Multiple Regression Deriving the Matrix Form

Rahul Singh rsingh@arrsingh.com

Multiple Regression

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_{k-1} x_{k-1}$$

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & x_{31} & . & . & . & x_{(k-1)1} \\ 1 & x_{12} & x_{22} & x_{32} & . & . & . & x_{(k-1)2} \\ 1 & x_{13} & x_{23} & x_{33} & . & . & . & x_{(k-1)3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1n} & x_{2n} & x_{3n} & . & . & . & x_{(k-1)n} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_{k-1} \end{bmatrix}$$

- 1 dependent variable \hat{y}
- k-1 independent variables x_1 , x_2 , x_3 ... x_{k-1} k parameters β_0 , β_1 , β_2 , β_3 ... β_{k-1}

Multiple Regression

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_{k-1} x_{k-1}$$

$$\hat{y}_n = 1 \times \beta_0 + \hat{x}_{1n} \times \beta_1 + \hat{x}_{2n} \times \beta_2 + \hat{x}_{3n} \times \beta_3 + \dots + \hat{x}_{kn} \times \beta_k$$

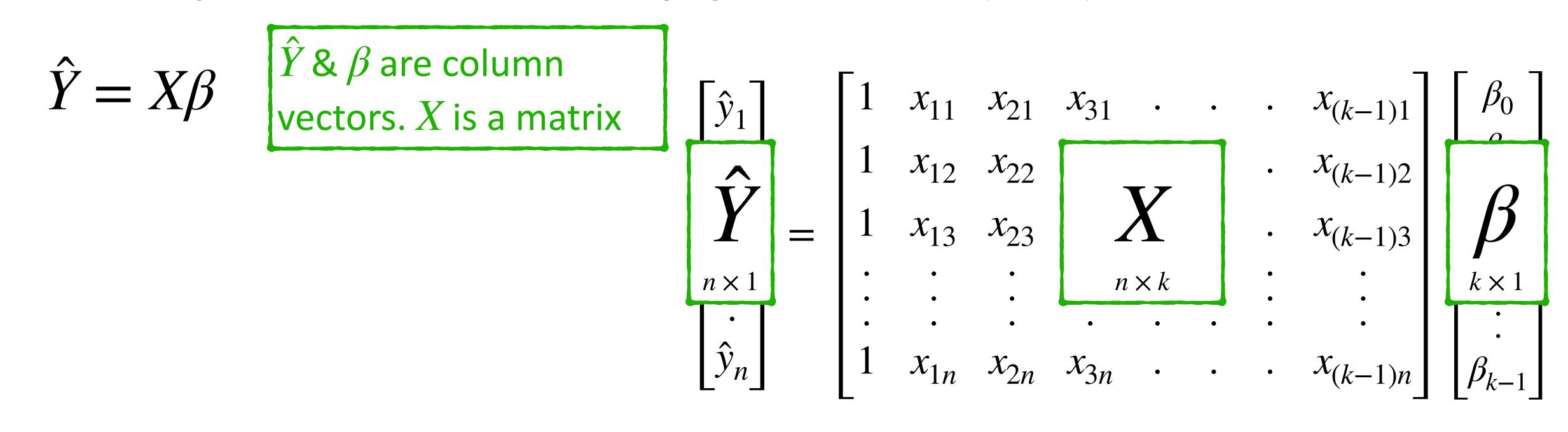
$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{21} & x_{31} & . & . & . & x_{(k-1)1} \\ 1 & x_{12} & x_{22} & x_{32} & . & . & . & x_{(k-1)2} \\ 1 & x_{13} & x_{23} & x_{33} & . & . & . & x_{(k-1)3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1n} & x_{2n} & x_{3n} & . & . & . & x_{(k-1)n} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \\ \beta_{k-1} \end{bmatrix}$$

- 1 dependent variable \hat{y}
- k-1 independent variables x_1 , x_2 , x_3 ... x_{k-1} k parameters β_0 , β_1 , β_2 , β_3 ... β_{k-1}

Multiple Regression

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_{k-1} x_{k-1}$$

$$\hat{Y} = X\beta$$



- 1 dependent variable \hat{y}
- k-1 independent variables $x_1, x_2, x_3 \dots x_{k-1}$ k parameters $\beta_0, \beta_1, \beta_2, \beta_3 \dots \beta_{k-1}$

Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 x_1$$

Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 x_1$$

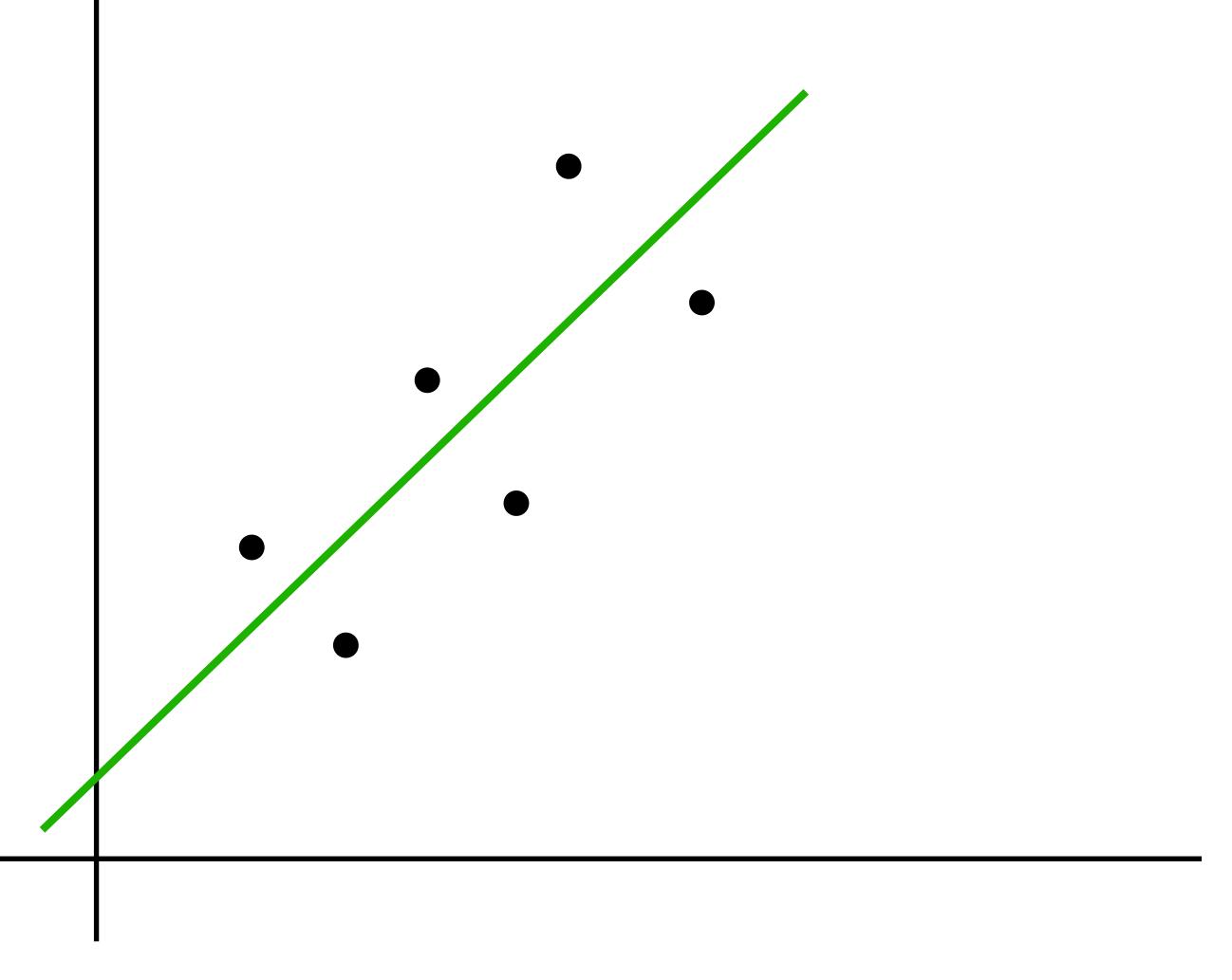
$$\hat{Y} = X\beta$$
 Matrix form

Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 x_1$$

$$\hat{Y} = X\beta$$

Matrix form



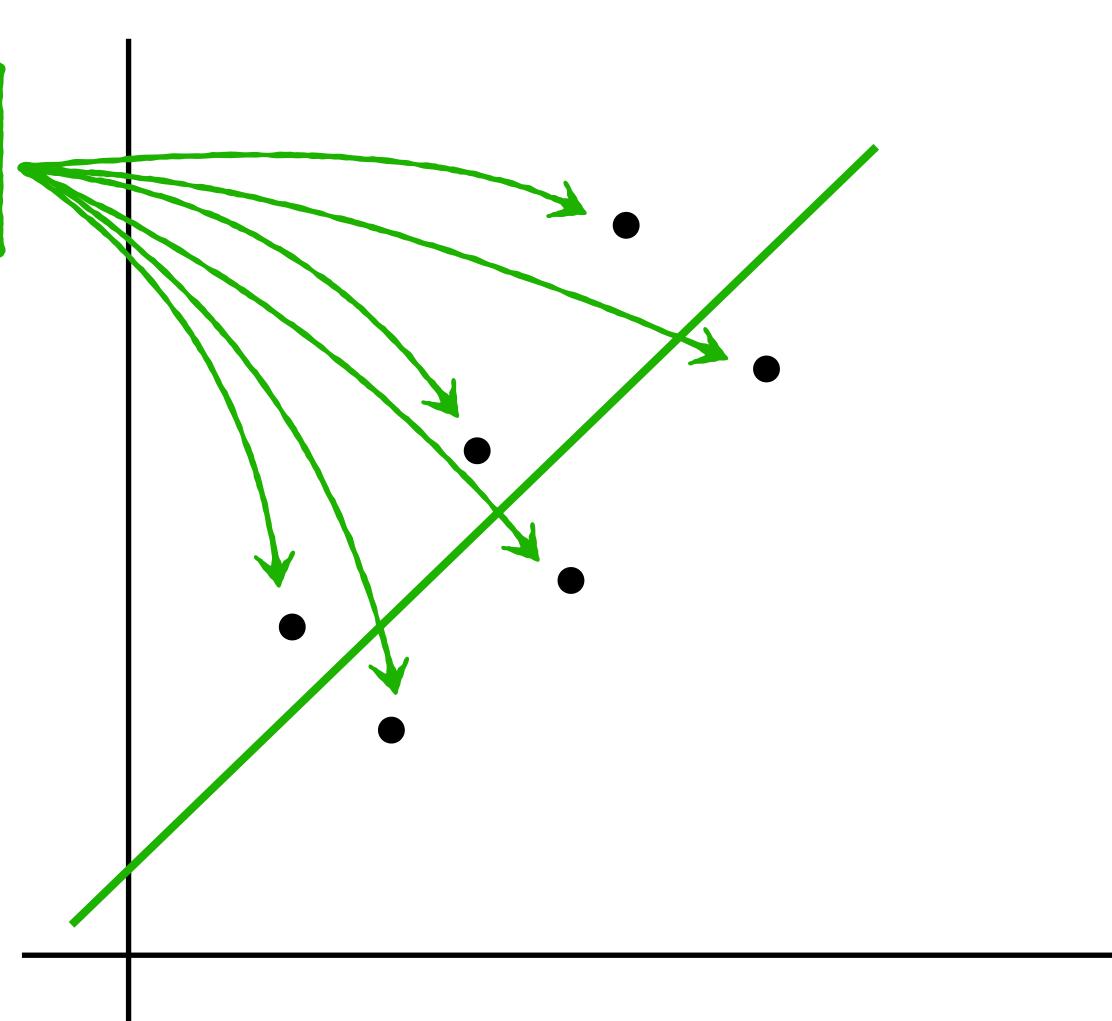
Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 x_1$$

