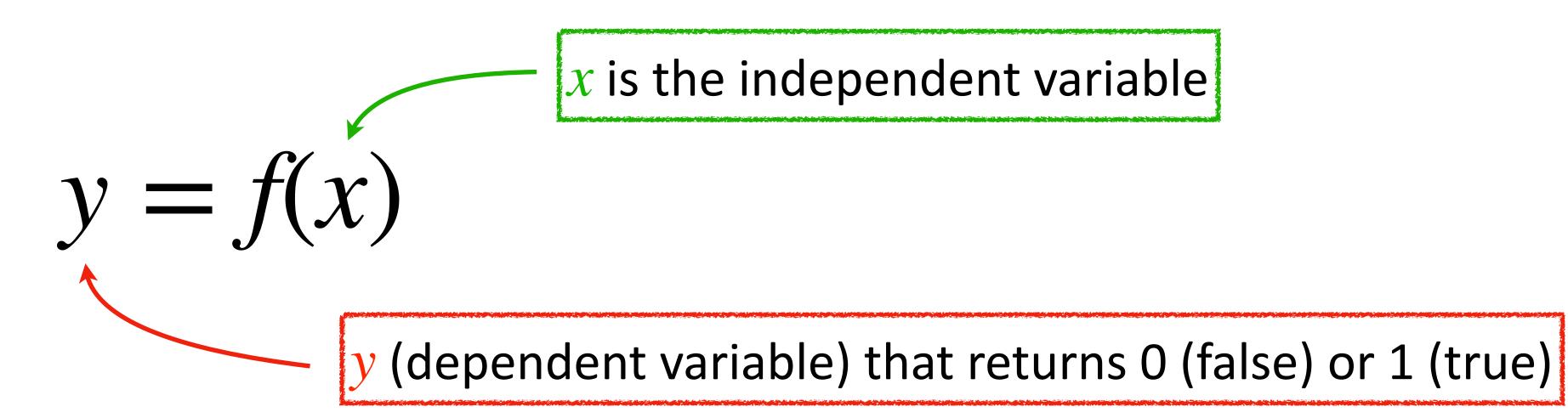
Logistic Regression Cost Function & Gradient Descent

Rahul Singh rsingh@arrsingh.com

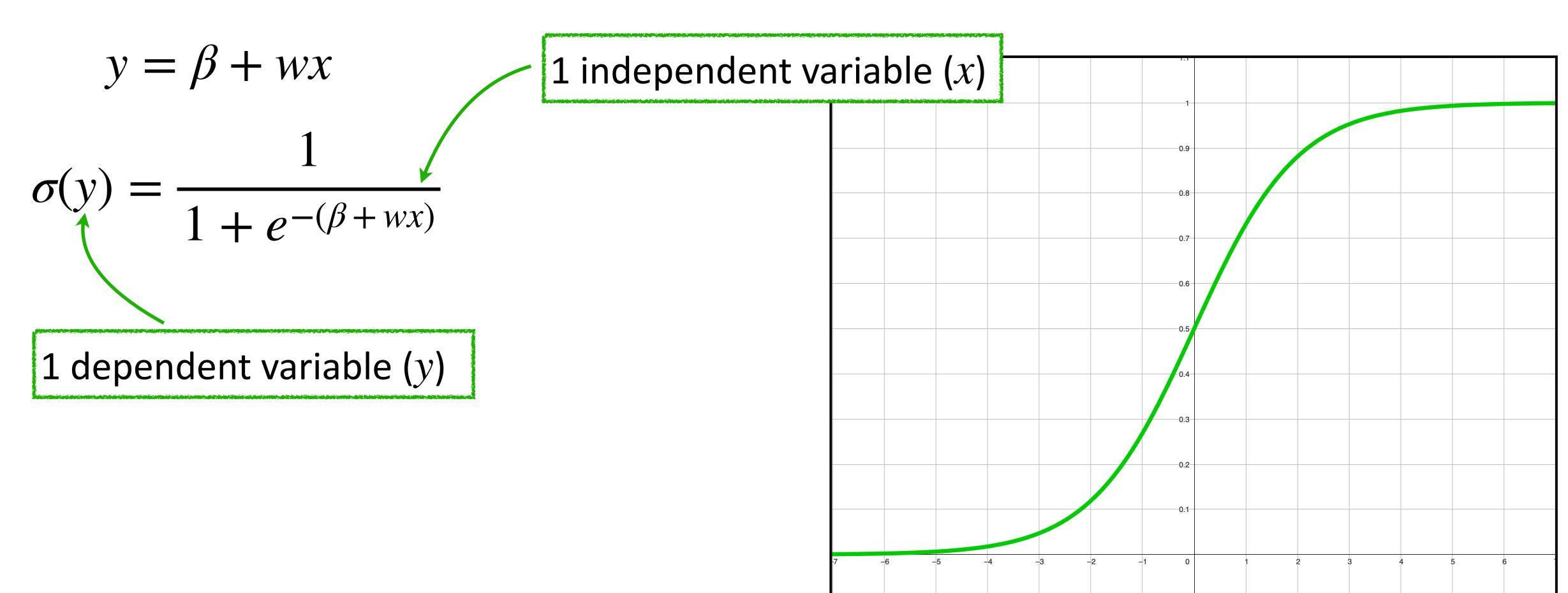
Logistic Regression is used to predict a binary value

