Gradient DescentMultiple Regression using Gradient Descent

Rahul Singh rsingh@arrsingh.com

Simple Linear Regression

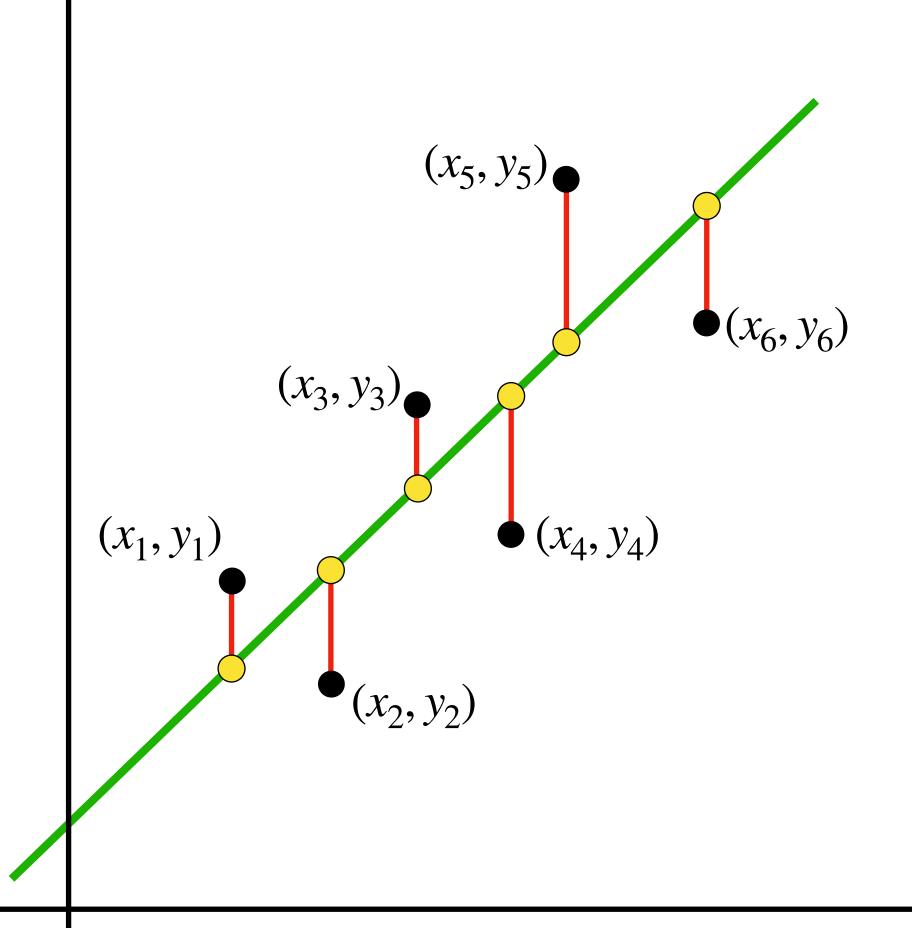
The Problem Statement:

Simple Linear Regression: Find the values of β_0 and β_1 such that the **Mean Squared** Error (MSE) is minimized.

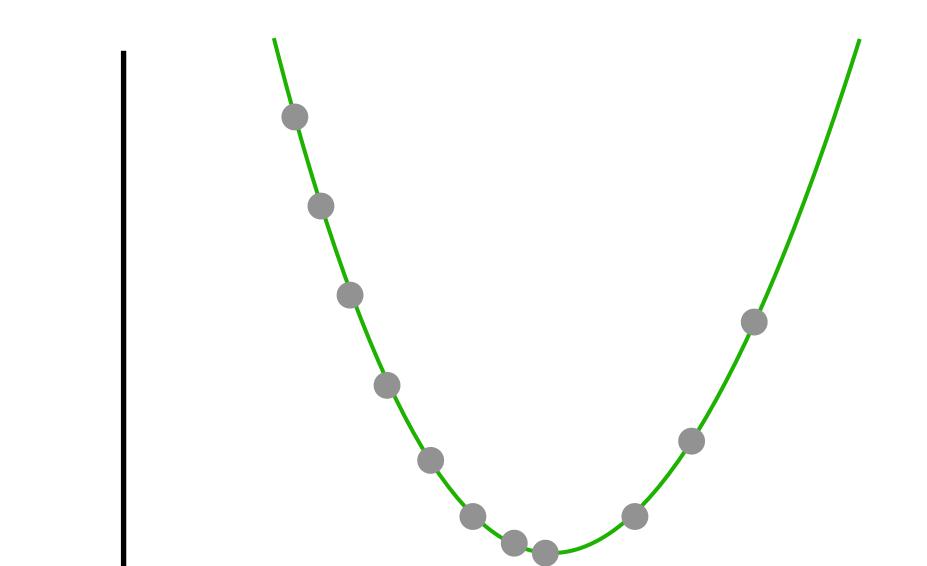
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

Mean Squared Error (MSE)