$$\hat{Y} = X\beta$$

Given a matrix (Y)of observations

Matrix form



Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 x_1$$

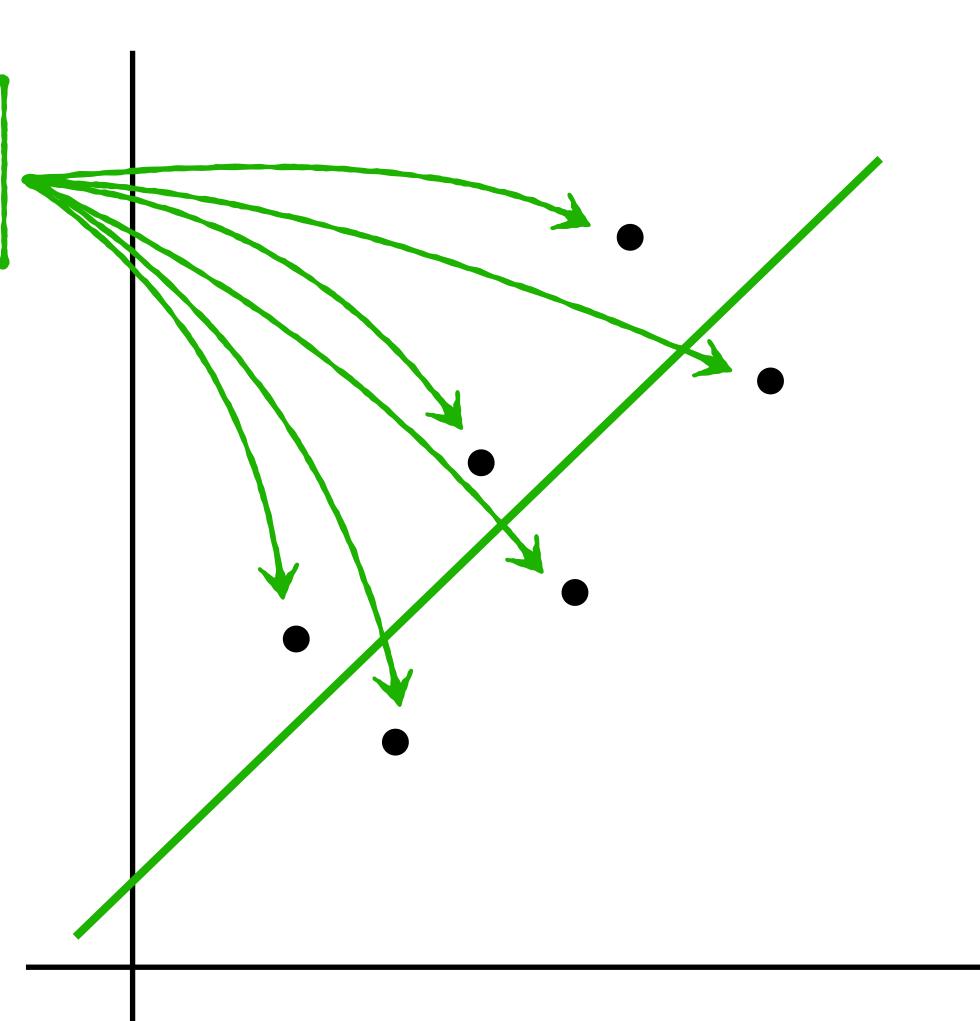
Given a matrix
$$(Y)$$
 of observations

$$\hat{Y} = X\beta$$

Matrix form

The Mean Squared Error (MSE)

$$\frac{1}{n} \parallel Y - \hat{Y} \parallel^2$$



Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 x_1$$

Given a matrix
$$(Y)$$
 of observations

$$\hat{Y} = X\beta$$

Matrix form

The Mean Squared Error (MSE)

$$\frac{1}{n} \parallel Y - \hat{Y} \parallel^2$$

The two parallel vertical lines mean that this is the Euclidean Norm of the matrix

See Tutorial on Matrices & Differential Calculus

Copyright (c) 2025, Rahul Singh, licensed under CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Simple Linear Regression

$$\hat{y} = \beta_0 + \beta_1 x_1$$

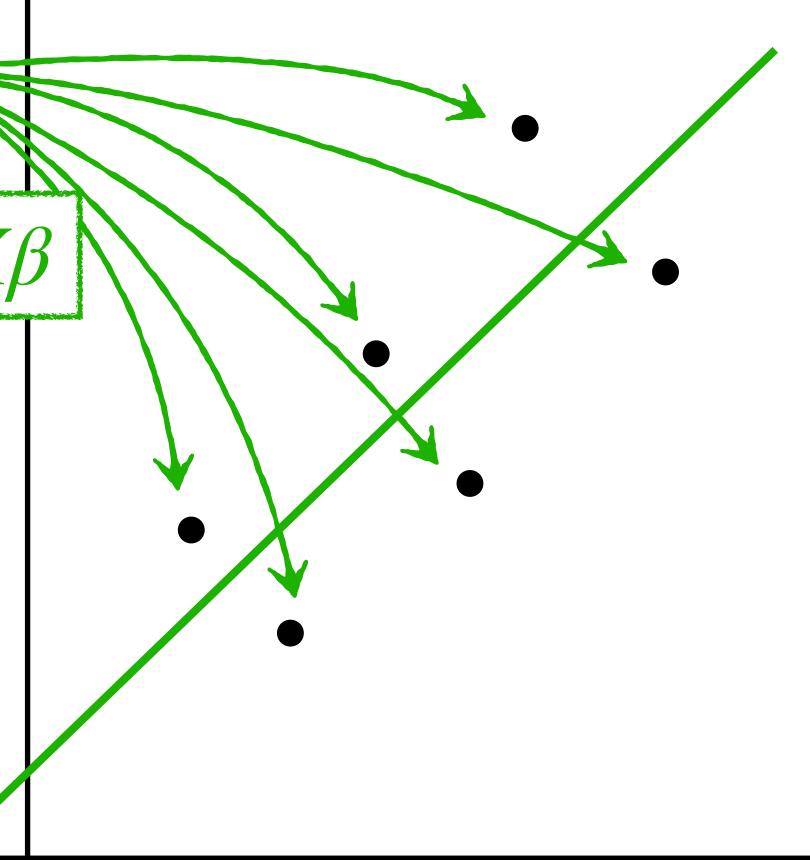
$$\hat{Y} = X\beta$$

Given a matrix (Y)of observations

Substituting $\hat{Y} = X\beta$

The Mean Squared Error (MSE)

$$\frac{1}{n} \| Y - \hat{Y} \|^2 = \frac{1}{n} \| Y - X\beta \|^2$$



Multiple Regression

$$\hat{Y} = X\beta$$

The Mean Squared Error (MSE):

$$\frac{1}{n} \| Y - X\beta \|^2$$

Multiple Regression

$$\hat{Y} = X\beta$$

The Mean Squared Error (MSE):

$$\frac{1}{m} \| Y - X\beta \|^2$$

The Problem Statement:

Multiple Regression: Compute the matrix etasuch that the Mean Squared Error (MSE) is minimized.

