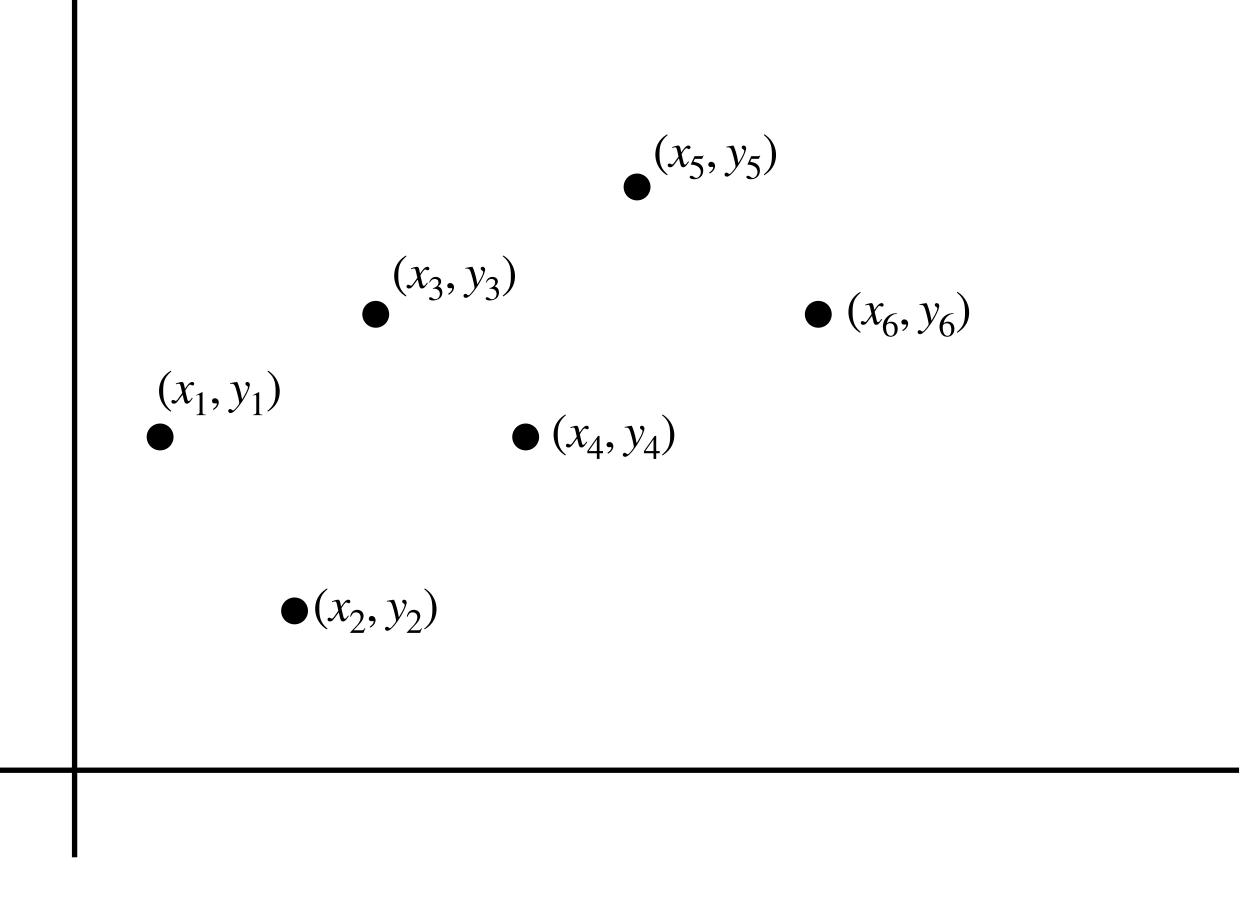
Simple Linear Regression Proof of the Closed Form Solution