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

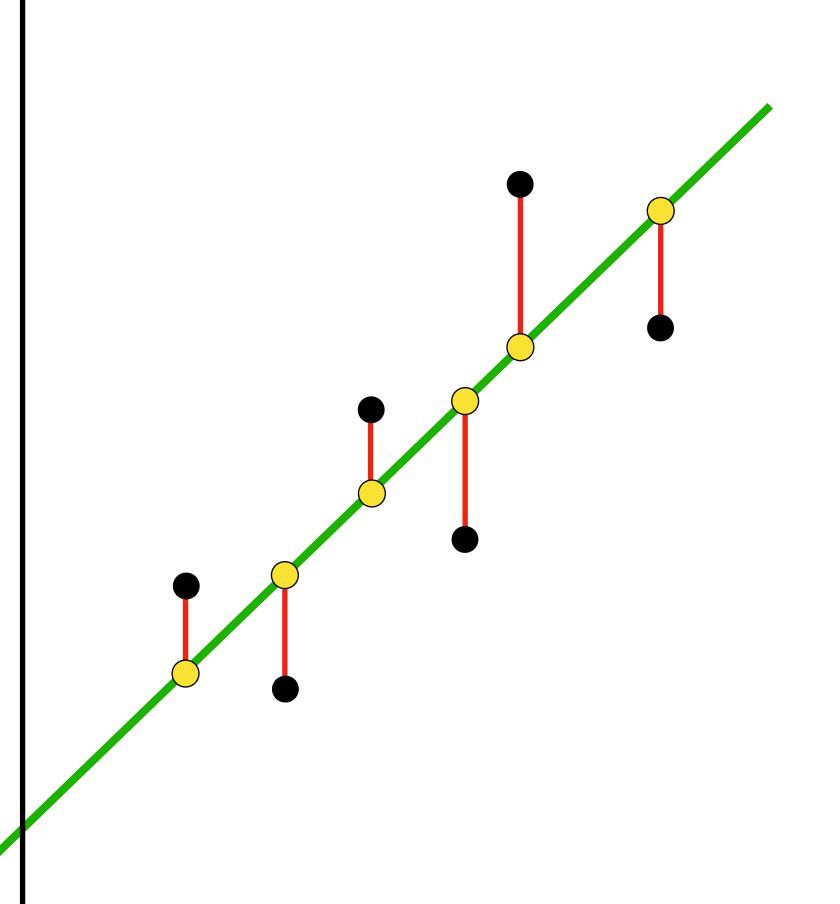


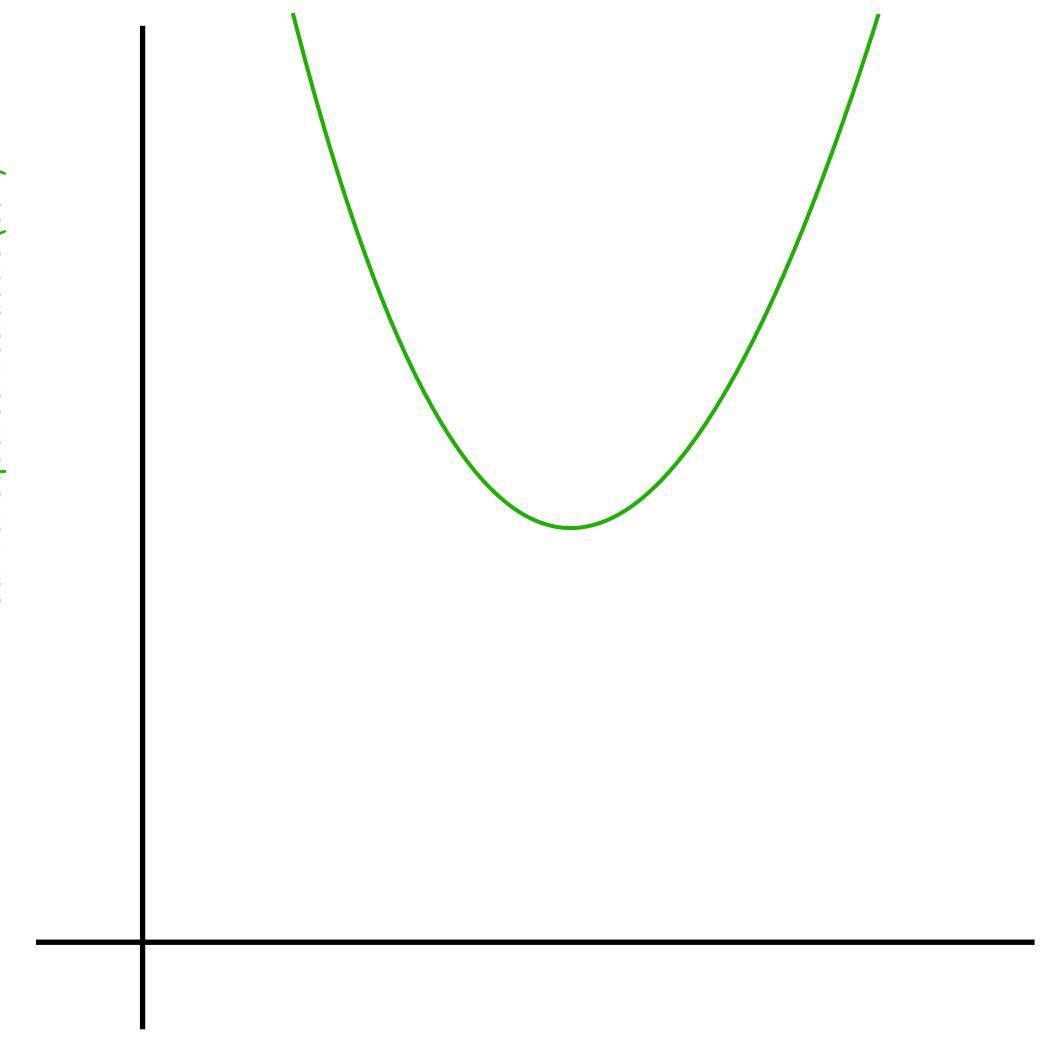
Simple Linear Regression



The Mean Squared Error (MSE) is

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$





Gradient Descent

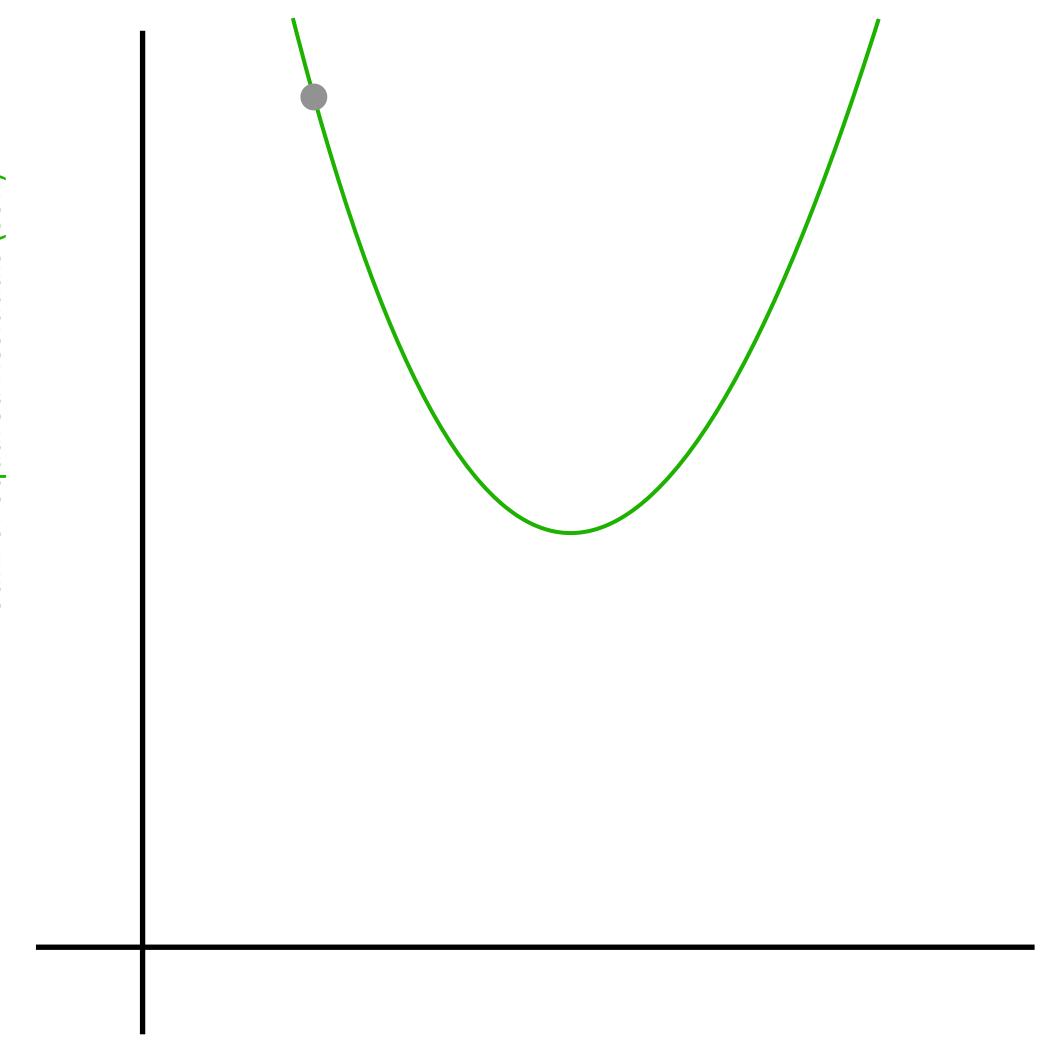
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

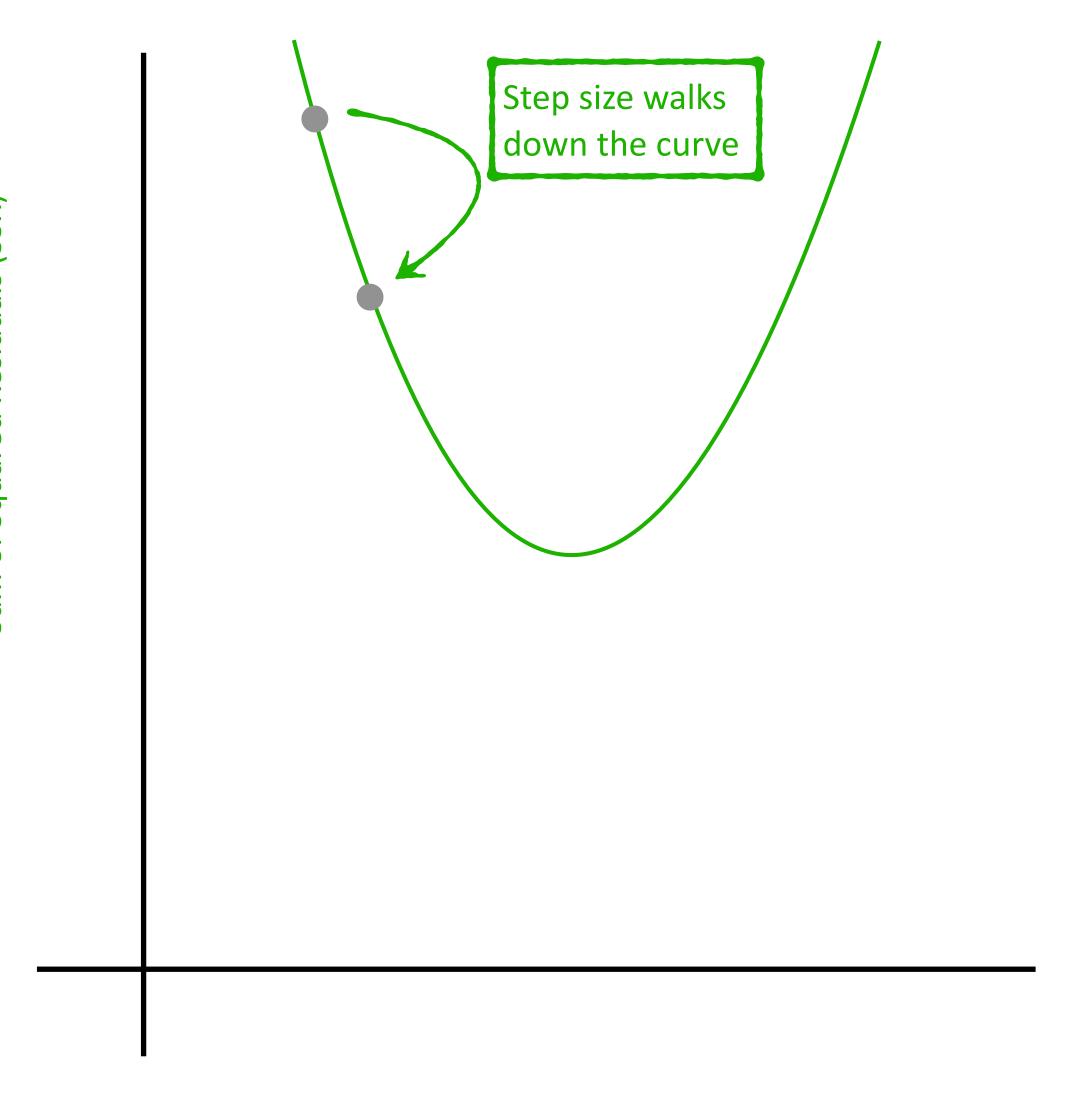
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