To derive value of the matrix β we calculate the partial derivative of the Mean Squared Error (MSE) w.r.t β and solve for β

$$\frac{1}{n} \| Y - X\beta \|^2$$

To derive value of the matrix β we calculate the partial derivative of the Mean Squared Error (MSE) w.r.t β and solve for β

$$\frac{1}{n} \parallel Y - X\beta \parallel^2$$

$$\frac{\partial}{\partial \beta} \frac{1}{n} \| Y - X\beta \|^2 = 0$$

To derive value of the matrix β we calculate the partial derivative of the Mean Squared Error (MSE) w.r.t β and solve for β

$$\frac{1}{n} \| Y - X\beta \|^2$$

$$\frac{\partial}{\partial \beta} \frac{1}{n} \| Y - X\beta \|^2 = 0$$

Euclidean norm of a matrix:

$$||A|| = \sqrt{A^T A}$$

To derive value of the matrix β we calculate the partial derivative of the Mean Squared Error (MSE) w.r.t β and solve for β

$$\frac{1}{n} \| Y - X\beta \|^{2}$$

$$\frac{\partial}{\partial \beta} \frac{1}{n} \| Y - X\beta \|^{2} = 0$$

$$\Rightarrow \frac{1}{n} \frac{\partial}{\partial \beta} \left(\sqrt{(Y - X\beta)^{T} (Y - X\beta)} \right)^{2} = 0$$

Euclidean norm of a matrix:

$$||A|| = \sqrt{A^T A}$$

To derive value of the matrix β we calculate the partial derivative of the Mean Squared Error (MSE) w.r.t β and solve for β

$$\frac{1}{n} \| Y - X\beta \|^{2}$$

$$\frac{\partial}{\partial \beta} \frac{1}{n} \| Y - X\beta \|^{2} = 0$$

$$\Rightarrow \frac{1}{n} \frac{\partial}{\partial \beta} \left(\sqrt{(Y - X\beta)^{T} (Y - X\beta)} \right)^{2} = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} \left(\sqrt{(Y - X\beta)^{T} (Y - X\beta)} \right)^{2} = 0$$

Euclidean norm of a matrix:

$$||A|| = \sqrt{A^T A}$$

To derive value of the matrix β we calculate the partial derivative of the Mean Squared Error (MSE) w.r.t β and solve for β

$$\frac{1}{n} \| Y - X\beta \|^{2}$$

$$\frac{\partial}{\partial \beta} \frac{1}{n} \| Y - X\beta \|^{2} = 0$$

$$\Rightarrow \frac{1}{n} \frac{\partial}{\partial \beta} \left(\sqrt{(Y - X\beta)^{T} (Y - X\beta)} \right)^{2} = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} \left(\sqrt{(Y - X\beta)^{T} (Y - X\beta)} \right)^{2} = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} (Y - X\beta)^{T} (Y - X\beta) = 0$$

Euclidean norm of a matrix:

$$||A|| = \sqrt{A^T A}$$

$$\Rightarrow \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta) = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta) = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} (Y - X\beta)^{T} (Y - X\beta) = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^{T} (Y - X\beta) - (X\beta)^{T} (Y - X\beta) = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta) = 0$$

Expanding the first parenthesis

$$\Rightarrow \frac{\partial}{\partial \beta} Y^{T} (Y - X\beta) - (X\beta)^{T} (Y - X\beta) = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta) = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^{T}(Y - X\beta) - (X\beta)^{T}(Y - X\beta) = 0$$
 Expanding the first parenthesis
$$\Rightarrow \frac{\partial}{\partial \beta} Y^{T}Y - Y^{T}X\beta - (X\beta)^{T}(Y - X\beta) = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - Y^T X \beta - (X \beta)^T (Y - X \beta) = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta) = 0$$

Expanding the first parenthesis

$$\Rightarrow \frac{\partial}{\partial \beta} Y^{T} (Y - X\beta) - (X\beta)^{T} (Y - X\beta) = 0$$

Expanding the first parenthesis

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - Y^T X \beta - (X \beta)^T (Y - X \beta) = 0$$

Expanding the second parenthesis $(AB)^T = B^T A^T$

$$\Rightarrow \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta) = 0$$

Expanding the first parenthesis

$$\Rightarrow \frac{\partial}{\partial \beta} Y^{T} (Y - X\beta) - (X\beta)^{T} (Y - X\beta) = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - Y^T X \beta - (X \beta)^T (Y - X \beta) = 0$$
 Expanding the second parenthesis
$$(AB)^T = B^T A^T$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - Y^T X \beta - \beta^T X^T Y + \beta^T X^T X \beta = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta) = 0$$

Expanding the first parenthesis

$$\Rightarrow \frac{\partial}{\partial \beta} Y^{T} (Y - X\beta) - (X\beta)^{T} (Y - X\beta) = 0$$

Expanding the first parenthesis

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - Y^T X \beta - (X \beta)^T (Y - X \beta) = 0$$

Expanding the second parenthesis $(AB)^T = B^T A^T$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - Y^T X \beta - \beta^T X^T Y + \beta^T X^T X \beta = 0$$