A model that returns a binary value (true / false)



Logistic Function

Logistic regression uses a sigmoid curve (Logistic Function) that converts a linear combination of input features (x values) into probabilities (y values)

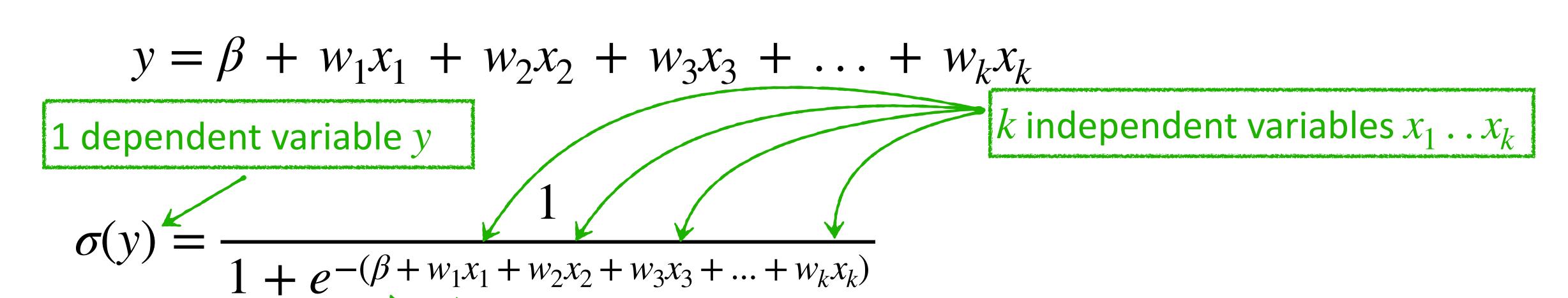


Generalizing this to k independent variables...