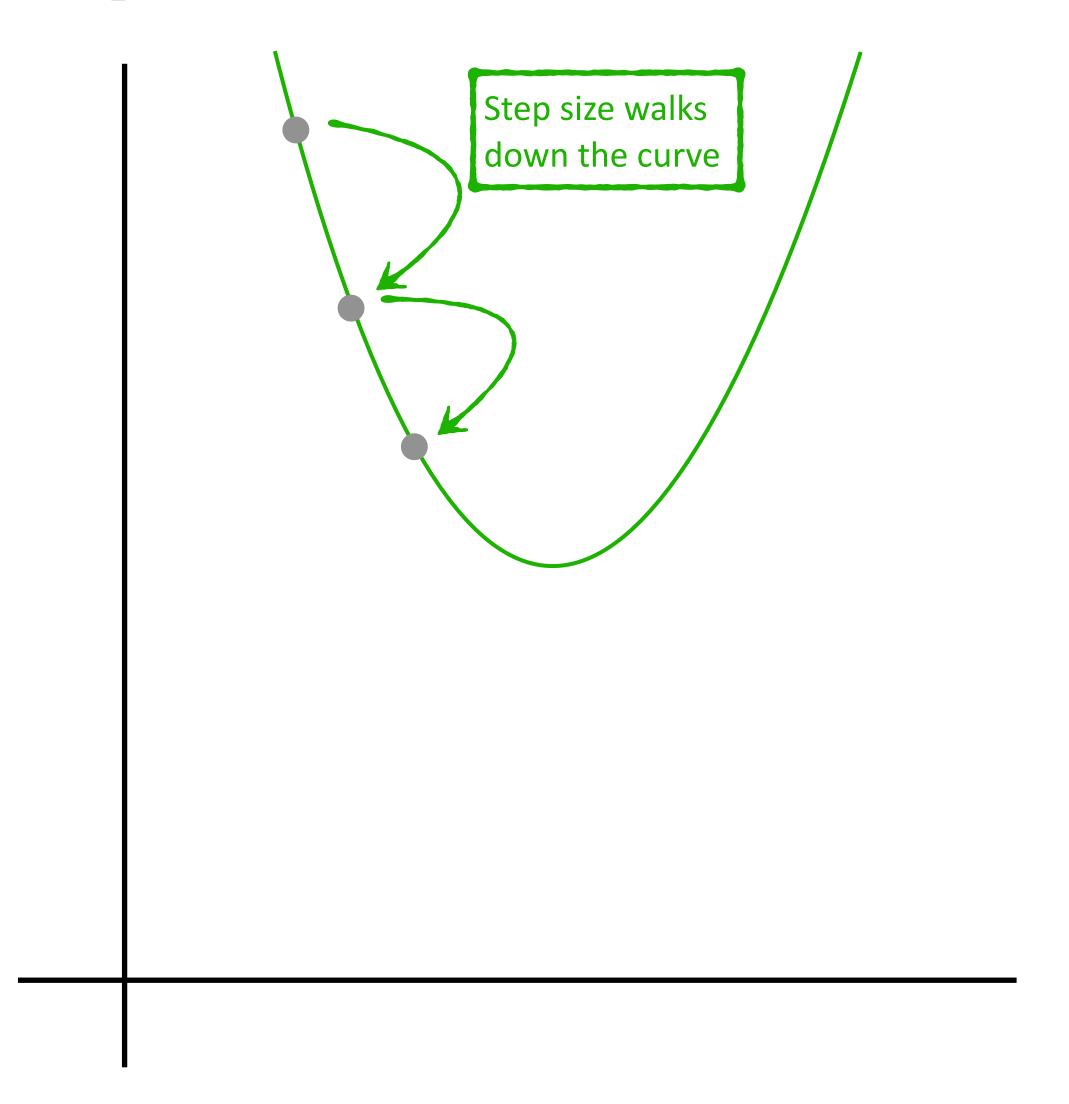
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

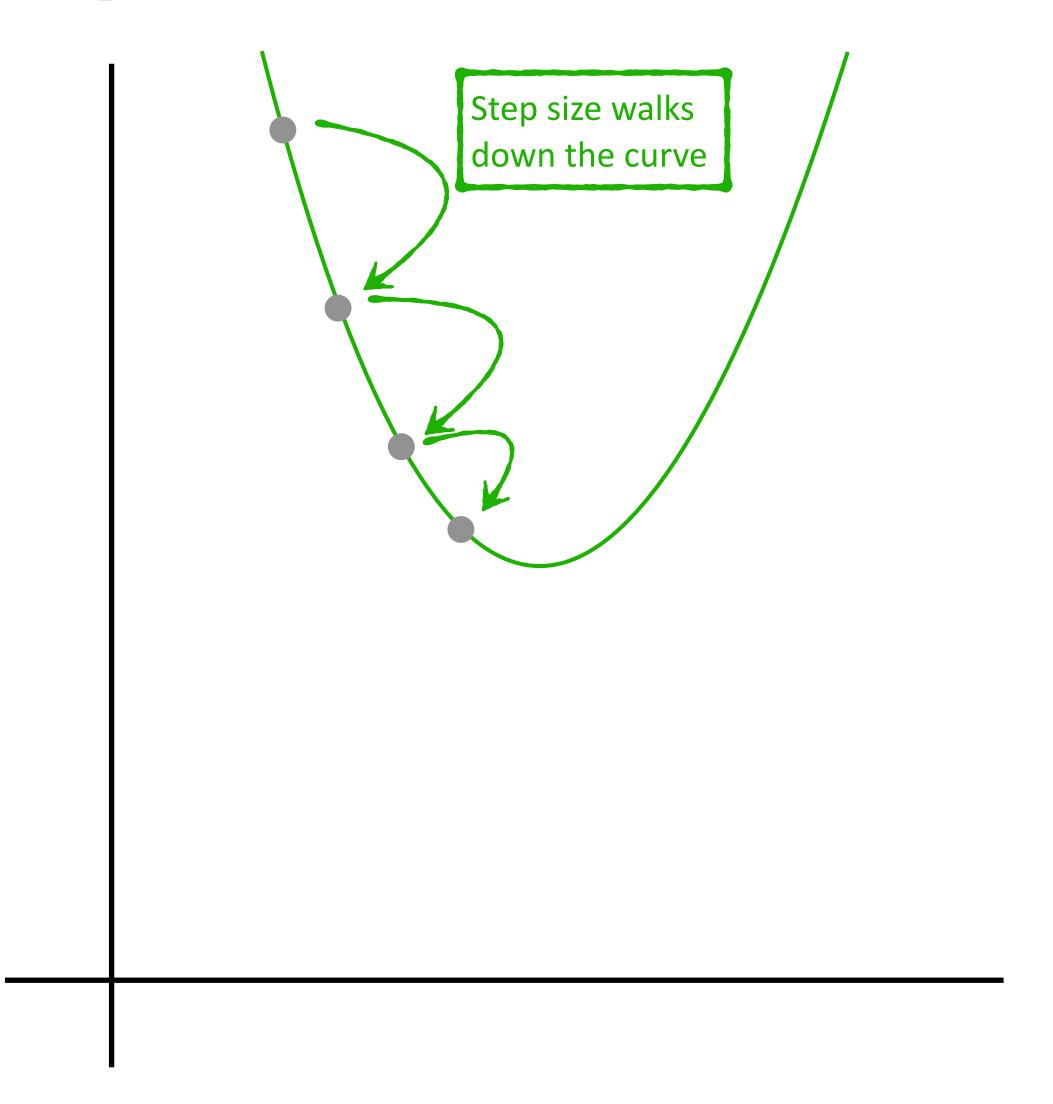
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