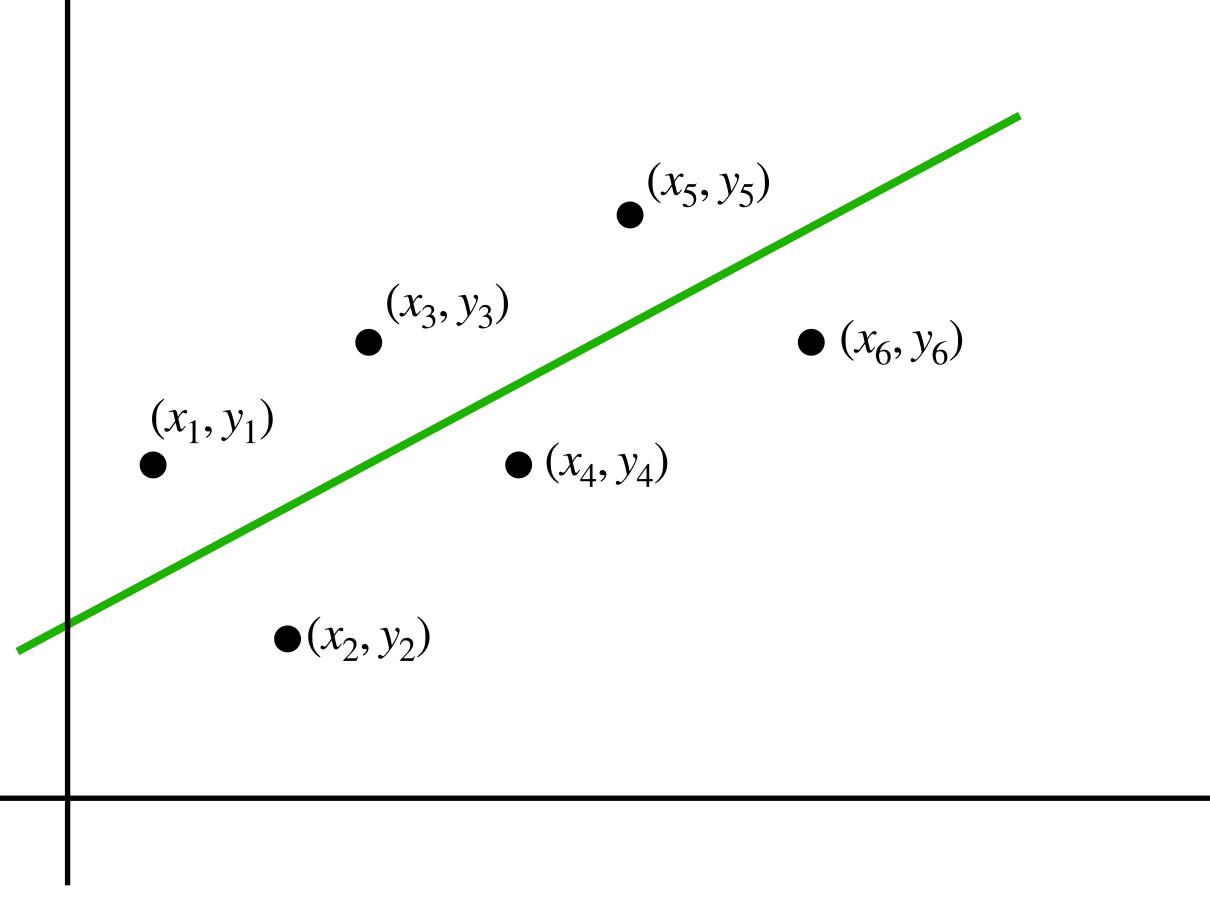
Rahul Singh rsingh@arrsingh.com

Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

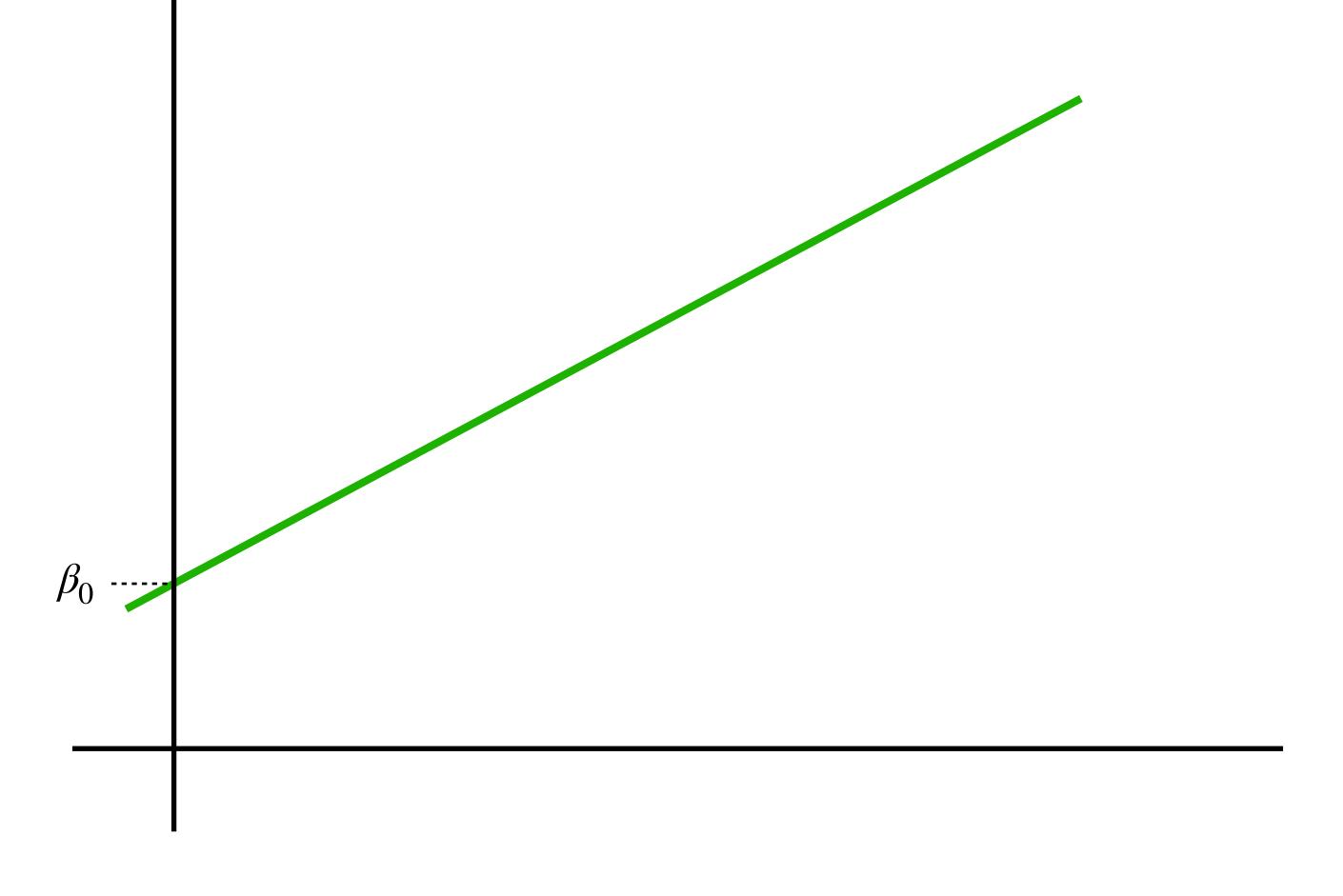
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