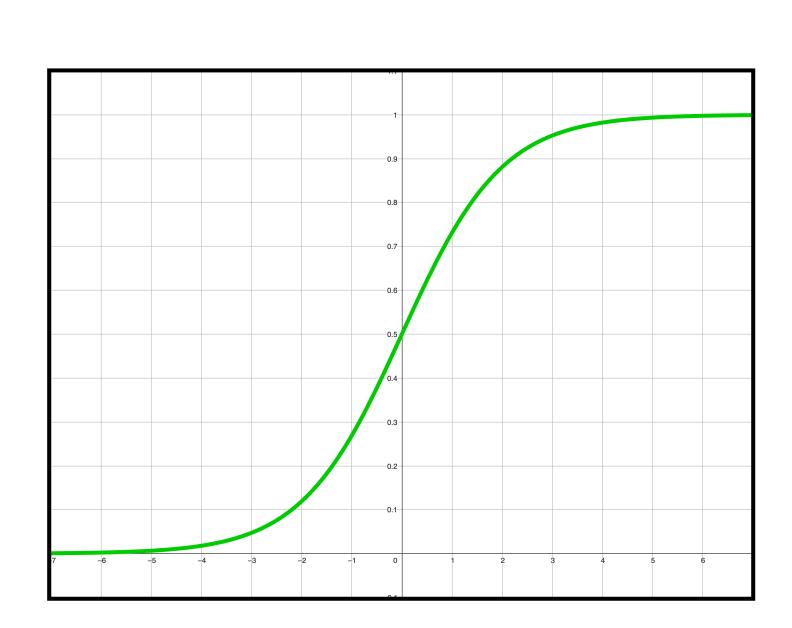
Logistic Function

Logistic Regression

The model is generalized to k independent variables and k+1 parameters



This model has k+1 parameters $\beta, w_1, w_2 \dots w_k$



Logistic Function

Logistic Regression

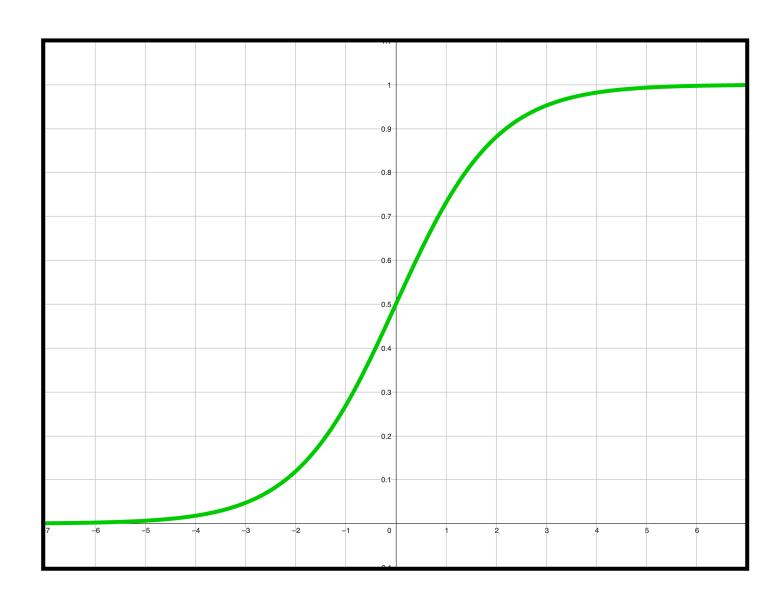
The model is generalized to k independent variables and k+1 parameters

$$y = \beta + w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_k x_k$$

General Matrix form:

$$\hat{Y} = \sigma(W^T X + \beta)$$

W is a $k \times 1$ vector of weights $w_1, w_2, w_3 \dots w_k$ X is a $k \times n$ matrix of n observations $x_1, x_2, x_3 \dots x_k$ β is a scalar



Logistic Function

Logistic Regression

The model is generalized to k independent variables and k+1 parameters

$$y = \beta + w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_k x_k$$

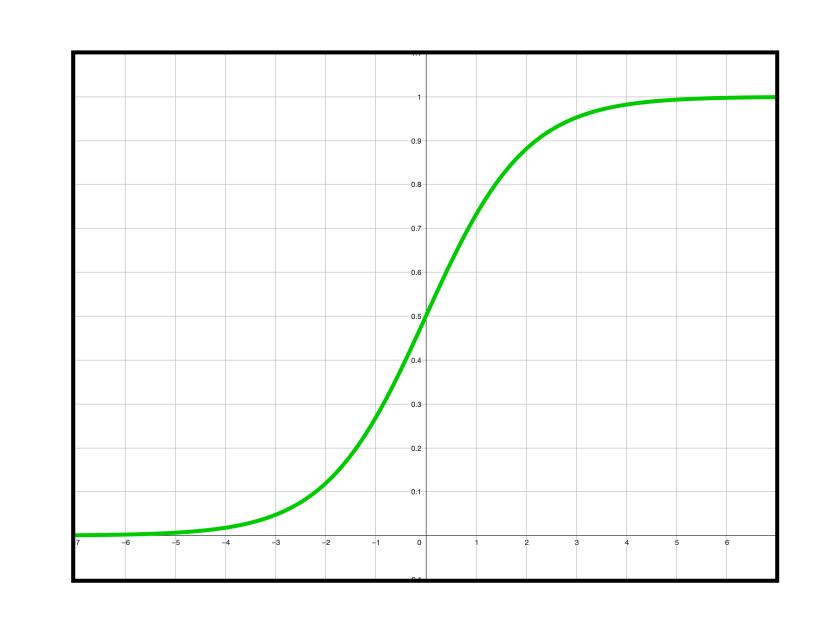
General Matrix form:

$$\hat{Y} = \sigma(W^T X + \beta)$$

 \hat{Y} is the vector of predicted values from the model. \hat{Y} is a vector of probabilities each between 0 and 1

A Threshold converts a given probability to a binary value

if
$$\hat{y}_i \ge 0.5$$
 then 1 if $\hat{y}_i < 0.5$ then 0



Logistic Function

Logistic regression uses a sigmoid curve (Logistic Function) that converts a linear combination of input features (x values) into probabilities (y values)

Curve of best fit is...

$$\hat{Y} = \sigma(W^T X + \beta)$$

$$\Rightarrow \hat{y}_i = \frac{1}{1 + e^{-(w_i x_i + \beta)}}$$

We can use **Gradient Descent** to find the $_{\rm o}$ optimal values of β and W

Fundamental Concept: Given a set of data (observations), find the values of β and W for the curve that best fits the given data.