Expanding to the derivatives of the individual terms

$$\Rightarrow \frac{\partial}{\partial \beta} (Y - X\beta)^T (Y - X\beta) = 0$$

Expanding the first parenthesis

$$\Rightarrow \frac{\partial}{\partial \beta} Y^{T} (Y - X\beta) - (X\beta)^{T} (Y - X\beta) = 0$$

Expanding the first parenthesis

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - Y^T X \beta - (X \beta)^T (Y - X \beta) = 0$$

Expanding the second parenthesis $(AB)^T = B^T A^T$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - Y^T X \beta - \beta^T X^T Y + \beta^T X^T X \beta = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Expanding to the derivatives of the individual terms

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\boxed{\frac{\partial}{\partial \beta} A = 0}$$

$$\frac{\partial}{\partial \beta} A = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\frac{\partial}{\partial \beta} A = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\frac{\partial}{\partial \beta} A \beta = A$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\frac{\partial}{\partial \beta} A \beta = A$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof: $\beta^T X^T Y = (X^T Y)\beta$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof:
$$\beta^T X^T Y = (X^T Y)\beta$$

$$\beta^T X^T Y = (\beta^T X^T) Y \qquad A^T B^T = (BA)^T Y$$
$$= (X\beta)^T Y$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0 \qquad \begin{cases} \beta^T X^T Y = (\beta^T X^T) Y \\ = (X \beta)^T Y \end{cases}$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof:
$$\beta^T X^T Y = (X^T Y)\beta$$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

• X is a $(n + 1) \times (k + 1)$ matrix

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0 \qquad \begin{cases} \beta^T X^T Y = (\beta^T X^T) Y \\ = (X \beta)^T Y \end{cases}$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof:
$$\beta^T X^T Y = (X^T Y)\beta$$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

- X is a $(n + 1) \times (k + 1)$ matrix
- β is a $(k + 1) \times 1$ column vector

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0 \qquad \begin{cases} \beta^T X^T Y = (\beta^T X^T) Y \\ = (X \beta)^T Y \end{cases}$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof:
$$\beta^T X^T Y = (X^T Y)\beta$$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

- X is a $(n + 1) \times (k + 1)$ matrix
- β is a $(k + 1) \times 1$ column vector
- $\Rightarrow X\beta$ is a $(n+1) \times 1$ column vector

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0 \qquad \begin{cases} \beta^T X^T Y = (\beta^T X^T) Y \\ = (X \beta)^T Y \end{cases}$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof:
$$\beta^T X^T Y = (X^T Y)\beta$$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

- X is a $(n + 1) \times (k + 1)$ matrix
- β is a $(k + 1) \times 1$ column vector
- $\Rightarrow X\beta$ is a $(n+1) \times 1$ column vector
- $\Rightarrow (X\beta)^T$ is $1 \times (n+1)$ row vector

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof:
$$\beta^T X^T Y = (X^T Y)\beta$$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

- X is a $(n + 1) \times (k + 1)$ matrix
- β is a $(k + 1) \times 1$ column vector
- $\Rightarrow X\beta$ is a $(n+1) \times 1$ column vector
- $\Rightarrow (X\beta)^T$ is $1 \times (n+1)$ row vector
- Y is a $(n + 1) \times 1$ column vector

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof:
$$\beta^T X^T Y = (X^T Y)\beta$$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

- X is a $(n + 1) \times (k + 1)$ matrix
- β is a $(k + 1) \times 1$ column vector
- $\Rightarrow X\beta$ is a $(n+1) \times 1$ column vector
- $\Rightarrow (X\beta)^T$ is $1 \times (n+1)$ row vector
- Y is a $(n + 1) \times 1$ column vector
- $\Rightarrow (X\beta)^T Y$ is a scalar (1×1)

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof:
$$\beta^T X^T Y = (X^T Y)\beta$$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

- X is a $(n + 1) \times (k + 1)$ matrix
- β is a $(k + 1) \times 1$ column vector
- $\Rightarrow X\beta$ is a $(n+1) \times 1$ column vector
- $\Rightarrow (X\beta)^T$ is $1 \times (n+1)$ row vector
- Y is a $(n + 1) \times 1$ column vector
- $\Rightarrow (X\beta)^T Y$ is a scalar (1×1)
- $\Rightarrow (X\beta)^T Y$ is symmetric Scalars are always symmetric

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof:
$$\beta^T X^T Y = (X^T Y)\beta$$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

- X is a $(n + 1) \times (k + 1)$ matrix
- β is a $(k + 1) \times 1$ column vector
- $\Rightarrow X\beta$ is a $(n+1) \times 1$ column vector
- $\Rightarrow (X\beta)^T$ is $1 \times (n+1)$ row vector
- Y is a $(n + 1) \times 1$ column vector
- $\Rightarrow (X\beta)^T Y$ is a scalar (1×1)
- $\Rightarrow (X\beta)^T Y$ is symmetric Scalars are always symmetric
- $\Rightarrow \beta^T X^T Y$ is symmetric