 β_0 Is the Y intercept

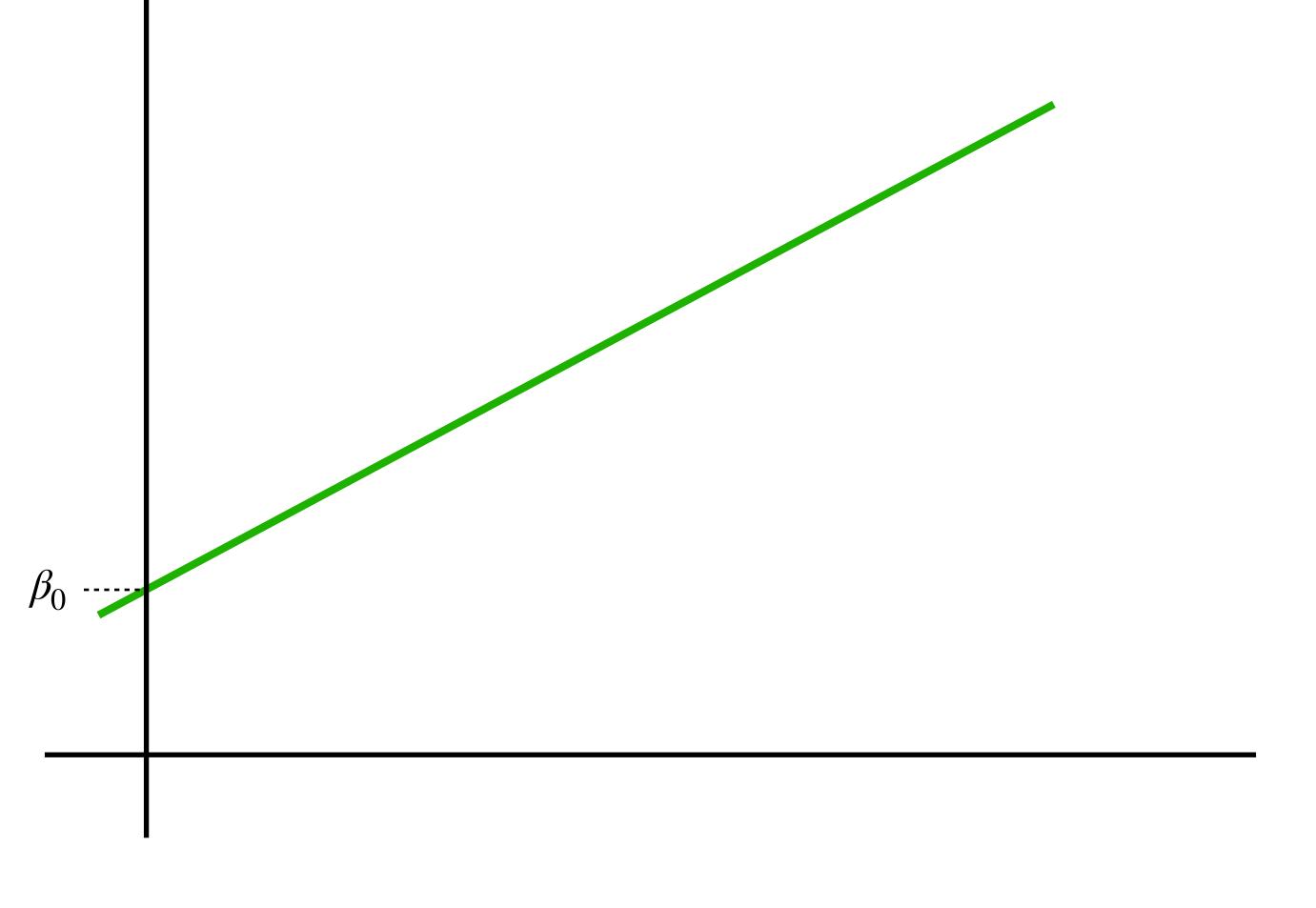


Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

 β_0 Is the Y intercept

 β_1 Is the slope of the line

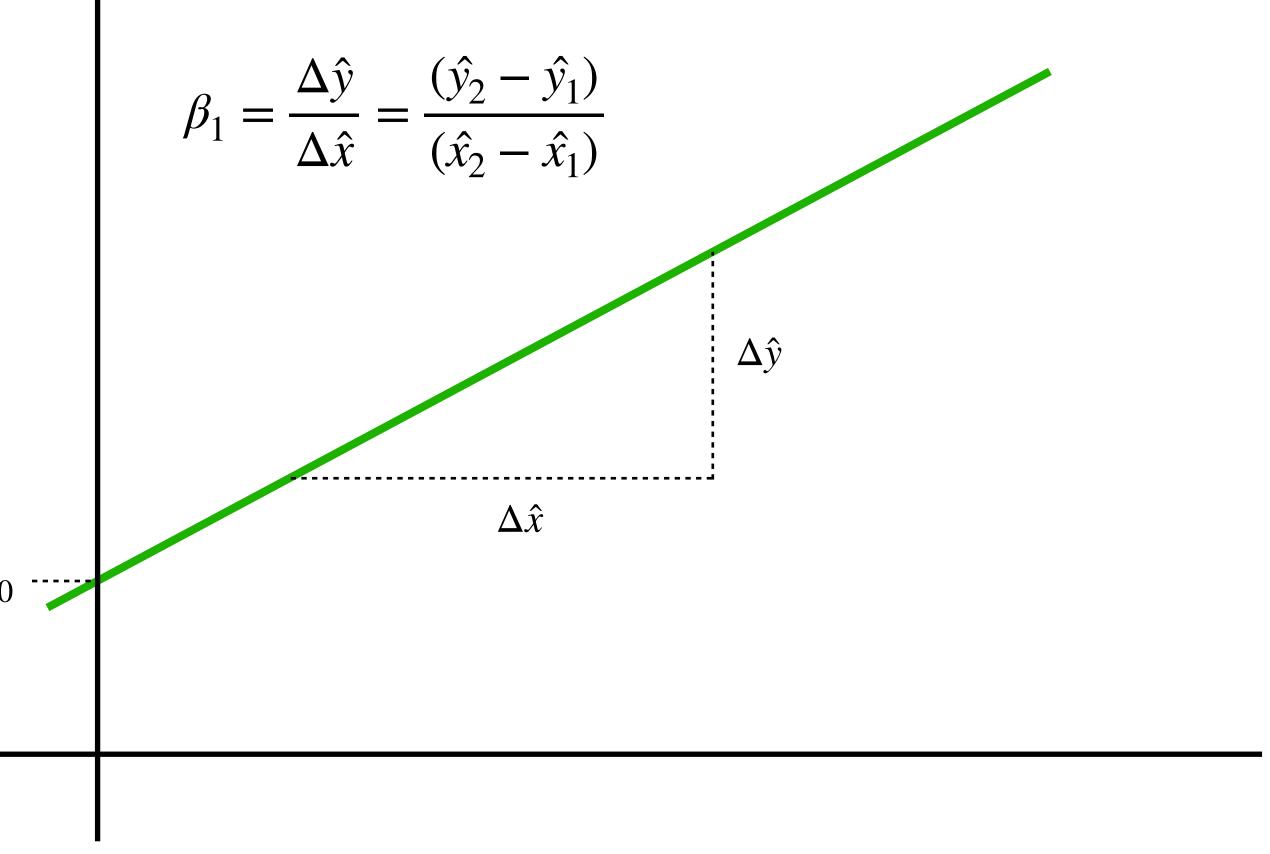


Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

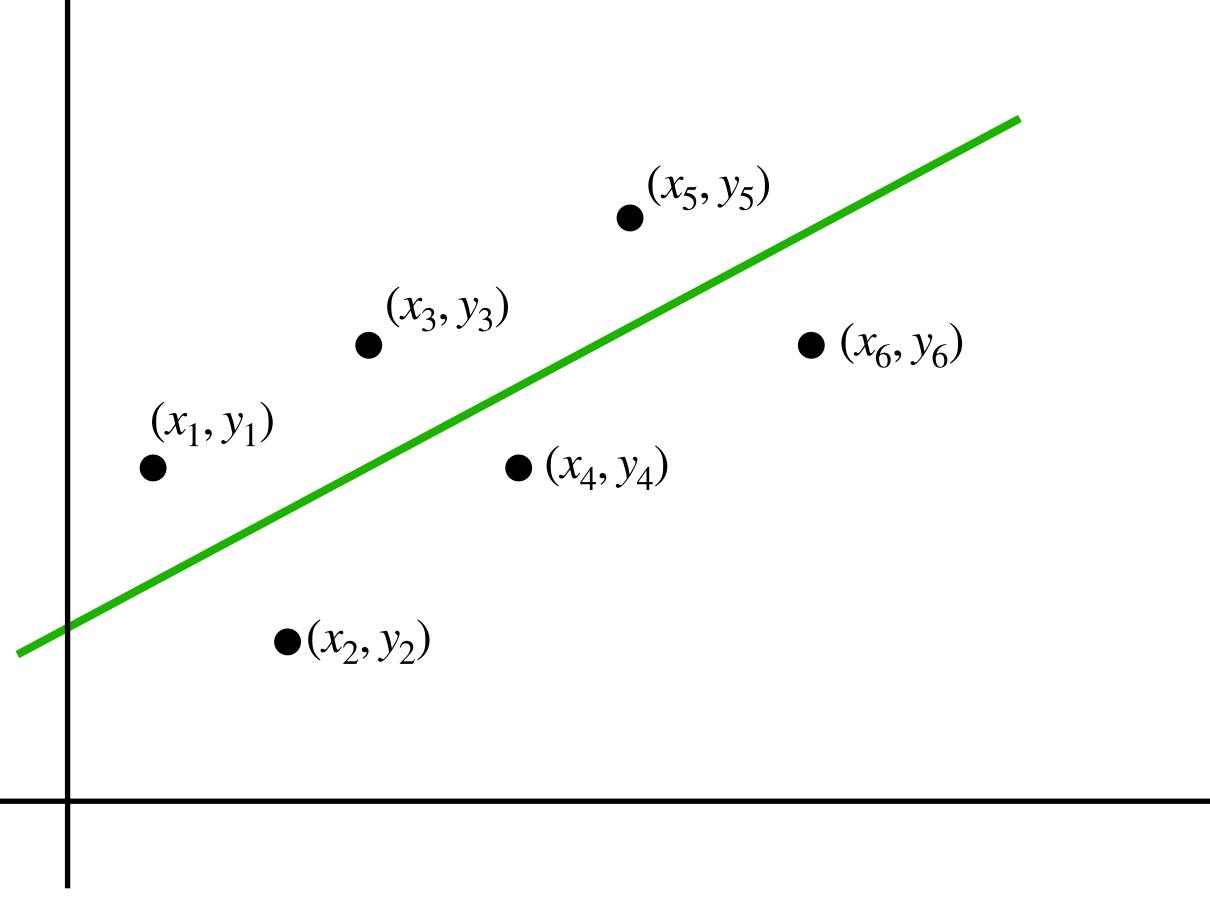
 eta_0 Is the Y intercept

 β_1 Is the slope of the line



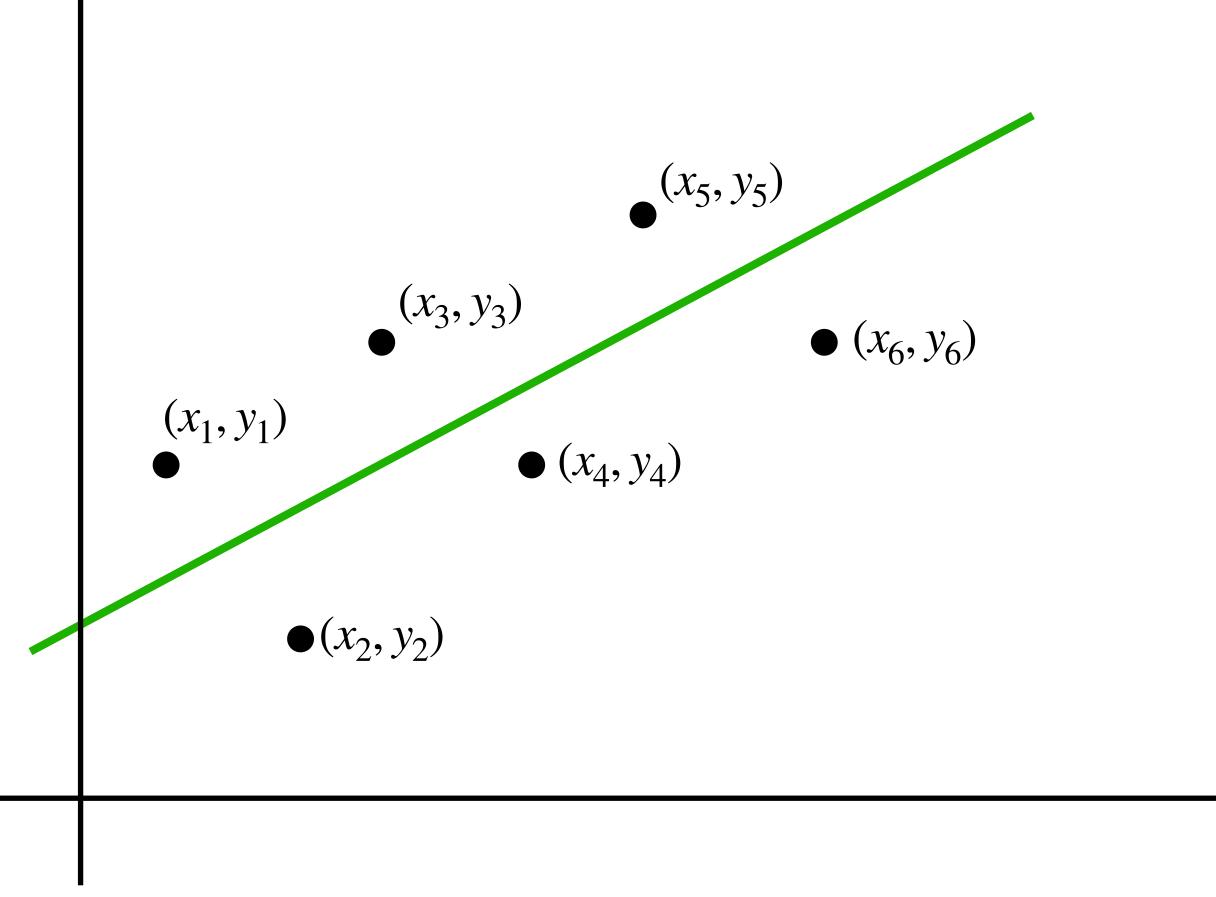
Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

