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̂y = β + w1x

x ̂yw1 β

This is the simplest possible neural network

Neural Networks

Multiply the input ( ) with the Weight ( ) 
and add the Bias ( ) to compute the output ( )

x w1
β ̂y
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Multiply the input ( ) with the Weight ( ) 
and add the Bias ( ) to compute the output ( )

x w1
β ̂y

With multiple layers, the output at each 
Layer is the input to the next layer

Neural Networks

x ̂yw1 β1 β2 β3
w2 w3 w4

z1 = β1 + w1x
z2 = β2 + w2z1
z3 = β3 + w3z2

̂y = β4 + w4z3
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Multiply the input ( ) with the Weight ( ) 
and add the Bias ( ) to compute the output ( )

x w1
β ̂y

With multiple layers, the output at each 
Layer is the input to the next layer

Neural Networks

x ̂yw1 β1 β2 β3
w2 w3 w4

z1 = β1 + w1x
z2 = β2 + w2z1
z3 = β3 + w3z2

̂y = β4 + w4z3

However, adding multiple layers has no effect if 
we simply compute the linear combination of 
variables and weights at each layer

All the layers can be reduced to a single linear 
transformation 
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Neural Networks

x ̂yw1 β1 β2 β3
w2 w3 w4

z1 = β1 + w1x
z2 = β2 + w2z1

z3 = β3 + w3z2

̂y = β4 + w4z3

x ̂yw5 β5

̂y = β5 + w5x

These two neural networks are equivalent 

w5 = w1w2w3w4

β5 = β4 + w4β3 + w4w3β2 + w4w3w2β1

All the layers can be reduced to a single linear 
transformation 
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Neural Networks

x ̂yw1 β1 β2 β3
w2 w3 w4

z1 = β1 + w1x
z2 = β2 + w2z1

z3 = β3 + w3z2

̂y = β4 + w4z3

x ̂yw5 β5

̂y = β5 + w5x

These two neural networks are equivalent 

w5 = w1w2w3w4

β5 = β4 + w4β3 + w4w3β2 + w4w3w2β1

All the layers can be reduced to a single linear 
transformation 

Simple Linear transformations can only fit 
simple lines and planes to data.	
(lines in 2D, planes in 3D and hyper planes in higher dimensions)
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Neural Networks

To enable Neural Networks to learn complex 
patterns we have to introduce non - linearity

Activation functions introduce non-linearity by converting the linear 
combinations of inputs into non-linear outputs.

We need an activation function on each neuron…
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̂yw1x1

A Simple Three Layer Neural Network

w2

 is the activation functionf(x)

Input Layer ( )L0 Output Layer ( )L2Hidden Layer ( )L1

n0 = 1 n1 = 1 n2 = 1

β1 β2a1

Neural Networks

Rather than simply multiplying the output 
at each layer and adding the bias, we first 
pass the input to an activation function f

̂y = f(z2)

z1 = x11w1 + β1
a1 = f(z1)
z2 = a1w2 + β2
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̂yw1x1

A Simple Three Layer Neural Network

w2

 is the activation functionf(x)

Input Layer ( )L0 Output Layer ( )L2Hidden Layer ( )L1

n0 = 1 n1 = 1 n2 = 1

β1 β2a1

Neural Networks

Rather than simply multiplying the output 
at each layer and adding the bias, we first 
pass the input to an activation function f

Every neuron has its own activation 
function, however all neurons in a given 
layer have the same activation function̂y = f(z2)

z1 = x11w1 + β1
a1 = f(z1)
z2 = a1w2 + β2
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Neural Networks

Lets go through the most common activation functions
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Neural NetworksLinear Activation Function

f(x) = x

The Linear function (also known as the identity 
function) doesn’t transform the input. Its 
equivalent to having no activation.

Commonly used in Linear Regression	
(as we’ve seen in the previous slides)

f(x) = x
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Neural NetworksSigmoid Activation Function

f(x) =
1

1 + e−x

The Logistic function transforms the input to a 
range between 0 and 1.

Commonly used in the output layer for binary 
classification (also used in Logistic Regression)
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Neural NetworksReLU Activation Function	
Rectified Linear Unit

f(x) = max(0,x)

The ReLU function is typically used in hidden layers and is less computationally 
expensive than other activation functions (sigmoid, tanh)

The ReLU function returns 0 if x < 0 and 
x otherwise. Transforms the input to a 
range between  and 0 ∞
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Neural NetworksLeaky ReLU Activation Function	
Leaky Rectified Linear Unit

f(x) = {x, if x > 0
αx, if x ≤ 0}

The Leaky ReLU function returns  (instead of 0) 
if x < 0 which provides a small slope for negative 
values of . Returns  for positive values of 

αx

x x x

Helps provide a small gradient for negative values of , which helps solve for the 
Dying ReLU problem where the gradient falls to zero and the neuron doesn’t 
activate anymore and back propagation fails to update gradients any more.

x
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Neural NetworksTanh Activation Function	
Hyperbolic Tangent 

f(x) = tanh(x) =
2

1 + e−2x
− 1

The Logistic function transforms the 
input to a range between -1 and +1.