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof: $\beta^T X^T Y = (X^T Y)\beta$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

- X is a $(n + 1) \times (k + 1)$ matrix
- β is a $(k + 1) \times 1$ column vector
- $\Rightarrow X\beta$ is a $(n+1) \times 1$ column vector
- $\Rightarrow (X\beta)^T$ is $1 \times (n+1)$ row vector
- Y is a $(n + 1) \times 1$ column vector
- $\Rightarrow (X\beta)^T Y$ is a scalar (1×1)
- $\Rightarrow (X\beta)^T Y$ is symmetric Scalars are always symmetric
- $\Rightarrow \beta^T X^T Y$ is symmetric
- if A is symmetric then $A = A^T$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof:
$$\beta^T X^T Y = (X^T Y)\beta$$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

- X is a $(n + 1) \times (k + 1)$ matrix
- β is a $(k + 1) \times 1$ column vector
- $\Rightarrow X\beta$ is a $(n+1) \times 1$ column vector
- $\Rightarrow (X\beta)^T$ is $1 \times (n+1)$ row vector
- Y is a $(n + 1) \times 1$ column vector
- $\Rightarrow (X\beta)^T Y$ is a scalar (1×1)
- $\Rightarrow (X\beta)^T Y$ is symmetric Scalars are always symmetric
- $\Rightarrow \beta^T X^T Y$ is symmetric
- if A is symmetric then $A = A^T$
- therefore...

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof:
$$\beta^T X^T Y = (X^T Y)\beta$$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

- X is a $(n + 1) \times (k + 1)$ matrix
- β is a $(k + 1) \times 1$ column vector
- $\Rightarrow X\beta$ is a $(n+1) \times 1$ column vector
- $\Rightarrow (X\beta)^T$ is $1 \times (n+1)$ row vector
- Y is a $(n + 1) \times 1$ column vector
- $\Rightarrow (X\beta)^T Y$ is a scalar (1×1)
- $\Rightarrow (X\beta)^T Y$ is symmetric Scalars are always symmetric
- $\Rightarrow \beta^T X^T Y$ is symmetric
- if A is symmetric then $A = A^T$
- therefore...

$$\beta^T X^T Y = (\beta^T X^T Y)^T$$
$$= (X^T Y)^T \beta$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

Proof: $\beta^T X^T Y = (X^T Y)\beta$

$$\beta^T X^T Y = (\beta^T X^T) Y$$
$$= (X\beta)^T Y$$

- X is a $(n + 1) \times (k + 1)$ matrix
- β is a $(k + 1) \times 1$ column vector
- $\Rightarrow X\beta$ is a $(n+1) \times 1$ column vector
- $\Rightarrow (X\beta)^T$ is $1 \times (n+1)$ row vector
- Y is a $(n + 1) \times 1$ column vector
- $\Rightarrow (X\beta)^T Y$ is a scalar (1×1)
- $\Rightarrow (X\beta)^T Y$ is symmetric Scalars are always symmetric
- $\Rightarrow \beta^T X^T Y$ is symmetric
- if A is symmetric then $A = A^T$
- therefore...

$$\beta^T X^T Y = (\beta^T X^T Y)^T$$

$$= (X^T Y)^T \beta \quad Q.E.D$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$(AB)^T = B^T A^T$$
$$(A^T)^T = A$$

$$\Rightarrow \frac{\partial}{\partial \beta} Y^T Y - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - \frac{\partial}{\partial \beta} Y^T X \beta - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} \beta^T X^T Y + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} (X^T Y)^T \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} Y^T X \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$(AB)^T = B^T A^T$$
$$(A^T)^T = A$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} Y^T X \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} Y^T X \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\frac{\partial}{\partial \beta} A \beta = A$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} Y^T X \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - Y^T X + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\frac{\partial}{\partial \beta} A\beta = A$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} Y^T X \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - Y^T X + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - Y^T X + 2\beta^T (X^T X) = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} Y^T X \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - Y^T X + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - Y^T X + 2\beta^T (X^T X) = 0$$

$$\frac{\partial}{\partial \beta} \beta^T A \beta = \beta^T (A^T + A)$$

$$\frac{\partial}{\partial \beta} \beta^T A \beta = \beta^T (A^T + A)$$
if A is symmetric...
$$\frac{\partial}{\partial \beta} \beta^T A \beta = \beta^T (A + A)$$

$$\frac{\partial}{\partial \beta} \beta^T A \beta = 2\beta^T A$$

$$\frac{\partial}{\partial \beta} \beta^T A \beta = 2 \beta^T A$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} Y^T X \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - Y^T X + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - Y^T X + 2\beta^T (X^T X) = 0$$

$$\Rightarrow -2Y^T X + 2\beta^T (X^T X) = 0$$
 Combining the two terms

$$\Rightarrow -2Y^TX + 2\beta^T(X^TX) = 0$$

$$\Rightarrow 0 - Y^T X - \frac{\partial}{\partial \beta} Y^T X \beta + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^T X - Y^T X + \frac{\partial}{\partial \beta} \beta^T X^T X \beta = 0$$