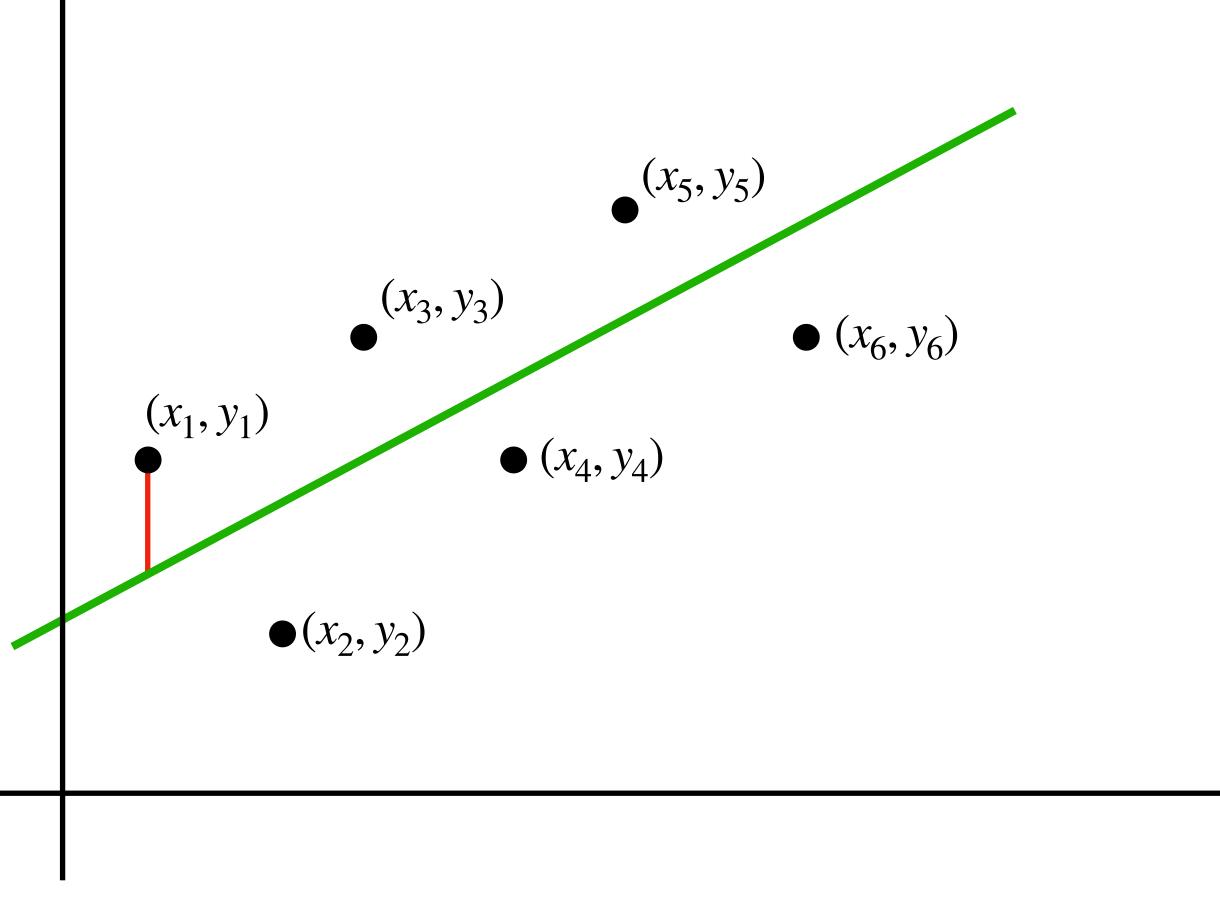
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