Commonly used in the hidden layers 
given its zero centered output, which 
makes mapping the output to strong 
negative, neutral or strong positive

∂
∂x

tanh(x) = 1 − tanh2(x)

First derivative of tanh(x)
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Neural Networks
Softmax Activation Function

f(zi) =
ezi

K
∑
j=1

ezj

 is the total number of classes	
 is the output for the  class	
 is the exponent of the  output	

	

 is the sum of the exponents

K
zi ith

ezi ith

K

∑
j=1

ezj

The softmax function converts a tuple of  real 
numbers into a probability distribution over K

K

Typically used in the output layers for 
multi class classification 

All outputs are between 0 and 1 
and sum to 1.0
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Neural Networks
Softmax Activation Function

f(zi) =
ezi

K
∑
j=1

ezj

 is the total number of classes	
 is the output for the  class	
 is the exponent of the  output	

	

 is the sum of the exponents

K
zi ith

ezi ith

K

∑
j=1

ezj

All outputs are between 0 and 1 
and sum to 1.0

Given a Neural Network with 3 output neurons 
for multi class classification (i.e. 3 classes)
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Neural Networks
Softmax Activation Function

f(zi) =
ezi

K
∑
j=1

ezj

 is the total number of classes	
 is the output for the  class	
 is the exponent of the  output	

	

 is the sum of the exponents

K
zi ith

ezi ith

K

∑
j=1

ezj

All outputs are between 0 and 1 
and sum to 1.0

Given a Neural Network with 3 output neurons 
for multi class classification (i.e. 3 classes)

 are the raw values from the outputs z1, z2, z3

Z = [
z1
z2
z3

]
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Neural Networks
Softmax Activation Function

f(zi) =
ezi

K
∑
j=1

ezj

 is the total number of classes	
 is the output for the  class	
 is the exponent of the  output	

	

 is the sum of the exponents

K
zi ith

ezi ith

K

∑
j=1

ezj

All outputs are between 0 and 1 
and sum to 1.0

Given a Neural Network with 3 output neurons 
for multi class classification (i.e. 3 classes)

Compute  for each ezi zi
Compute the Sum of the 
exponents:	

K

∑
j=1

= ez1 + ez2 + ez3

Softmax: Divide each  by  ezi

K

∑
j=1

 are the raw values from the outputs z1, z2, z3

Z = [
z1
z2
z3

]
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Neural Networks
Softmax Activation Function

f(zi) =
ezi

K
∑
j=1

ezj

 is the total number of classes	
 is the output for the  class	
 is the exponent of the  output	

	

 is the sum of the exponents

K
zi ith

ezi ith

K

∑
j=1

ezj

All outputs are between 0 and 1 
and sum to 1.0

Given a Neural Network with 3 output neurons 
for multi class classification (i.e. 3 classes)

Compute  for each ezi zi
Compute the Sum of the 
exponents:	

K

∑
j=1

= ez1 + ez2 + ez3

Softmax: Divide each  by  ezi

K

∑
j=1

 are the raw values from the outputs z1, z2, z3

Z = [
z1
z2
z3

] softmax(Z) =

ez1

ez1 + ez2 + ez3

ez2

ez1 + ez2 + ez3

ez3

ez1 + ez2 + ez3
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Neural Networks
Softplus Activation Function

f(x) = loge(1 + ex)

The Softplus function transforms the input to a 
range between  and . The output is always 
positive and differentiable at all points 	
(unlike ReLU which is not differentiable at )

0 ∞

x = 0

Softmax is typically used in hidden layers and avoids the hard transition of ReLU (at )x = 0
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Neural Networks

f(x) =
x

1 + e−βx

Swish Activation Function

Continuous and differentiable 
at every point. Transforms the 
input to a range between  
and . 