$$\Rightarrow 0 - Y^{T}X - Y^{T}X + 2\beta^{T}(X^{T}X) = 0$$

$$\Rightarrow -2Y^{T}X + 2\beta^{T}(X^{T}X) = 0$$
 Combining the two terms

$$\Rightarrow -2Y^TX + 2\beta^T(X^TX) = 0 \quad \text{Cor}$$

$$\Rightarrow 2\beta^T X^T X = 2Y^T X$$

Adding $2Y^TX$ to both sides

$$\Rightarrow 2\beta^T X^T X = 2Y^T X$$

$$\Rightarrow 2\beta^T X^T X = 2Y^T X$$

Divide both sides by 2

$$\Rightarrow 2\beta^T X^T X = 2Y^T X$$

Divide both sides by 2

$$\Rightarrow \beta^T X^T X = Y^T X$$

$$\Rightarrow 2\beta^T X^T X = 2Y^T X$$

Divide both sides by 2

$$\Rightarrow \beta^T X^T X = Y^T X$$

$$\Rightarrow 2\beta^T X^T X = 2Y^T X$$

Divide both sides by 2

$$\Rightarrow \beta^T X^T X = Y^T X$$

$$\Rightarrow (\beta^T X^T X)^T = (Y^T X)^T$$

$$\Rightarrow 2\beta^T X^T X = 2Y^T X$$

Divide both sides by 2

$$\Rightarrow \beta^T X^T X = Y^T X$$

$$\Rightarrow (\beta^T X^T X)^T = (Y^T X)^T$$

$$(AB)^T = B^T A^T$$
$$(A^T)^T = A$$

$$(A^T)^T = A$$

$$\Rightarrow 2\beta^T X^T X = 2Y^T X$$

Divide both sides by 2

$$\Rightarrow \beta^T X^T X = Y^T X$$

$$\Rightarrow (\beta^T X^T X)^T = (Y^T X)^T$$

$$(AB)^T = B^T A^T$$
$$(A^T)^T = A$$

$$(A^T)^T = A$$

$$\Rightarrow X^T X \beta = X^T Y$$

$$\Rightarrow 2\beta^T X^T X = 2Y^T X$$

Divide both sides by 2

$$\Rightarrow \beta^T X^T X = Y^T X$$

Transpose both sides

$$\Rightarrow (\beta^T X^T X)^T = (Y^T X)^T$$

$$(AB)^T = B^T A^T$$
$$(A^T)^T = A$$

$$(A^T)^T = A$$

$$\Rightarrow X^T X \beta = X^T Y$$

Multiply both sides by $(X^TX)^{-1}$

$$\Rightarrow 2\beta^T X^T X = 2Y^T X$$

Divide both sides by 2

$$\Rightarrow \beta^T X^T X = Y^T X$$

Transpose both sides

$$\Rightarrow (\beta^T X^T X)^T = (Y^T X)^T$$

$$(AB)^T = B^T A^T$$
$$(A^T)^T = A$$

$$(A^T)^T = A$$

$$\Rightarrow X^T X \beta = X^T Y$$

Multiply both sides by $(X^TX)^{-1}$

$$\Rightarrow \beta = (X^T X)^{-1} (X^T Y)$$

$$\Rightarrow 2\beta^T X^T X = 2Y^T X$$

Divide both sides by 2

$$\Rightarrow \beta^T X^T X = Y^T X$$

Transpose both sides

$$\Rightarrow (\beta^T X^T X)^T = (Y^T X)^T$$

$$(AB)^T = B^T A^T$$
$$(A^T)^T = A$$

$$(A^T)^T = A$$

$$\Rightarrow X^T X \beta = X^T Y$$

Multiply both sides by $(X^TX)^{-1}$

$$\Rightarrow \beta = (X^T X)^{-1} (X^T Y)$$

Related Tutorials & Textbooks

Simple Linear Regression

A statistical technique of making predictions from data. The tutorial introduces a linear model in two dimensions and uses that model to predict the value of one dependent variable given one independent variable.

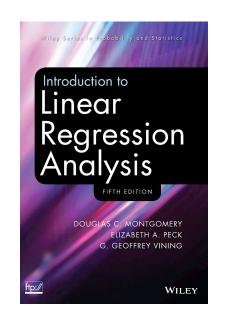
Multiple Regression []

Multiple regression extends the two dimensional linear model introduced in Simple Linear Regression to k+1 dimensions with one dependent variable, k independent variables and k+1 parameters.

Gradient Descent for Multiple Regression

Gradient Descent algorithm for multiple regression and how it can be used to optimize k + 1 parameters for a Linear model in multiple dimensions.

Recommended Textbooks



Introduction to Linear Regression Analysis

by Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

For a complete list of tutorials see:

https://arrsingh.com/ai-tutorials