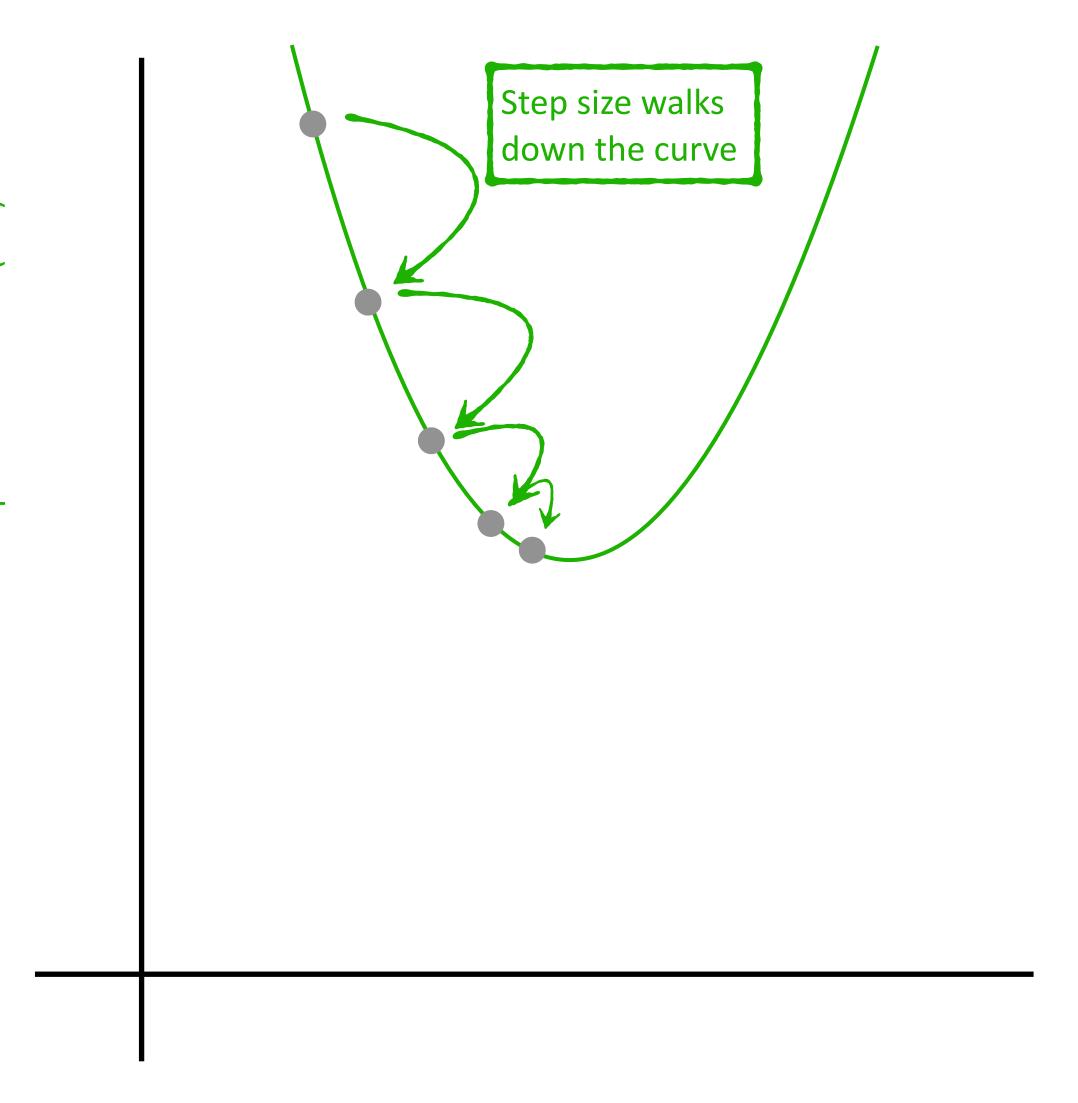
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

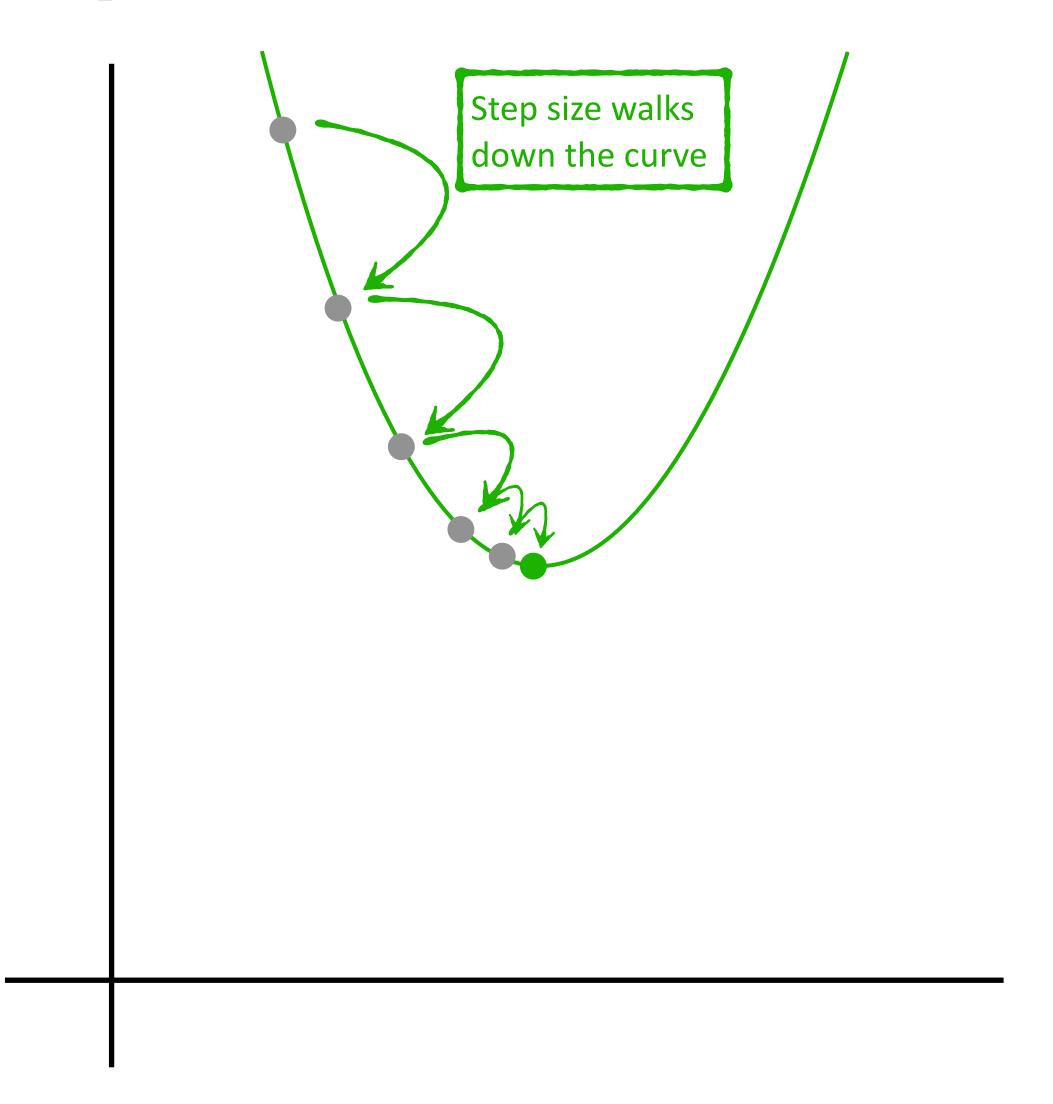
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