102

Recap: Gradient Descent and Linear Regression

Linear Model in k **Dimensions**

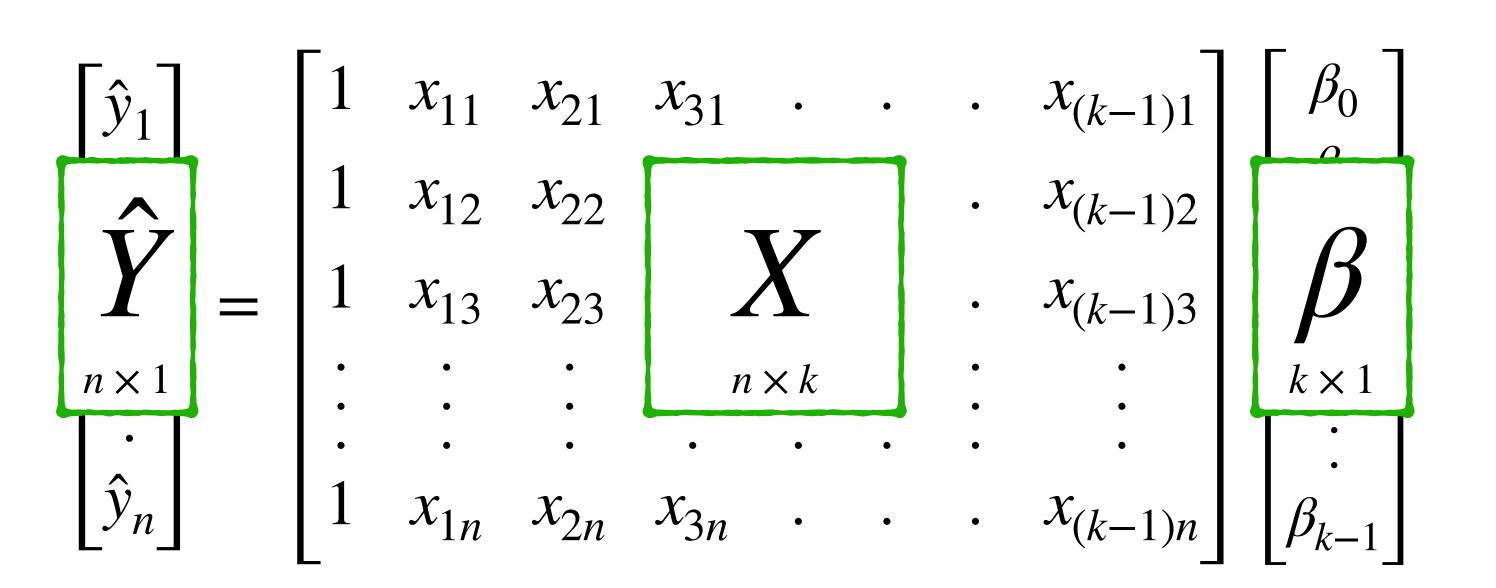
Multiple Regression

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_{k-1} x_{k-1}$$

$$\hat{Y} = X\beta$$

The Mean Squared Error (MSE):

$$\frac{1}{2n} \| Y - X\beta \|^2$$



$$\hat{Y} = X\beta$$

Linear Model in k **Dimensions**

Multiple Regression

The Mean Squared Error (MSE):

$$\frac{1}{2n} || Y - X\beta ||^2 \leftarrow Cost Function$$

Gradient descent can be used to minimize the cost function.

We compute the partial derivative of the cost function w.r.t the parameters β

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{n} X^T (X\beta - Y)$$
 Partial Derivative w.r.t β

A linear model in k+1 dimensions...

$$\hat{Y} = X\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{n} X^T (X\beta - Y)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β by subtracting the step size

