines and planes to data.	
(lines in 2D, planes in 3D and hyper planes in higher dimensions)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 7

Neural Networks

To enable Neural Networks to learn complex
patterns we have to introduce non - linearity

Activation functions introduce non-linearity by converting the linear
combinations of inputs into non-linear outputs.

We need an activation function on each neuron…

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 8

̂yw1x1

A Simple Three Layer Neural Network

w2

 is the activation functionf(x)

Input Layer ()L0 Output Layer ()L2Hidden Layer ()L1

n0 = 1 n1 = 1 n2 = 1

β1 β2a1

Neural Networks

Rather than simply multiplying the output
at each layer and adding the bias, we first
pass the input to an activation function f

̂y = f(z2)

z1 = x11w1 + β1
a1 = f(z1)
z2 = a1w2 + β2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 9

̂yw1x1

A Simple Three Layer Neural Network

w2

 is the activation functionf(x)

Input Layer ()L0 Output Layer ()L2Hidden Layer ()L1

n0 = 1 n1 = 1 n2 = 1

β1 β2a1

Neural Networks

Rather than simply multiplying the output
at each layer and adding the bias, we first
pass the input to an activation function f

Every neuron has its own activation
function, however all neurons in a given
layer have the same activation function̂y = f(z2)

z1 = x11w1 + β1
a1 = f(z1)
z2 = a1w2 + β2

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 10

Neural Networks

Lets go through the most common activation functions

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 11

Neural NetworksLinear Activation Function

f(x) = x

The Linear function (also known as the identity
function) doesn’t transform the input. Its
equivalent to having no activation.

Commonly used in Linear Regression	
(as we’ve seen in the previous slides)

f(x) = x

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 12

Neural NetworksSigmoid Activation Function

f(x) =
1

1 + e−x

The Logistic function transforms the input to a
range between 0 and 1.

Commonly used in the output layer for binary
classification (also used in Logistic Regression)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 13

Neural NetworksReLU Activation Function	
Rectified Linear Unit

f(x) = max(0,x)

The ReLU function is typically used in hidden layers and is less computationally
expensive than other activation functions (sigmoid, tanh)

The ReLU function returns 0 if x < 0 and
x otherwise. Transforms the input to a
range between and 0 ∞

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 14

Neural NetworksLeaky ReLU Activation Function	
Leaky Rectified Linear Unit

f(x) = {x, if x > 0
αx, if x ≤ 0}

The Leaky ReLU function returns (instead of 0)
if x < 0 which provides a small slope for negative
values of . Returns for positive values of

αx

x x x

Helps provide a small gradient for negative values of , which helps solve for the
Dying ReLU problem where the gradient falls to zero and the neuron doesn’t
activate anymore and back propagation fails to update gradients any more.

x

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 15

Neural NetworksTanh Activation Function	
Hyperbolic Tangent

f(x) = tanh(x) =
2

1 + e−2x
− 1

The Logistic function transforms the
input to a range between -1 and +1.

Commonly used in the hidden layers
given its zero centered output, which
makes mapping the output to strong
negative, neutral or strong positive

∂
∂x

tanh(x) = 1 − tanh2(x)

First derivative of tanh(x)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 16

Neural Networks
Softmax Activation Function

f(zi) =
ezi

K
∑
j=1

ezj

 is the total number of classes	
 is the output for the class	
 is the exponent of the output	

	

 is the sum of the exponents

K
zi ith

ezi ith

K

∑
j=1

ezj

The softmax function converts a tuple of real
numbers into a probability distribution over K

K

Typically used in the output layers for
multi class classification

All outputs are between 0 and 1
and sum to 1.0

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 17

Neural Networks
Softmax Activation Function

f(zi) =
ezi

K
∑
j=1

ezj

 is the total number of classes	
 is the output for the class	
 is the exponent of the output	