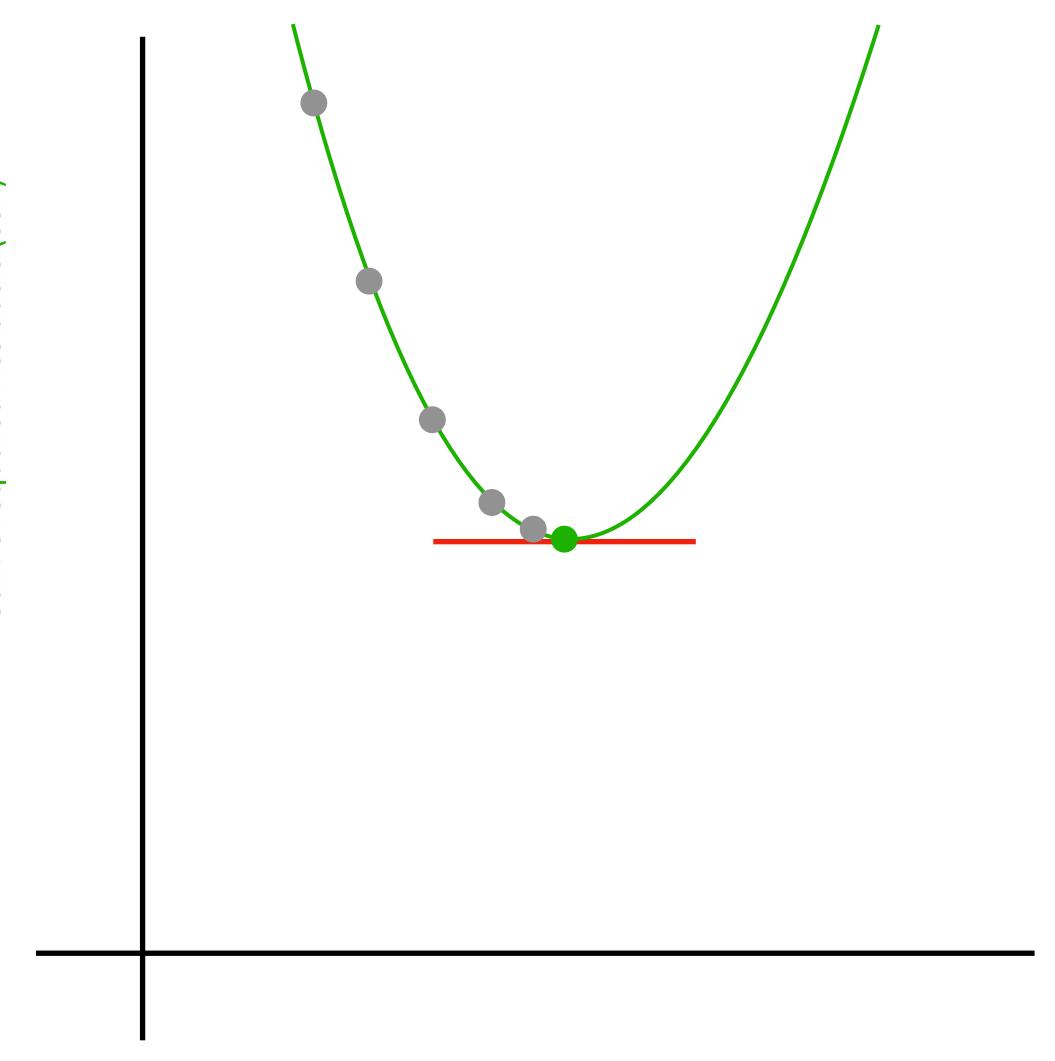
Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size



Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

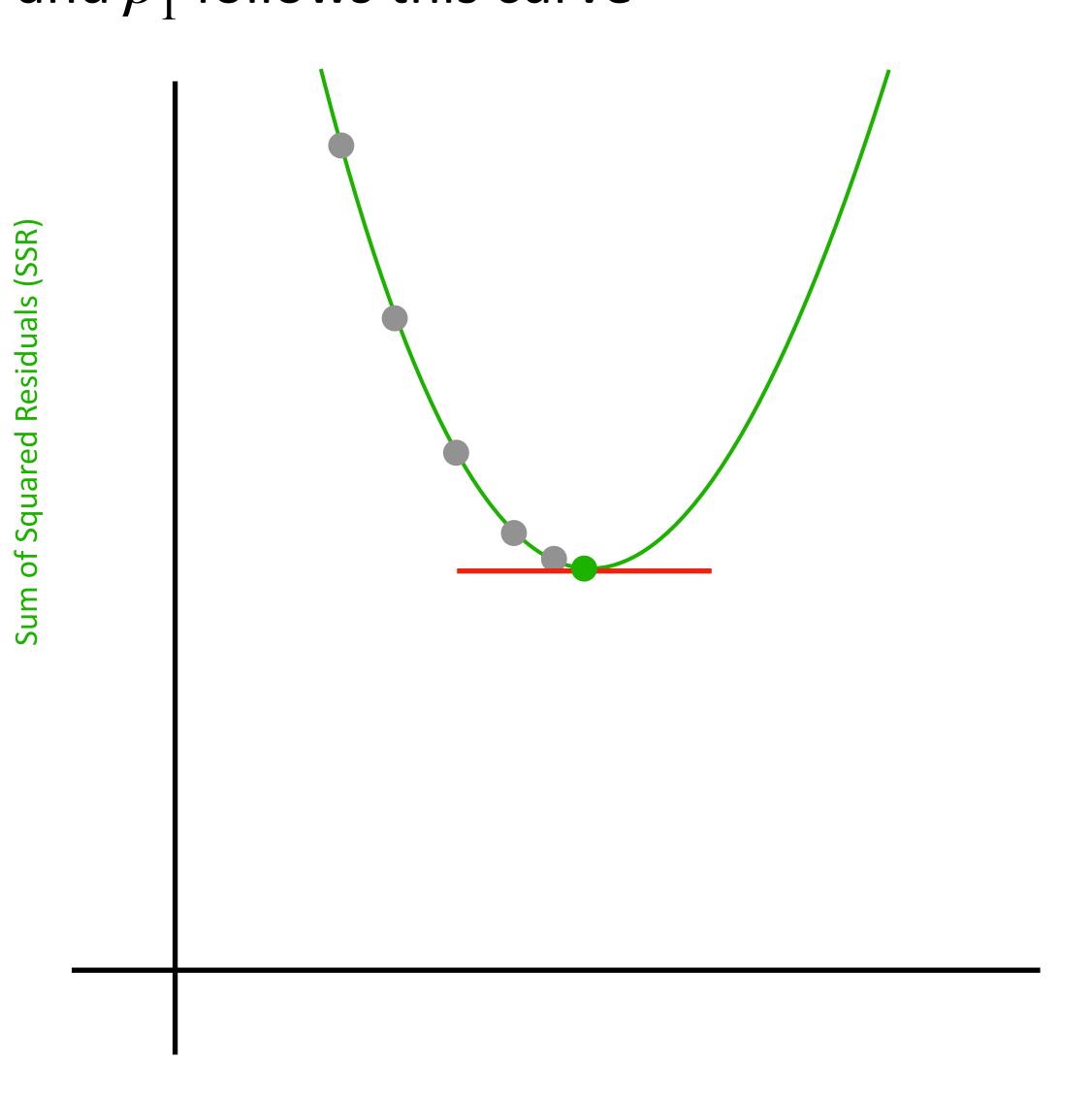
Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Gradient Descent

Gradient Descent: Basic Concept

Gradient Descent continues in this manner until the step size is close to zero or a fixed number of iterations



A linear model in 2 dimensions...

Gradient Descent Algorithm

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

Step 5: Go to step 2 and repeat

$$\hat{y} = \beta_0 + \beta_1 x$$

Has 2 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

A linear model in 2 dimensions...

Gradient Descent Algorithm

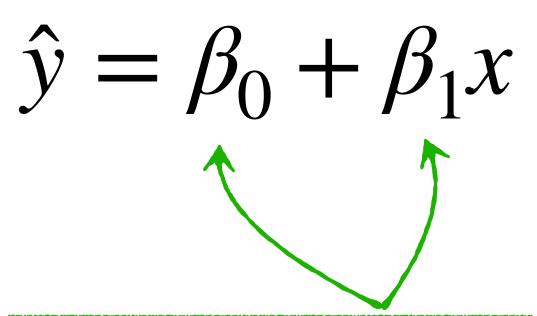
Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$\frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$



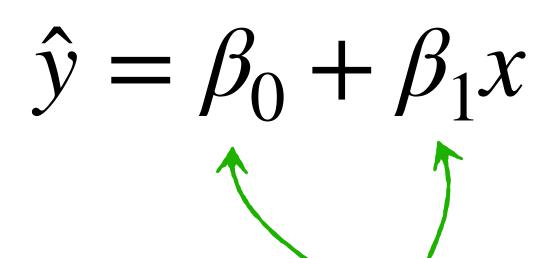
Has 2 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

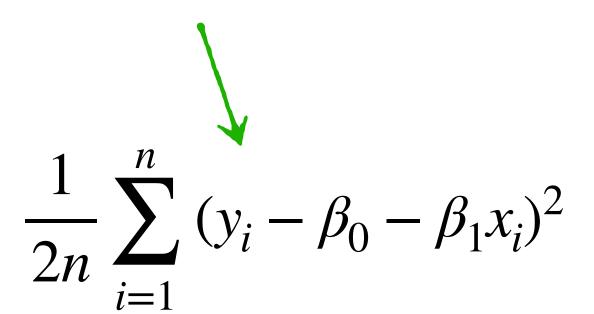
Compute 2 partial derivatives

A linear model in 2 dimensions...



Has 2 parameters

And a cost function...



Compute 2 step sizes

Gradient Descent Algorithm

Step 1: Start with random values for β_0 and β_1

Step 2: Compute the partial derivative of the MSE w.r.t β_0 and β_1 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$

$$step_size_{\beta_1} = \frac{\partial}{\partial \beta_1} MSE \times learning_rate$$

A linear model in 3 dimensions...

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Has 3 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i})^2$$

Gradient Descent

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 and β_2

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 and β_2 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 , β_1 and β_2 by subtracting the step size

A linear model in 3 dimensions...