Step 5: Go to step 2 and repeat

We need a cost function for Logistic Regression

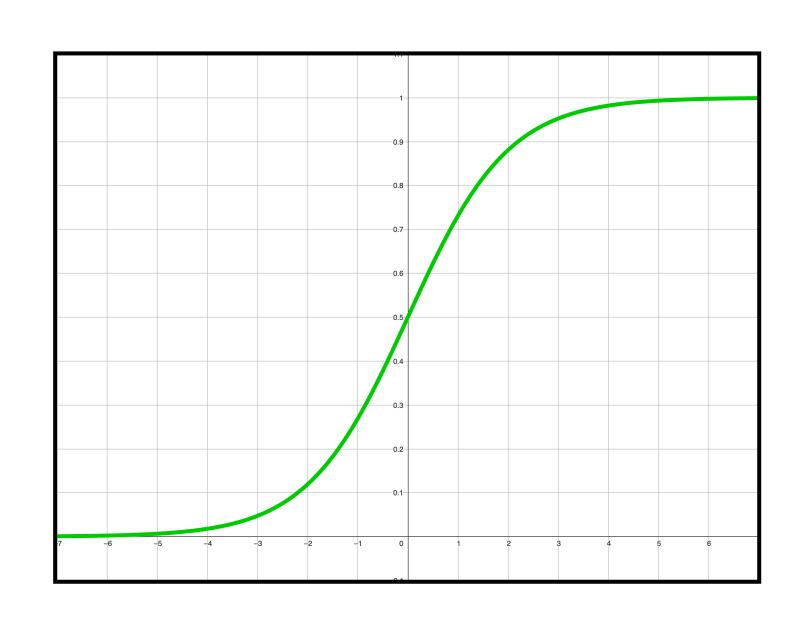
Logistic Regression

$$\hat{Y} = \sigma(W^T X + \beta)$$

W is a $k \times 1$ vector of weights $\omega_1, \omega_2, \omega_3 \dots \omega_k$ X is a $k \times n$ matrix of observations $x_1, x_2, x_3 \dots x_k$ β is a scalar

 \hat{Y} is the predicted values for the model with parameters W and eta

Logistic Regression uses Maximum Likelihood Estimation to find the parameters W and β



Logistic Regression

Logistic Regression uses Maximum Likelihood Estimation to find the parameters W and β

$$p(y | x; W, \beta)$$

Likelihood of a value y given a value x for a model with parameters W and β

Logistic Regression Cost Function

if
$$y = 1$$
 then $p(y | x; W, \beta) = \hat{y}$

if
$$y = 0$$
 then $p(y | x; W, \beta) = 1 - \hat{y}$

Logistic Regression Cost Function

A compact representation of the cost function

$$p(y | x; W, \beta) = \hat{y}^y (1 - \hat{y})^{(1-y)}$$

Likelihood Function: This is the likelihood of predicting a value y given a value x for a model with parameters W and β

Logistic Regression

Logistic Regression uses Maximum Likelihood Estimation to find the parameters W and β

Logistic Regression Cost Function

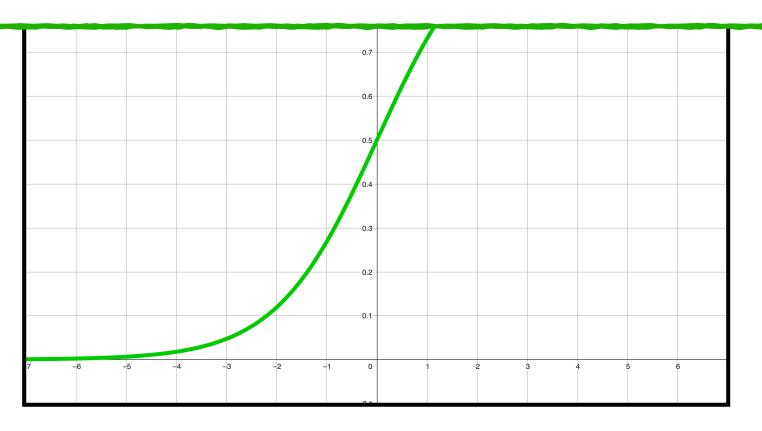
A compact representation of the cost function

$$p(y | x; W, \beta) = \hat{y}^y (1 - \hat{y})^{(1-y)}$$

Maximizing the Likelihood is the same as maximizing the log likelihood

Likelihood Function: This is the likelihood of predicting a value y given a value x for a model with parameters W and β

We want to find the values of W and β that maximize this function. Hence Maximum Likelihood Estimation



Logistic Regression

Logistic Regression uses Maximum Likelihood Estimation to find the parameters W and β

Logistic Regression Cost Function

A compact representation of the cost function

$$p(y | x; W, \beta) = \hat{y}^y (1 - \hat{y})^{(1-y)}$$

Maximizing the Likelihood is the same as maximizing the log likelihood

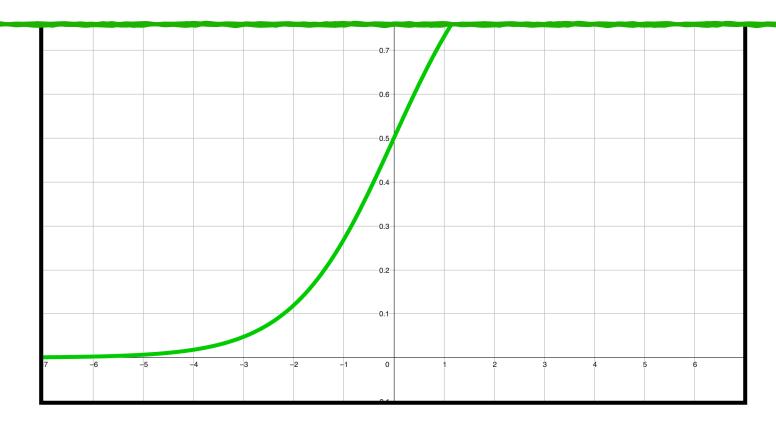
Likelihood Function: This is the likelyhood of predicting a value y given a value x for a model with parameters W and β