	

 is the sum of the exponents

K
zi ith

ezi ith

K

∑
j=1

ezj

All outputs are between 0 and 1
and sum to 1.0

Given a Neural Network with 3 output neurons
for multi class classification (i.e. 3 classes)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 17

Neural Networks
Softmax Activation Function

f(zi) =
ezi

K
∑
j=1

ezj

 is the total number of classes	
 is the output for the class	
 is the exponent of the output	

	

 is the sum of the exponents

K
zi ith

ezi ith

K

∑
j=1

ezj

All outputs are between 0 and 1
and sum to 1.0

Given a Neural Network with 3 output neurons
for multi class classification (i.e. 3 classes)

 are the raw values from the outputs z1, z2, z3

Z = [
z1
z2
z3

]

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 17

Neural Networks
Softmax Activation Function

f(zi) =
ezi

K
∑
j=1

ezj

 is the total number of classes	
 is the output for the class	
 is the exponent of the output	

	

 is the sum of the exponents

K
zi ith

ezi ith

K

∑
j=1

ezj

All outputs are between 0 and 1
and sum to 1.0

Given a Neural Network with 3 output neurons
for multi class classification (i.e. 3 classes)

Compute for each ezi zi
Compute the Sum of the
exponents:	

K

∑
j=1

= ez1 + ez2 + ez3

Softmax: Divide each by ezi

K

∑
j=1

 are the raw values from the outputs z1, z2, z3

Z = [
z1
z2
z3

]

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 17

Neural Networks
Softmax Activation Function

f(zi) =
ezi

K
∑
j=1

ezj

 is the total number of classes	
 is the output for the class	
 is the exponent of the output	

	

 is the sum of the exponents

K
zi ith

ezi ith

K

∑
j=1

ezj

All outputs are between 0 and 1
and sum to 1.0

Given a Neural Network with 3 output neurons
for multi class classification (i.e. 3 classes)

Compute for each ezi zi
Compute the Sum of the
exponents:	

K

∑
j=1

= ez1 + ez2 + ez3

Softmax: Divide each by ezi

K

∑
j=1

 are the raw values from the outputs z1, z2, z3

Z = [
z1
z2
z3

] softmax(Z) =

ez1

ez1 + ez2 + ez3

ez2

ez1 + ez2 + ez3

ez3

ez1 + ez2 + ez3

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 18

Neural Networks
Softplus Activation Function

f(x) = loge(1 + ex)

The Softplus function transforms the input to a
range between and . The output is always
positive and differentiable at all points 	
(unlike ReLU which is not differentiable at)

0 ∞

x = 0

Softmax is typically used in hidden layers and avoids the hard transition of ReLU (at)x = 0

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 19

Neural Networks

f(x) =
x

1 + e−βx

Swish Activation Function

Continuous and differentiable
at every point. Transforms the
input to a range between
and .

0
∞

Swish is typically used in hidden layers and also avoids the hard transition of ReLU (at)x = 0

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 20

Neural Networks

In addition to activation functions we also need a cost function

Different types of problems, require different cost functions:

Lets look at the different types of problems and the cost functions for each

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 21

Neural Networks
Linear Regression

Neural networks used for regression, predict continuous values and have one neuron
in the output layer for each continuous value being predicted

Cost function is the Mean Squared Error (MSE):

1
n

∥ Y − Xβ ∥2
Sometimes Mean Absolute
Error is also used 	
	

 	
1
n

∥ Y − Xβ ∥

For more details see the tutorial on 	
Multiple Regression

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://cdn.arrsingh.com/ai-tutorials/12-multiple-regression.pdf
https://cdn.arrsingh.com/ai-tutorials/12-multiple-regression.pdf

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 22

Neural Networks
Binary Classification

Neural networks used for binary classification, predict one of two discrete values and
have one neuron in the output layer with a sigmoid activation function

Cost function is the Binary Cross Entropy:

For more details see the tutorial on 	
Logistic Regression

−
1
n

n

∑
i=1

y loge ̂y + (1 − y) loge(1 − ̂y)