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 and β_2

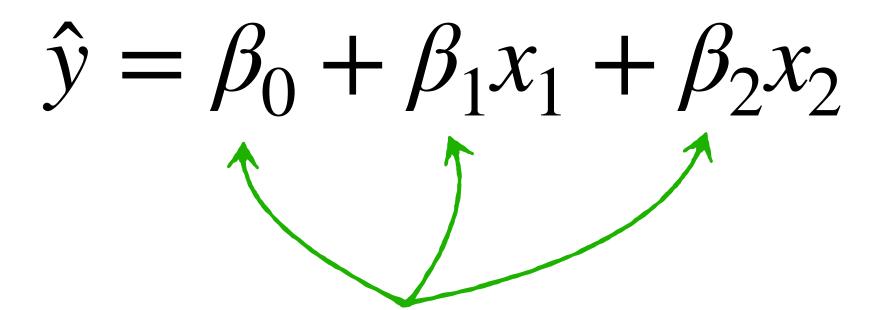
Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 and β_2 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$\frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i})^2$$



Has 3 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i})^2$$

Compute 3 partial derivatives

A linear model in 3 dimensions...

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 and β_2

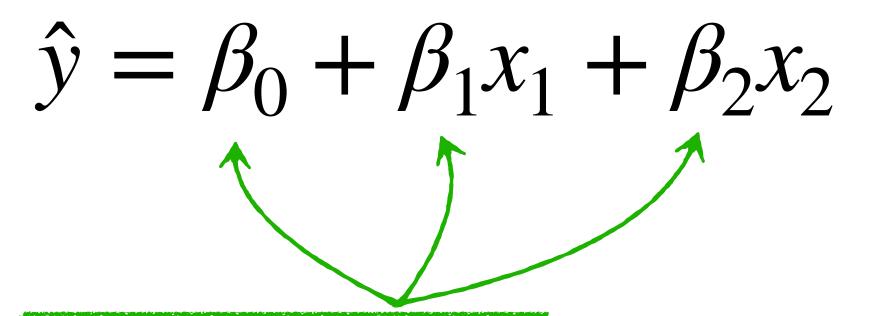
Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 and β_2 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$

$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

$$step_size_{\beta_2} = \frac{\partial}{\beta_2} MSE \times learning_rate$$



Has 3 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i})^2$$

Compute 3 step sizes

A linear model in 4 dimensions...

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

Has 4 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i} - \beta_3 x_{3i})^2$$

Gradient Descent

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 , β_2 and β_3

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 , β_1 , β_2 and β_3 by subtracting the step size

A linear model in 4 dimensions...

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

Has 4 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i} - \beta_3 x_{3i})^2$$

Compute 4 partial derivatives

Gradient Descent

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 , β_2 and β_3

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$\frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

$$\frac{\partial}{\partial \beta_2} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

$$\frac{\partial}{\partial \beta_3} \frac{1}{2n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i})^2$$

A linear model in 4 dimensions...

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

Has 4 parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i} - \beta_3 x_{3i})^2$$

Compute 4 step sizes

Gradient Descent

16

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 , β_2 and β_3

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$

$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

$$step_size_{\beta_2} = \frac{\partial}{\beta_2} MSE \times learning_rate$$

$$step_size_{\beta_3} = \frac{\partial}{\partial \beta_3} MSE \times learning_rate$$

A linear model in k dimensions...

Gradient Descent

Gradient Descent Algorithm

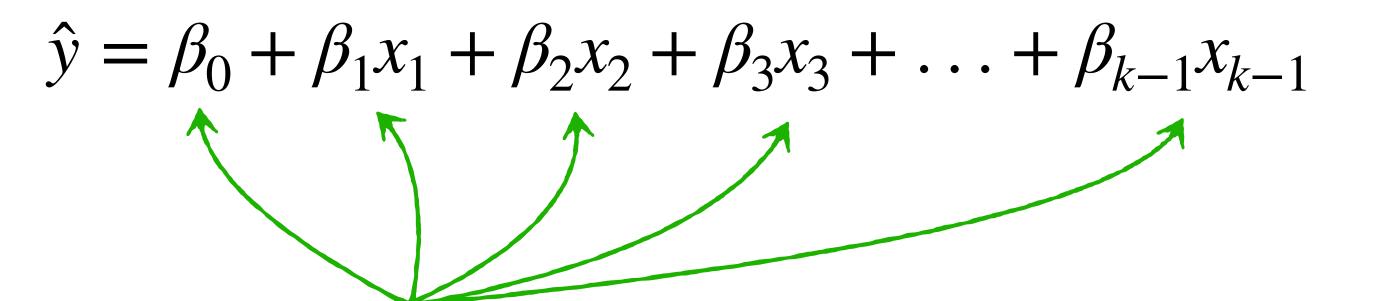
Step 1: Start with random values for β_0 , β_1 , β_2 and β_3

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

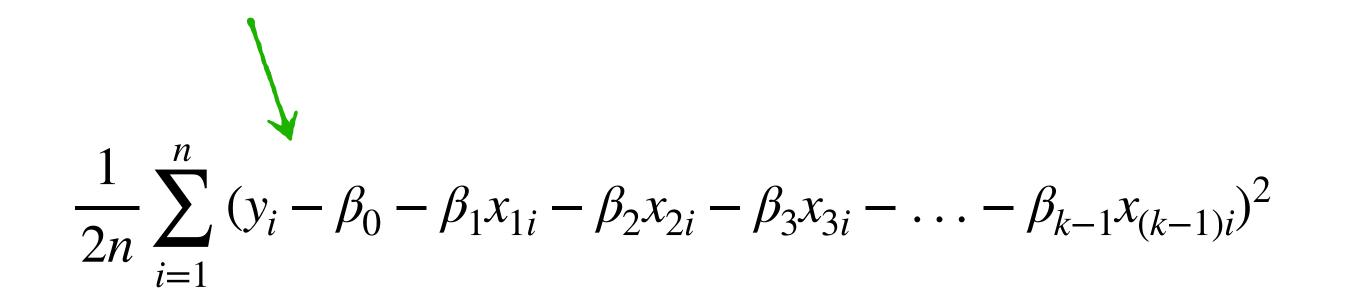
Step 4: Calculate new values for β_0 , β_1 , β_2 and β_3 by subtracting the step size

Step 5: Go to step 2 and repeat



Has k parameters

And a cost function...



A linear model in k dimensions...

Gradient Descent

Gradient Descent Algorithm

Step 1: Start with random values for β_0 , β_1 , β_2 and β_3

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

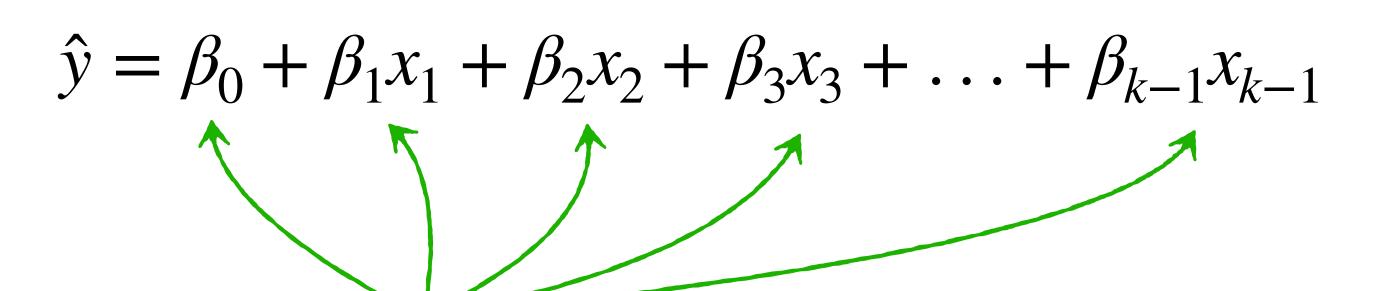
$$\frac{\partial}{\partial \beta_0} \frac{1}{2n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_{k-1} \hat{x}_{(k-1)i})^2$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{2n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_{k-1} \hat{x}_{(k-1)i})^2$$

$$\frac{\partial}{\partial \beta_2} \frac{1}{2n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_{k-1} \hat{x}_{(k-1)i})^2$$

•

$$\frac{\partial}{\partial \beta_{k-1}} \frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_{k-1} \hat{x}_{(k-1)i})^2$$



Has k parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i} - \beta_3 x_{3i} - \dots - \beta_{k-1} x_{(k-1)i})^2$$

Compute k partial derivatives

A linear model in k dimensions...