We want to find the values of W and β that maximize this function. Hence Maximum Likelihood Estimation

$$log_e p(y | x; W, \beta)) = log_e \hat{y}^y (1 - \hat{y})^{(1-y)}$$

= $y log_e \hat{y} + (1 - y) log_e (1 - \hat{y})$

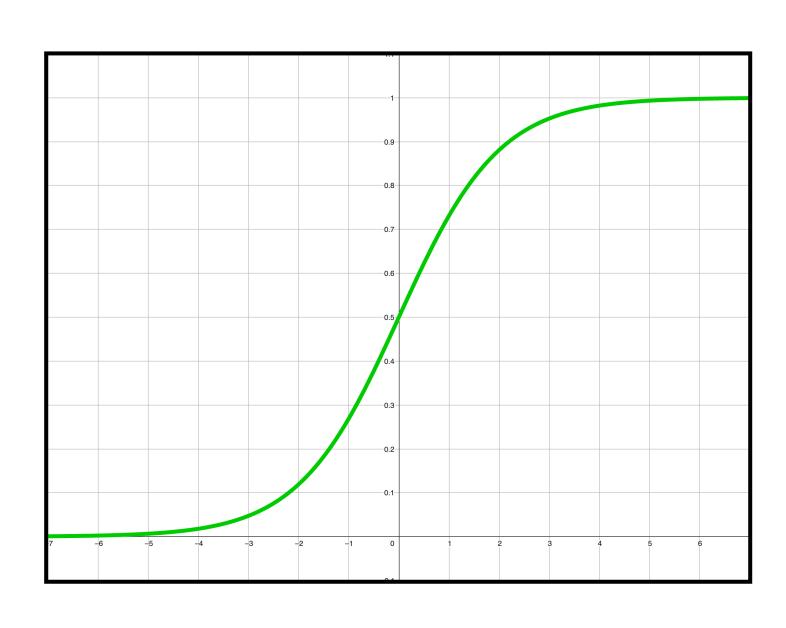
Next we average the cost across all observations...



$$\hat{Y} = \sigma(W^T X + \beta)$$

$$L(W, \beta) = -\frac{1}{n} \sum_{i=1}^{n} y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})$$

Logistic Regression

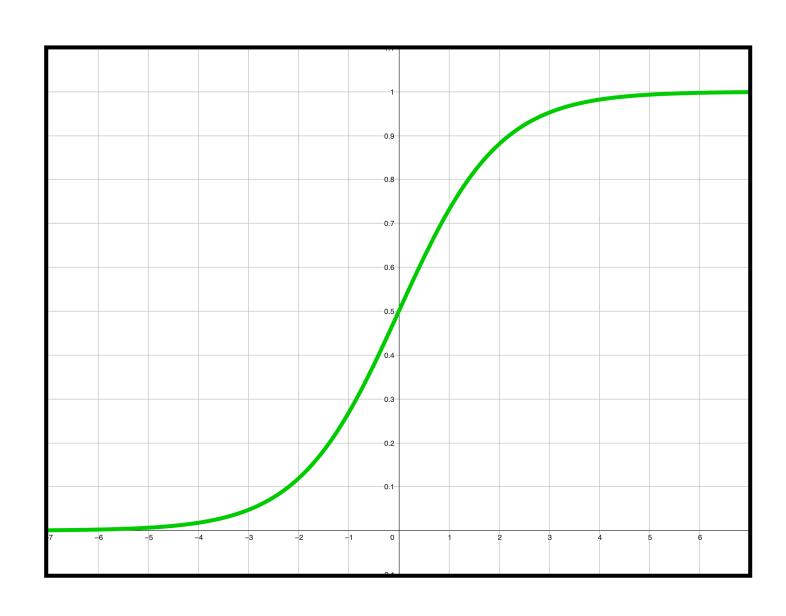


Logistic Regression Cost Function

$$\hat{Y} = \sigma(W^T X + \beta)$$

$$L(W, \beta) = -\frac{1}{n} \sum_{i=1}^{n} y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})$$

The negative sign indicates that we want to minimize the cost (aka maximize the likelihood)



$$\hat{Y} = \sigma(W^T X + \beta)$$

$$L(W, \beta) = -\frac{1}{n} \sum_{i=1}^{n} y \log_{e} \hat{y} + (1 - y) \log_{e} (1 - \hat{y})$$