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 23

Neural Networks
Multi - Class Classification

Neural networks used for multi class classification, predict one of several classes and
have one neuron in the output layer for each class

Cost function is the Categorical Cross Entropy:

−
1
m

m

∑
i=1

K

∑
j=1

yij loge ̂yij

Softmax is typically used as the
activation function in the
output layer

 is the observed label in the one hot representation of the class in the target vector for the observation 	

 is the predicted probability for the class for the observation 	

 is the total number of observations	
 is the total number of classes

yij jth ith

̂yij jth ith

m
K

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

 is the observed label in the one hot representation of the class in the target vector for the observation 	

 is the predicted probability for the class for the observation 	

 is the total number of observations	
 is the total number of classes

yij jth ith

̂yij jth ith

m
K

24

Neural Networks
Multi - Class Classification

Neural networks used for multi class classification, predict one of several classes and
have one neuron in the output layer for each class

Cost function is the Categorical Cross Entropy:

̂Y =
0.1

0.65
0.3

Y = [
0
1
0] y1jlog(̂y1j) =

0 × log(0.1)
1 × log(0.65)
0 × log(0.3)

Negate and average over samplesm

−
1
m

m

∑
i=1

K

∑
j=1

yij loge ̂yij

Note: log of a number between and is a negative
number so we negate to ensure that loss is positive.

0 1

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

 is the observed label in the one hot representation of the class in the target vector for the observation 	

 is the predicted probability for the class for the observation 	

 is the total number of observations	
 is the total number of classes

yij jth ith

̂yij jth ith

m
K

24

Neural Networks
Multi - Class Classification

Neural networks used for multi class classification, predict one of several classes and
have one neuron in the output layer for each class

Cost function is the Categorical Cross Entropy: ̂Y = softmax(Z) =

ez1

ez1 + ez2 + ez3

ez2

ez1 + ez2 + ez3

ez3

ez1 + ez2 + ez3

̂Y =
0.1

0.65
0.3

Y = [
0
1
0] y1jlog(̂y1j) =

0 × log(0.1)
1 × log(0.65)
0 × log(0.3)

Negate and average over samplesm

−
1
m

m

∑
i=1

K

∑
j=1

yij loge ̂yij

Note: log of a number between and is a negative
number so we negate to ensure that loss is positive.

0 1

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) 25

Related Tutorials & Textbooks

For a complete list of tutorials see:	
https://arrsingh.com/ai-tutorials

Neural Networks
An introduction to Neural Networks starting from a foundation of linear regression, logistic classification and multi class
classification models along with the matrix representation of a neural network generalized to l layers with n neurons

Gradient Descent for Multiple Regression
Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear
model in multiple dimensions.

Recommended Textbooks

Artificial Intelligence: A Modern Approach	
by Peter Norvig, Stuart Russell	

Forward and Back Propagation in Neural Networks
A deep dive into how Neural Networks are trained using Gradient Descent. Output predictions, are compared to observations to
calculate loss and Backward propagation then computes gradients by working backward through the network

https://arrsingh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://arrsingh.com/ai-tutorials
https://cdn.arrsingh.com/ai-tutorials/40-neural-networks.pdf
https://cdn.arrsingh.com/21-gradient-descent-multiple-regression.pdf
https://www.amazon.com/Artificial-Intelligence-Modern-Approach-Global/dp/1292401133/145-7835510-0841302?pd_rd_w=iH9vD&content-id=amzn1.sym.4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_p=4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_r=HSCJ76PVENF07RXN137F&pd_rd_wg=8U3PC&pd_rd_r=1c660f60-a0d2-443c-b802-7f2e0720c983&pd_rd_i=1292401133&psc=1&linkCode=ll1&tag=arrsingh-20&linkId=213326aa44c97c9f0b4240fe1e56d1a2&language=en_US&ref_=as_li_ss_tl
https://cdn.arrsingh.com/ai-tutorials/41-forward-back-propagation-neural-networks.pdf