$$(y_1 - \hat{y_1})^2$$



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

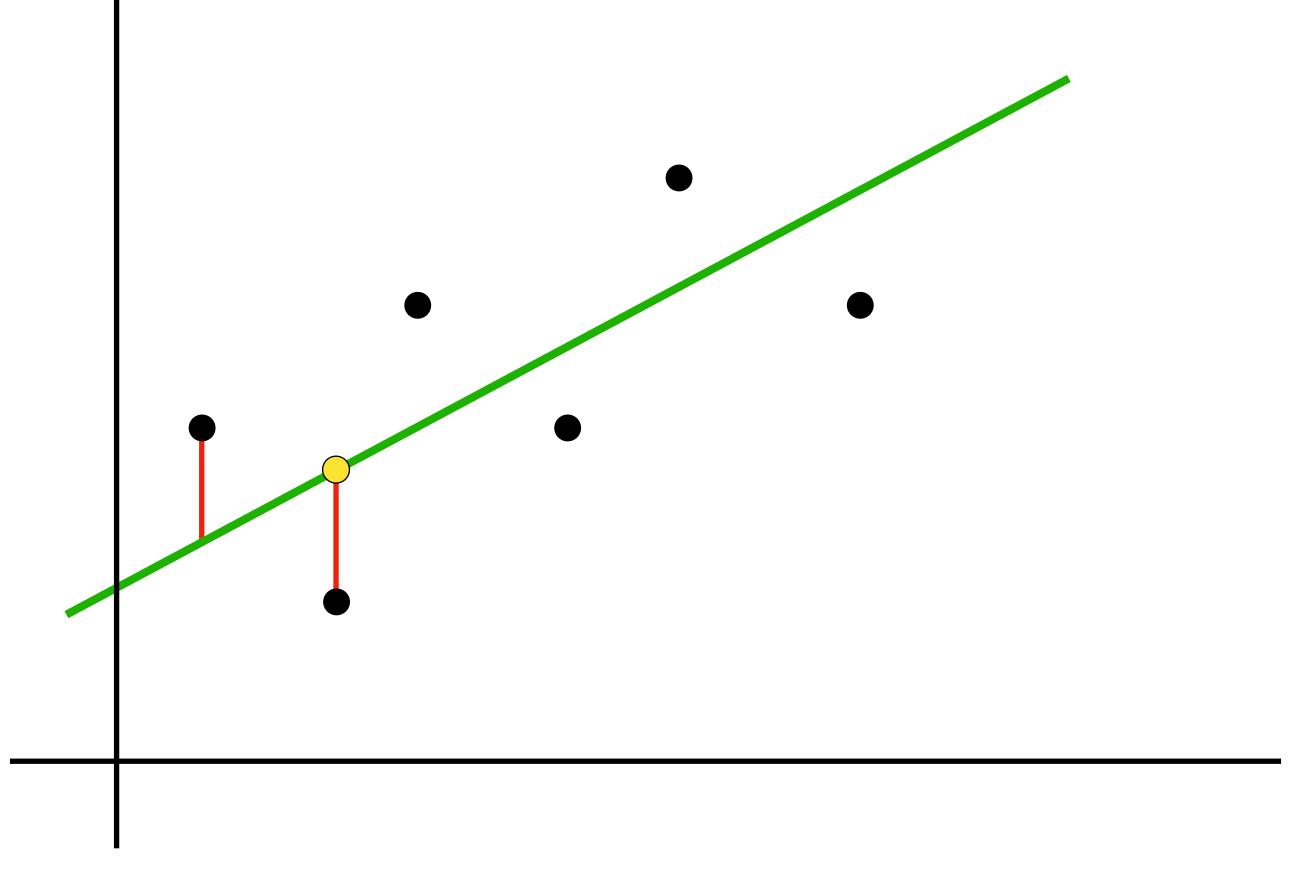
$$(y_1 - \hat{y_1})^2$$



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

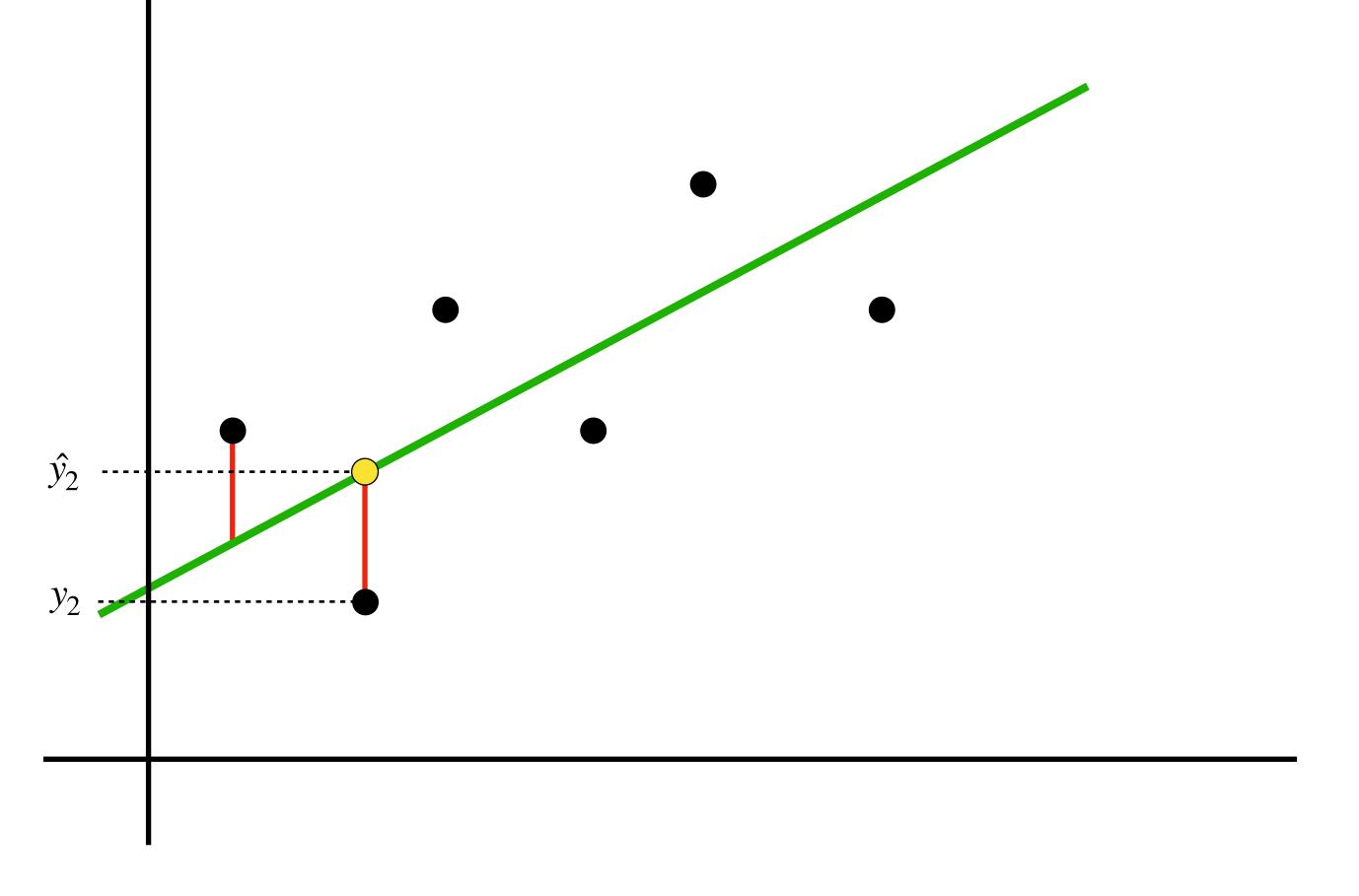
$$(y_1 - \hat{y_1})^2 + (y_2 - \hat{y_2})^2$$