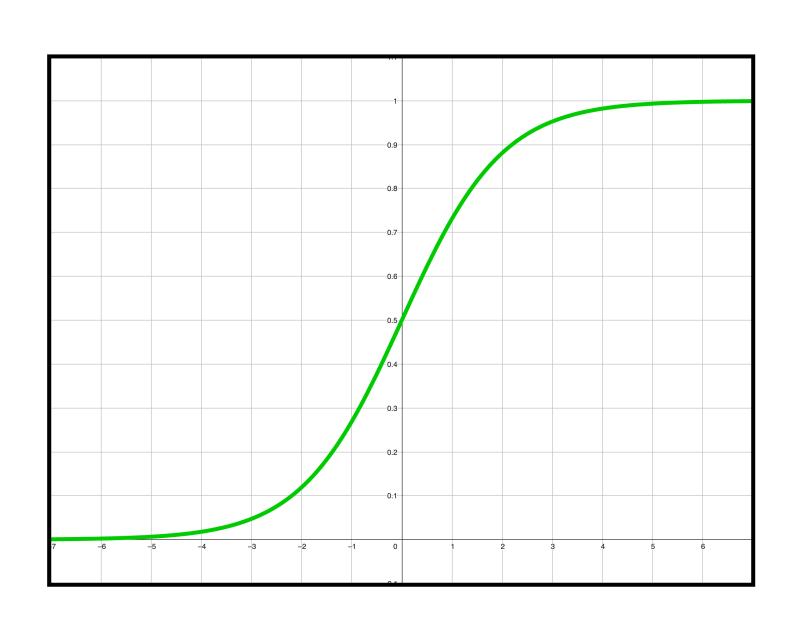
Partial Derivatives of the Cost Function w.r.t W and eta

$$\frac{\partial}{\partial W}L(W,\beta) = (\hat{Y} - Y)X$$

$$\frac{\partial}{\partial \beta} L(W, \beta) = (\hat{Y} - Y)$$

With the cost function and the first derivatives above we can use gradient descent to estimate the values of W and β that minimize the cost

Logistic Regression



$$\hat{Y} = \sigma(W^T X + \beta)$$

$$L(W, \beta) = -\frac{1}{n} \sum_{i=1}^{n} y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})$$

Partial Derivatives of the Cost Function w.r.t W and eta

$$\frac{\partial}{\partial W}L(W,\beta) = (\hat{Y} - Y)X$$

$$\frac{\partial}{\partial \beta} L(W, \beta) = (\hat{Y} - Y)$$

Logistic Regression

Gradient Descent for Logistic Regression

Step 1: Start with random values for W and β

$$\hat{Y} = \sigma(W^T X + \beta)$$

$$L(W,\beta) = -\frac{1}{n} \sum_{i=1}^{n} y \log_e \hat{y} + (1-y) \log_e (1-\hat{y})$$

Partial Derivatives of the Cost Function w.r.t W and eta

$$\frac{\partial}{\partial W}L(W,\beta) = (\hat{Y} - Y)X$$

$$\frac{\partial}{\partial \beta} L(W, \beta) = (\hat{Y} - Y)$$

Logistic Regression

Gradient Descent for Logistic Regression

Step 1: Start with random values for W and β

Step 2: Compute the partial derivative of the cost function w.r.t W and β

$$\frac{\partial}{\partial W}L(W,\beta) = (\hat{Y} - Y)X$$

$$\frac{\partial}{\partial \beta} L(W, \beta) = (\hat{Y} - Y)$$

$$\hat{Y} = \sigma(W^T X + \beta)$$

$$L(W, \beta) = -\frac{1}{n} \sum_{i=1}^{n} y \log_e \hat{y} + (1 - y) \log_e (1 - \hat{y})$$

Partial Derivatives of the Cost Function w.r.t W and eta

$$\frac{\partial}{\partial W}L(W,\beta) = (\hat{Y} - Y)X$$

$$\frac{\partial}{\partial \beta} L(W, \beta) = (\hat{Y} - Y)$$

Logistic Regression

Gradient Descent for Logistic Regression

Step 1: Start with random values for W and β

Step 2: Compute the partial derivative of the cost function w.r.t W and β

$$\frac{\partial}{\partial W} L(W, \beta) = (\hat{Y} - Y) X$$
$$\frac{\partial}{\partial \beta} L(W, \beta) = (\hat{Y} - Y)$$