0
∞

Swish is typically used in hidden layers and also avoids the hard transition of ReLU (at )x = 0
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Neural Networks

In addition to activation functions we also need a cost function

Different types of problems, require different cost functions:

Lets look at the different types of problems and the cost functions for each
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Neural Networks
Linear Regression

Neural networks used for regression, predict continuous values and have one neuron 
in the output layer for each continuous value being predicted 

Cost function is the Mean Squared Error (MSE):

1
n

∥ Y − Xβ ∥2
Sometimes Mean Absolute 
Error is also used 	
	

          	
1
n

∥ Y − Xβ ∥

For more details see the tutorial on 	
Multiple Regression
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Neural Networks
Binary Classification 

Neural networks used for binary classification, predict one of two discrete values and 
have one neuron in the output layer with a sigmoid activation function

Cost function is the Binary Cross Entropy:

For more details see the tutorial on 	
Logistic Regression

−
1
n

n

∑
i=1

y loge ̂y + (1 − y) loge(1 − ̂y)
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Neural Networks
Multi - Class Classification 

Neural networks used for multi class classification, predict one of several classes and 
have one neuron in the output layer for each class

Cost function is the Categorical Cross Entropy:

−
1
m

m

∑
i=1

K

∑
j=1

yij loge ̂yij

Softmax is typically used as the 
activation function in the 
output layer

 is the observed label in the one hot representation of the  class in the target vector for the  observation 	

 is the predicted probability for the  class for the  observation 	

 is the total number of observations	
 is the total number of classes

yij jth ith

̂yij jth ith

m
K
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 is the observed label in the one hot representation of the  class in the target vector for the  observation 	

 is the predicted probability for the  class for the  observation 	

 is the total number of observations	
 is the total number of classes

yij jth ith

̂yij jth ith

m
K

24

Neural Networks
Multi - Class Classification 

Neural networks used for multi class classification, predict one of several classes and 
have one neuron in the output layer for each class

Cost function is the Categorical Cross Entropy:

̂Y =
0.1

0.65
0.3

Y = [
0
1
0] y1jlog( ̂y1j) =

0 × log(0.1)
1 × log(0.65)
0 × log(0.3)

Negate and average over  samplesm

−
1
m

m

∑
i=1

K

∑
j=1

yij loge ̂yij

Note: log of a number between  and  is a negative 
number so we negate to ensure that loss is positive.

0 1
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 is the observed label in the one hot representation of the  class in the target vector for the  observation 	

 is the predicted probability for the  class for the  observation 	

 is the total number of observations	
 is the total number of classes

yij jth ith

̂yij jth ith

m
K
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Neural Networks
Multi - Class Classification 

Neural networks used for multi class classification, predict one of several classes and 
have one neuron in the output layer for each class

Cost function is the Categorical Cross Entropy: ̂Y = softmax(Z) =

ez1

ez1 + ez2 + ez3

ez2

ez1 + ez2 + ez3

ez3

ez1 + ez2 + ez3

̂Y =
0.1

0.65
0.3

Y = [
0
1
0] y1jlog( ̂y1j) =

0 × log(0.1)
1 × log(0.65)
0 × log(0.3)

Negate and average over  samplesm

−
1
m

m

∑
i=1

K

∑
j=1

yij loge ̂yij

Note: log of a number between  and  is a negative 
number so we negate to ensure that loss is positive.

0 1
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Related Tutorials & Textbooks

For a complete list of tutorials see:	
https://arrsingh.com/ai-tutorials

Neural Networks
An introduction to Neural Networks starting from a foundation of linear regression, logistic classification and multi class 
classification models along with the matrix representation of a neural network generalized to l layers with n neurons

Gradient Descent for Multiple Regression
Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear 
model in multiple dimensions.

Recommended Textbooks

Artificial Intelligence: A Modern Approach	
by Peter Norvig, Stuart Russell	

Forward and Back Propagation in Neural Networks
A deep dive into how Neural Networks are trained using Gradient Descent. Output predictions, are compared to observations to 
calculate loss and Backward propagation then computes gradients by working backward through the network
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https://cdn.arrsingh.com/ai-tutorials/40-neural-networks.pdf
https://cdn.arrsingh.com/21-gradient-descent-multiple-regression.pdf
https://www.amazon.com/Artificial-Intelligence-Modern-Approach-Global/dp/1292401133/145-7835510-0841302?pd_rd_w=iH9vD&content-id=amzn1.sym.4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_p=4c8c52db-06f8-4e42-8e56-912796f2ea6c&pf_rd_r=HSCJ76PVENF07RXN137F&pd_rd_wg=8U3PC&pd_rd_r=1c660f60-a0d2-443c-b802-7f2e0720c983&pd_rd_i=1292401133&psc=1&linkCode=ll1&tag=arrsingh-20&linkId=213326aa44c97c9f0b4240fe1e56d1a2&language=en_US&ref_=as_li_ss_tl
https://cdn.arrsingh.com/ai-tutorials/41-forward-back-propagation-neural-networks.pdf