Gradient Descent

Gradient Descent Algorithm

Step 2: Compute the partial derivative of the MSE w.r.t β_0 , β_1 , β_2 and β_3 - this is the slope at that point

Step 3: Calculate a step size that is proportional to the slope

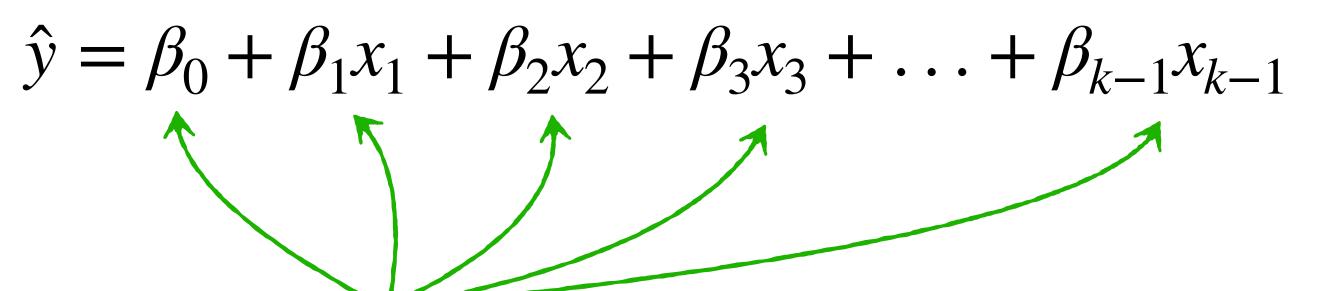
$$step_size_{\beta_0} = \frac{\partial}{\beta_0} MSE \times learning_rate$$

$$step_size_{\beta_1} = \frac{\partial}{\beta_1} MSE \times learning_rate$$

$$step_size_{\beta_2} = \frac{\partial}{\beta_2} MSE \times learning_rate$$

•

$$step_size_{\beta_k} = \frac{\partial}{\beta_{k-1}} MSE \times learning_rate$$



Has k parameters

And a cost function...

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i} - \beta_3 x_{3i} - \dots - \beta_{k-1} x_{(k-1)i})^2$$

Compute *k* step sizes

Gradient Descent

$\hat{y} = \beta_0 + \beta_1 \hat{x}_1 + \beta_2 \hat{x}_2 + \beta_3 \hat{x}_3 + \dots + \beta_k \hat{x}_k$

Gradient Descent: Basic Concept

Step 1: Start with random values for β_0 , β_1 , β_2 and β_2

Step 2: Compute the partial derivative of the SSR

Has k +

Computing k partial derivatives isn't practical

 $\sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_{1i} - \beta_2 \hat{x}_{2i} - \beta_3 \hat{x}_{3i} - \dots - \beta_k \hat{x}_{ki})^2$

Compute k+ 1 step sizes

$$step_size_{\beta_2} = \frac{\partial}{\beta_2} SSR \times learning_rate$$

 $step_size_{\beta_k} = \frac{\partial}{\partial s}SR \times learning_rate$

20

that point

ortional

Multiple Regression

Lets use a Matrix

Multiple Regression

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_{k-1} x_{k-1}$$

$$\hat{y}_n = 1 \times \beta_0 + x_{1n} \times \beta_1 + x_{2n} \times \beta_2 + x_{3n} \times \beta_3 + \dots + x_{k-1n} \times \beta_{k-1}$$

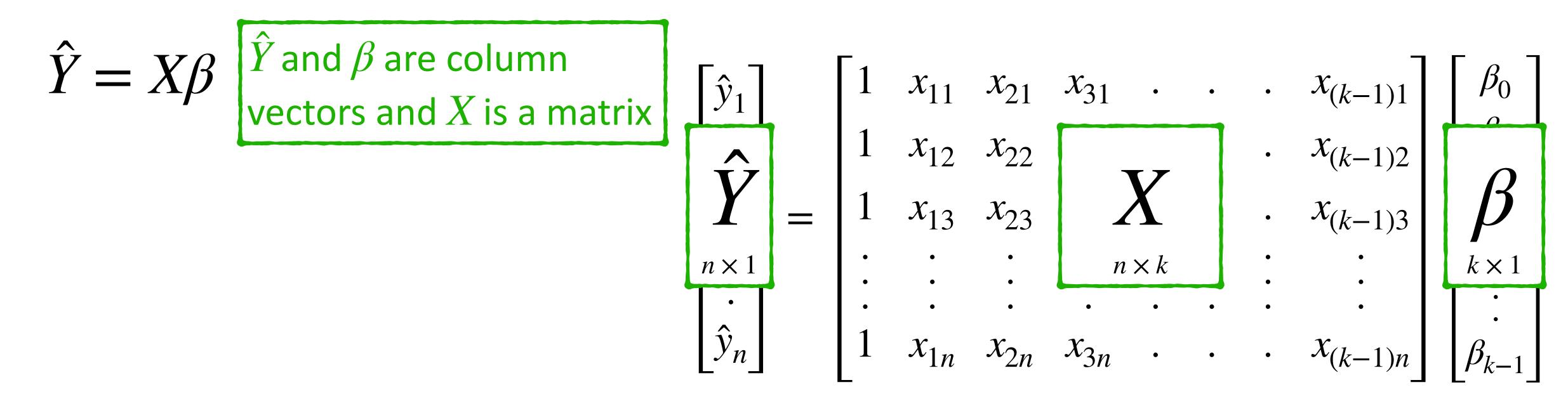
$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & x_{31} & . & . & . & x_{(k-1)1} \\ 1 & x_{12} & x_{22} & x_{32} & . & . & . & x_{(k-1)2} \\ 1 & x_{13} & x_{23} & x_{33} & . & . & . & x_{(k-1)3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1n} & x_{2n} & x_{3n} & . & . & . & x_{(k-1)n} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_{k-1} \end{bmatrix}$$

- 1 dependent variable \hat{y}
- k-1 independent variables x_1 , x_2 , x_3 ... x_{k-1} k parameters β_0 , β_1 , β_2 , β_3 ... β_{k-1}

Multiple Regression

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_{k-1} x_{k-1}$$

$$\hat{Y} = X \beta$$
 \hat{Y} and β are column vectors and X is a matrix



- 1 dependent variable \hat{y}
- k-1 independent variables x_1 , x_2 , x_3 ... x_{k-1} k parameters β_0 , β_1 , β_2 , β_3 ... β_{k-1}

Multiple Regression

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_{k-1} x_{k-1}$$

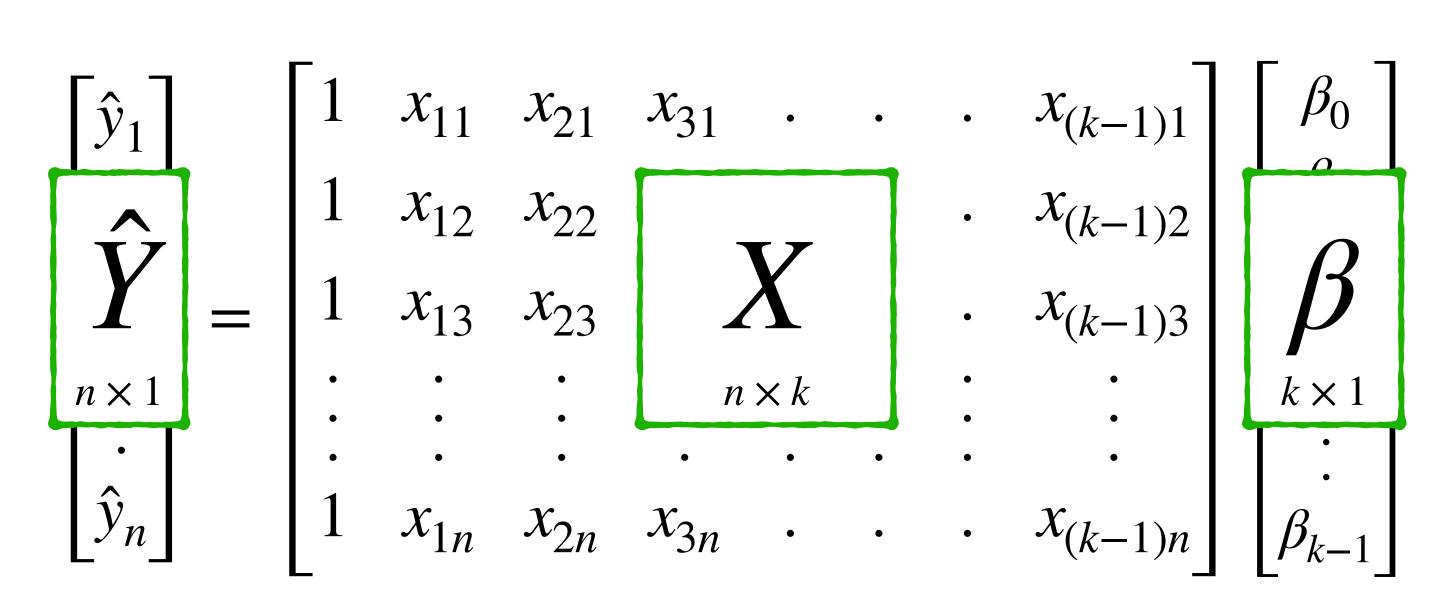
$$\hat{Y} = X\beta$$

The Mean Squared Error (MSE):

$$\frac{1}{2n} \parallel Y - X\beta \parallel^2$$

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^{2}$$



Lets compute this matrix derivative

$$\hat{Y} = X\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{\partial}{\partial \beta} \frac{1}{2n} \left(\sqrt{(Y - X\beta)^T (Y - X\beta)} \right)^2$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta)$$

$$let A = (Y - X\beta)$$

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A)$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

$$\hat{Y} = X\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{\partial}{\partial \beta} \frac{1}{2n} \left(\sqrt{(Y - X\beta)^T (Y - X\beta)} \right)^2$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta)$$

$$let A = (Y - X\beta)$$

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A)$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