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

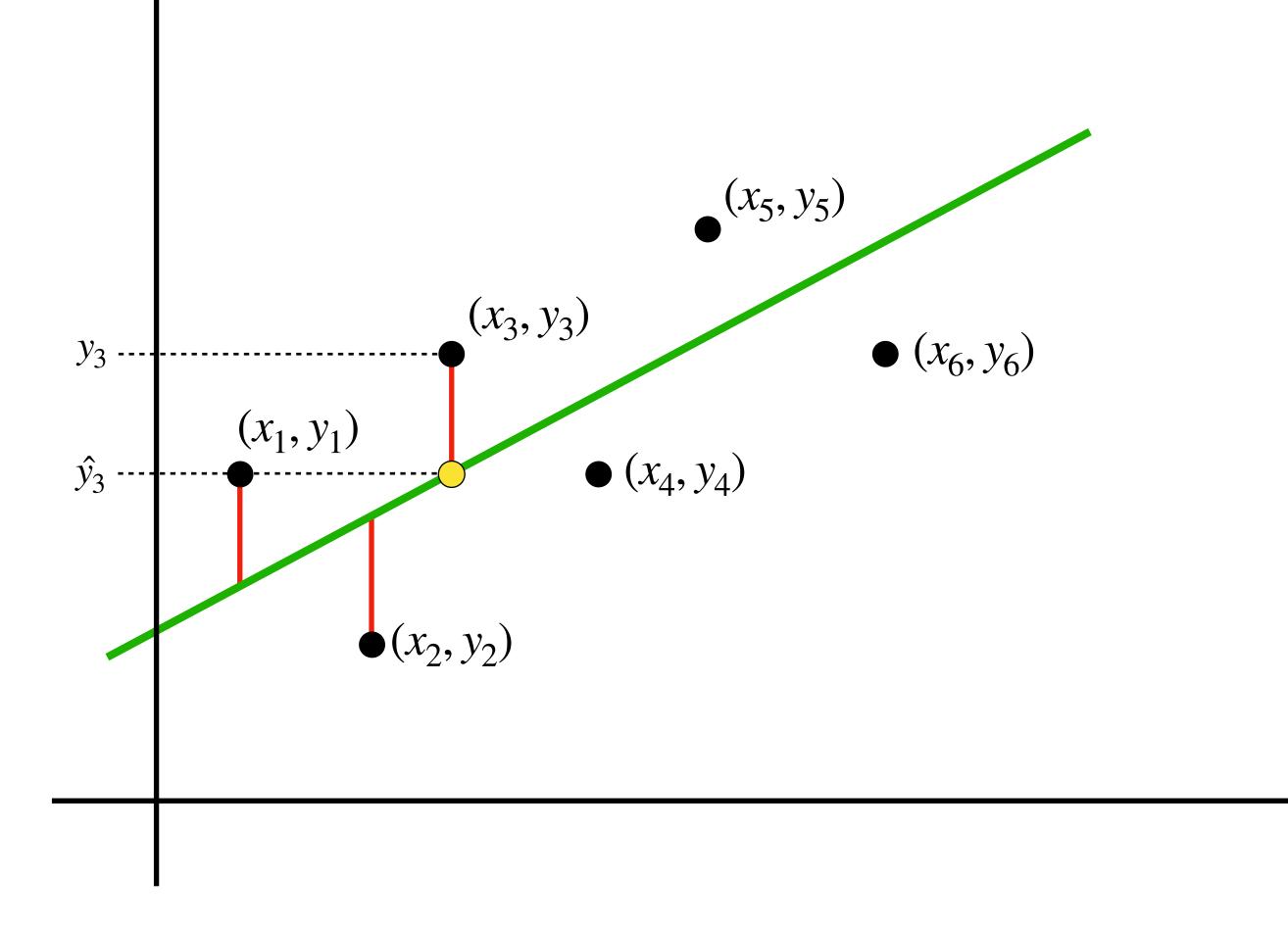
$$(y_1 - \hat{y_1})^2 + (y_2 - \hat{y_2})^2$$