Step 3: Calculate a step size that is proportional to the slope

$$step_size_W = \frac{\partial}{\partial W} L(W, \beta) \times learning_rate$$

$$step_size_{\beta} = \frac{\partial}{\partial \beta} L(W, \beta) \times learning_rate$$

$$\hat{Y} = \sigma(W^T X + \beta)$$

$$L(W, \beta) = -\frac{1}{n} \sum_{i=1}^{n} y \log_{e} \hat{y} + (1 - y) \log_{e} (1 - \hat{y})$$

Partial Derivatives of the Cost Function w.r.t W and eta

$$\frac{\partial}{\partial W}L(W,\beta) = (\hat{Y} - Y)X$$

$$\frac{\partial}{\partial \beta} L(W, \beta) = (\hat{Y} - Y)$$

Logistic Regression

Gradient Descent for Logistic Regression

Step 1: Start with random values for W and β

Step 2: Compute the partial derivative of the cost function w.r.t W and β

$$\frac{\partial}{\partial W}L(W,\beta) = (\hat{Y} - Y)X$$
$$\frac{\partial}{\partial \beta}L(W,\beta) = (\hat{Y} - Y)$$

Step 3: Calculate a step size that is proportional

to the slope
$$step_size_{W} = \frac{\partial}{\partial W}L(W,\beta) \times learning_rate$$

$$step_size_{\beta} = \frac{\partial}{\partial \beta}L(W,\beta) \times learning_rate$$

Step 4: Calculate new values for W and β by subtracting the step size

$$W = W - step_size_{W}$$
$$\beta = \beta - step_size_{\beta}$$

$$\hat{Y} = \sigma(W^T X + \beta)$$

$$L(W, \beta) = -\frac{1}{n} \sum_{i=1}^{n} y \log_{e} \hat{y} + (1 - y) \log_{e} (1 - \hat{y})$$

Partial Derivatives of the Cost Function w.r.t W and eta

$$\frac{\partial}{\partial W}L(W,\beta) = (\hat{Y} - Y)X$$

$$\frac{\partial}{\partial \beta} L(W, \beta) = (\hat{Y} - Y)$$

Logistic Regression

Gradient Descent for Logistic Regression

Step 1: Start with random values for W and β

Step 2: Compute the partial derivative of the cost function w.r.t W and β

$$\frac{\partial}{\partial W}L(W,\beta) = (\hat{Y} - Y)X$$
$$\frac{\partial}{\partial \beta}L(W,\beta) = (\hat{Y} - Y)$$

Step 3: Calculate a step size that is proportional

to the slope
$$step_size_{W} = \frac{\partial}{\partial W}L(W,\beta) \times learning_rate$$

$$step_size_{\beta} = \frac{\partial}{\partial \beta}L(W,\beta) \times learning_rate$$

Step 4: Calculate new values for W and β by subtracting the step size $W = W - step_size$ $\beta = \beta - step_size$

Step 5: Go to step 2 and repeat

24

$$\hat{Y} = \sigma(W^T X + \beta)$$

$$L(W,\beta) = -\frac{1}{n} \sum_{i=1}^{n} y \log_e \hat{y} + (1-y) \log_e (1-\hat{y})$$

Partial Derivatives of the Cost Function w.r.t W and eta

$$\frac{\partial}{\partial W}L(W,\beta) = (\hat{Y} - Y)X$$

$$\frac{\partial}{\partial \beta} L(W, \beta) = (\hat{Y} - Y)$$

Logistic Regression

Gradient Descent for Logistic Regression

Step 1: Start with random values for W and β

Step 2: Compute the partial derivative of the cost function w.r.t W and β

Gradient Descent continues in this manner until the step size is close to zero or a fixed number of iterations

$$step_size_{\beta} = \frac{\sigma}{\partial \beta} L(W, \beta) \times learning_rate$$

Step 5: Go to step 2 and repeat

Related Tutorials & Textbooks

Logistic Regression

An introduction to Logistic Regression. A Logistic Regression model use used to predict a binary value (the dependent variable) for one or more independent variables using a threshold to classify a probability.

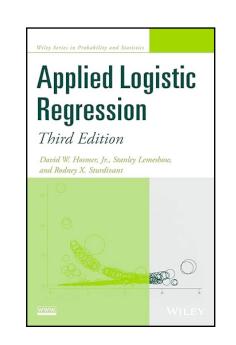
Multiple Regression

Multiple regression extends the two dimensional linear model introduced in Simple Linear Regression to k+1 dimensions with one dependent variable, k independent variables and k+1 parameters.

Gradient Descent for Multiple Regression

Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear model in multiple dimensions.

Recommended Textbooks



Applied Logistic Regression

by David W. Hosmer Jr., Stanley Lemeshow, Rodney X. Sturdivant

For a complete list of tutorials see:

https://arrsingh.com/ai-tutorials