Euclidean norm of a matrix: $||A|| = \sqrt{A^T A}$

$$\hat{Y} = X\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{\partial}{\partial \beta} \frac{1}{2n} \left(\sqrt{(Y - X\beta)^T (Y - X\beta)} \right)^2$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta)$$

$$let A = (Y - X\beta)$$

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A)$$
$$= \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

Euclidean norm of a matrix: $||A|| = \sqrt{A^T A}$

Chain Rule for Derivative

$$\hat{Y} = X\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

$$= \frac{2}{2n} A^T \frac{\partial}{\partial \beta} (Y - X\beta)$$

$$= \frac{1}{n} A^T (-X)$$

$$= \frac{1}{n} (Y - X\beta)^T (-X)$$

$$= -\frac{1}{n} (Y - X\beta)^T (X)$$

$$\hat{Y} = X\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

$$= \frac{2}{2n} A^T \frac{\partial}{\partial \beta} (Y - X\beta)$$

$$= \frac{1}{n} A^T (-X)$$

$$= \frac{1}{n} (Y - X\beta)^T (-X)$$

$$= -\frac{1}{n} (Y - X\beta)^T (X)$$

Chain Rule for Derivative

$$\hat{Y} = X\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

$$= \frac{2}{2n} A^T \frac{\partial}{\partial \beta} (Y - X\beta)$$

$$= \frac{1}{n} A^T (-X)$$

$$= \frac{1}{n} (Y - X\beta)^T (-X)$$

$$= -\frac{1}{n} (Y - X\beta)^T (X)$$

Chain Rule for Derivative

$$\frac{\partial}{\partial A} A^T A = 2A^T$$

$$\hat{Y} = X\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{2n} \frac{\partial}{\partial \beta} (A)^T (A) \frac{\partial}{\partial \beta} A$$

$$= \frac{2}{2n} A^T \frac{\partial}{\partial \beta} (Y - X\beta)$$

$$= \frac{1}{n} A^T (-X)$$

$$= \frac{1}{n} (Y - X\beta)^T (-X)$$

$$= -\frac{1}{n} (Y - X\beta)^T (X)$$

Chain Rule for Derivative

$$\frac{\partial}{\partial A} A^T A = 2A^T$$

$$\frac{\partial}{\partial \beta}(Y - X\beta) = -X$$

$$\hat{Y} = X\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} (Y - X\beta)^T (X)$$

Gradient Vector: $1 \times (k+1)$ row vector

because...

$$\hat{Y} = X\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} (Y - X\beta)^T (X)$$

Gradient Vector: $1 \times (k+1)$ row vector

because...

$$Y$$
 is a $(n+1) \times 1$ column vector $X\beta$ is a $(n+1) \times 1$ column vector

$$(Y - X\beta)$$
 is a $(n + 1) \times 1$ column vector

$$(Y - X\beta)$$
 is a $(n + 1) \times 1$ column vector $(Y - X\beta)^T$ is a $1 \times (n + 1)$ row vector X is a $(n + 1) \times (k + 1)$ matrix

$$X$$
 is a $(n+1) \times (k+1)$ matrix

$$(Y - X\beta)^T(X)$$
 is a $1 \times (k+1)$ row vector

$$\hat{Y} = X\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} (Y - X\beta)^T (X)$$

Gradient Vector: $1 \times (k+1)$ row vector

Transpose it to get the column vector

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \left(-\frac{1}{n} (Y - X\beta)^T (X) \right)^T$$

$$= -\frac{1}{n} X^T (Y - X\beta) \longleftarrow$$

$$= \frac{1}{n} X^T (X\beta - Y)$$

Gradient Vector: $(k + 1) \times 1$ column vector

$$\hat{Y} = X\beta$$

Multiple Regression

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = -\frac{1}{n} (Y - X\beta)^T (X)$$

Gradient Vector: $1 \times (k+1)$ row vector

Transpose it to get the column vector

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \left(-\frac{1}{n} (Y - X\beta)^T (X) \right)^T$$

$$= -\frac{1}{n} X^T (Y - X\beta)$$

$$= \frac{1}{n} X^T (X\beta - Y)$$

$$(AB)^T = B^T A^T$$

Gradient Vector: $(k + 1) \times 1$ column vector

$$\hat{Y} = X\beta$$

Multiple Regression

The Mean Squared Error (MSE):

$$\frac{1}{2n} || Y - X\beta ||^2 \leftarrow Cost Function$$

Partial Derivative w.r.t β :

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{n} X^T (X\beta - Y)$$
 Partial Derivative w.r.t β

Lets walk through gradient descent using this matrix representation of the Cost Function and its partial derivative (the gradient vector)

$$\hat{Y} = X\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \parallel Y - X\beta \parallel^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{n} X^T (X\beta - Y)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β by subtracting the step size

$$\hat{Y} = X\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{n} X^T (X\beta - Y)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

$$d_cost = \frac{1}{n}X^{T}(X\beta - Y)$$

Step 3: Calculate a step size that is proportional to the slope

Step 4: Calculate new values for β_0 and β_1 by subtracting the step size

$$\hat{Y} = X\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{n} X^T (X\beta - Y)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

$$d_cost = \frac{1}{n} X^{T} (X\beta - Y)$$

Step 3: Calculate a step size that is proportional to the slope

$$step_size = d_cost \times learning_rate$$

Step 4: Calculate new values for β by subtracting the step size

$$\hat{Y} = X\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{n} X^T (X\beta - Y)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

$$d_cost = \frac{1}{n} X^{T} (X\beta - Y)$$

Step 3: Calculate a step size that is proportional to the slope

$$step_size = d_cost \times learning_rate$$

Step 4: Calculate new values for β by subtracting the step size

$$\beta = \beta - step_size$$

Step 5: Go to step 2 and repeat

33

$$\hat{Y} = X\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \parallel Y - X\beta \parallel^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{n} X^T (X\beta - Y)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

$$d_cost = \frac{1}{n} X^{T} (X\beta - Y)$$

Step 3: Calculate a step size that is proportional to the slope

$$step_size = d_cost \times learning_rate$$

Step 4: Calculate new values for β by subtracting the step size

$$\beta = \beta - step_size$$

$$\hat{Y} = X\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{n} X^T (X\beta - Y)$$

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

Gradient Descent continues in this manner until the step size is close to zero or a fixed number of iterations

Step 4: Calculate new values for β by subtracting the step size

$$\beta = \beta - step_size$$

$$\hat{Y} = X\beta$$

Cost Function (Mean Squared Error (MSE)):

$$\frac{1}{2n} \| Y - X\beta \|^2$$

Gradient Vector (Partial Derivative w.r.t β):

$$\frac{\partial}{\partial \beta} \frac{1}{2n} \| Y - X\beta \|^2 = \frac{1}{n} X^T (X\beta - Y)$$

Matrix algebra allows us to compute gradients and step sizes in a single computation

Gradient Descent

Gradient Descent: Basic Concept

Step 1: Start with random values for β

Step 2: Compute the partial derivative of the cost function w.r.t β

Gradient Descent continues in this manner until the step size is close to zero or a fixed number of iterations

Step 4: Calculate new values for β by subtracting the step size

$$\beta = \beta - step_size$$

Related Tutorials & Textbooks

Multiple Regression [3]

Multiple regression extends the two dimensional linear model introduced in Simple Linear Regression to k+1 dimensions with one dependent variable, k independent variables and k+1 parameters.

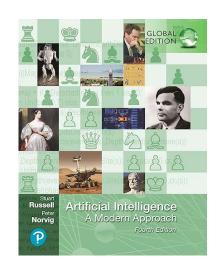
Gradient Descent for Simple Linear Regression

Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear model in multiple dimensions.

Logistic Regression

An introduction to Logistic Regression. A Logistic Regression model use used to predict a binary value (the dependent variable) for one or more independent variables using a threshold to classify a probability.

Recommended Textbooks



<u>Artificial Intelligence: A Modern Approach</u>

by Peter Norvig, Stuart Russell

For a complete list of tutorials see:

https://arrsingh.com/ai-tutorials