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

$$(y_1 - \hat{y_1})^2 + (y_2 - \hat{y_2})^2 + (y_3 - \hat{y_3})^2$$

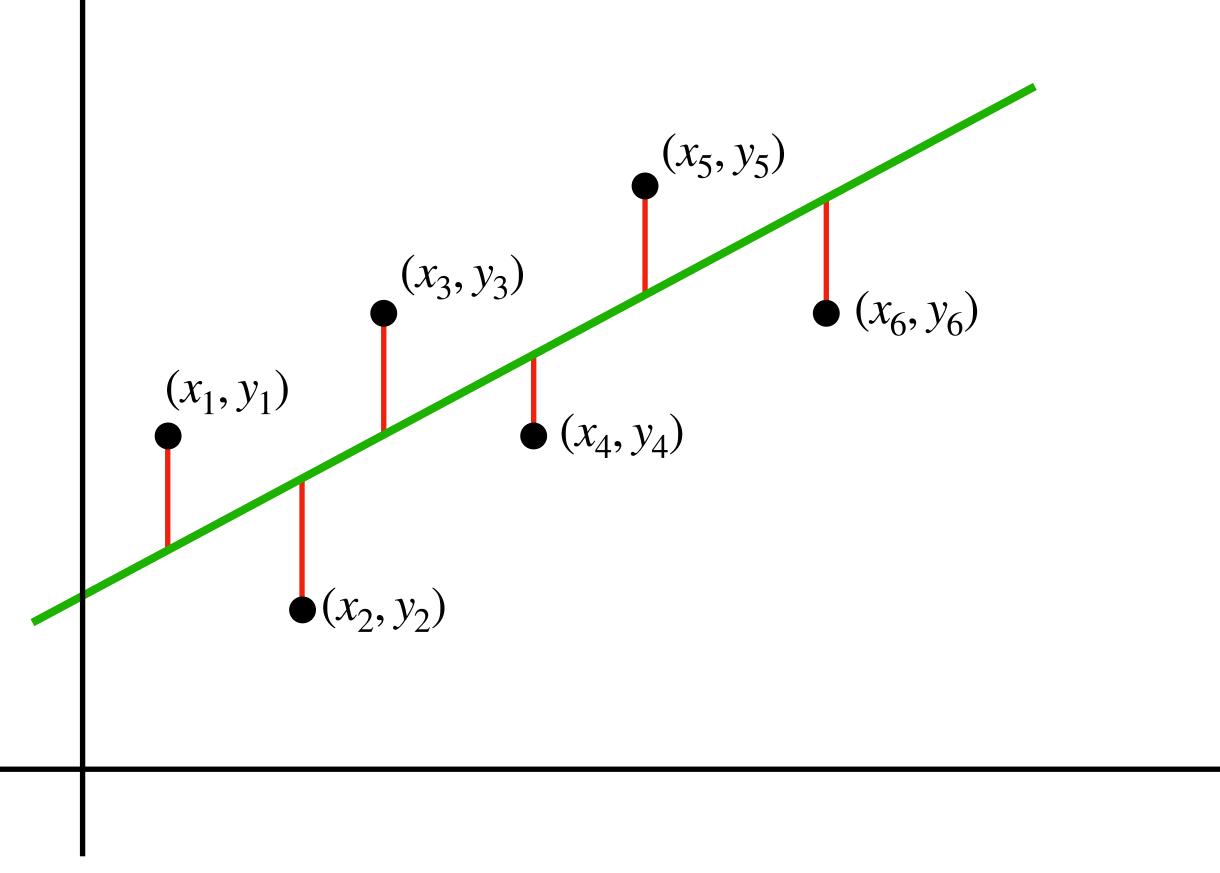


Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2$$

$$+ (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2 + (y_6 - \hat{y}_6)^2$$



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

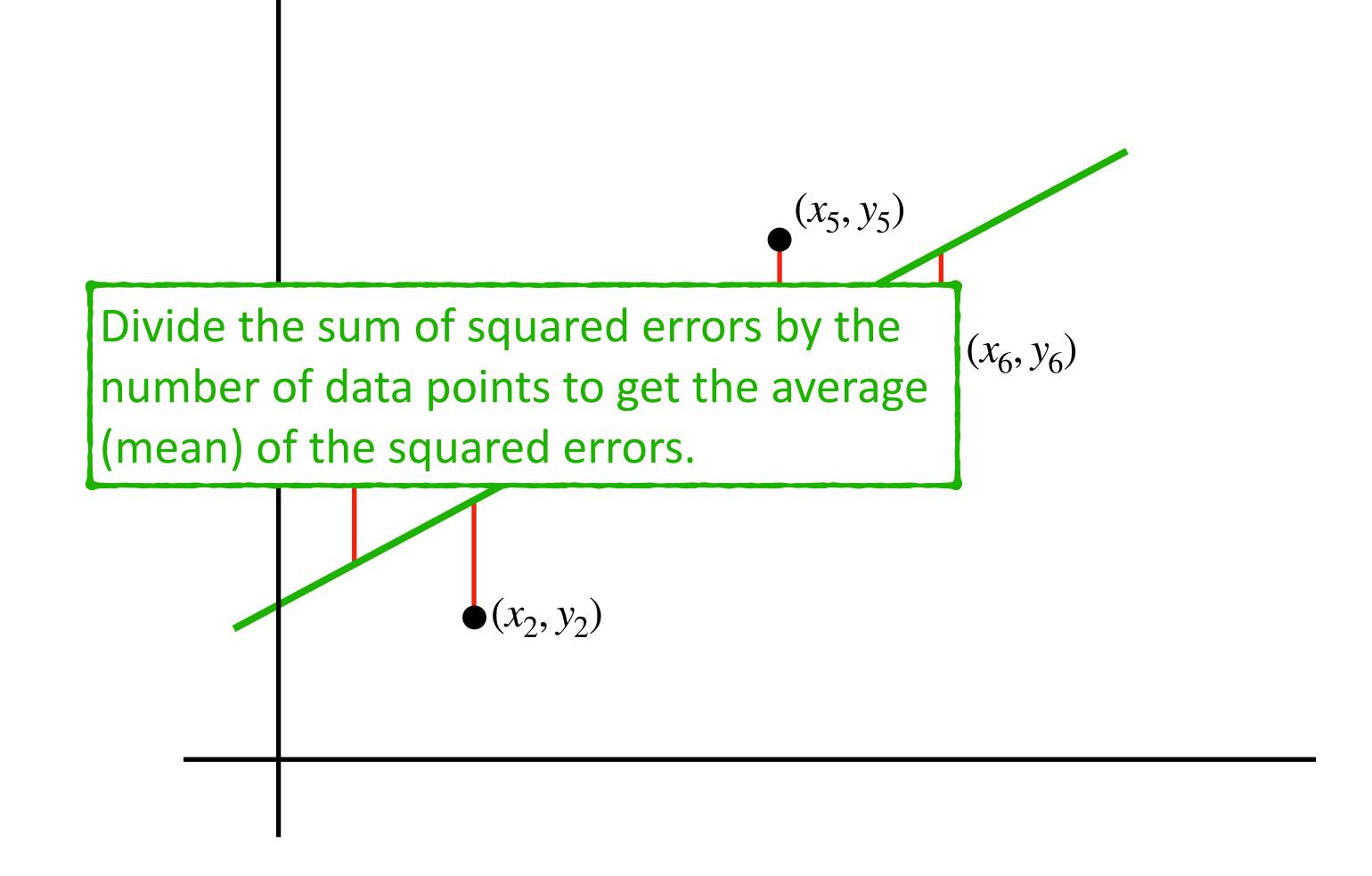
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$ Mean Squared Error (MSE):

$$(y_1 - \hat{y_1})^2 + (y_2 - \hat{y_2})^2 + (y_3 - \hat{y_3})^2$$

$$+ (y_4 - \hat{y_4})^2 + (y_5 - \hat{y_5})^2 + (y_0 - \hat{y_0})^2$$

$$n$$

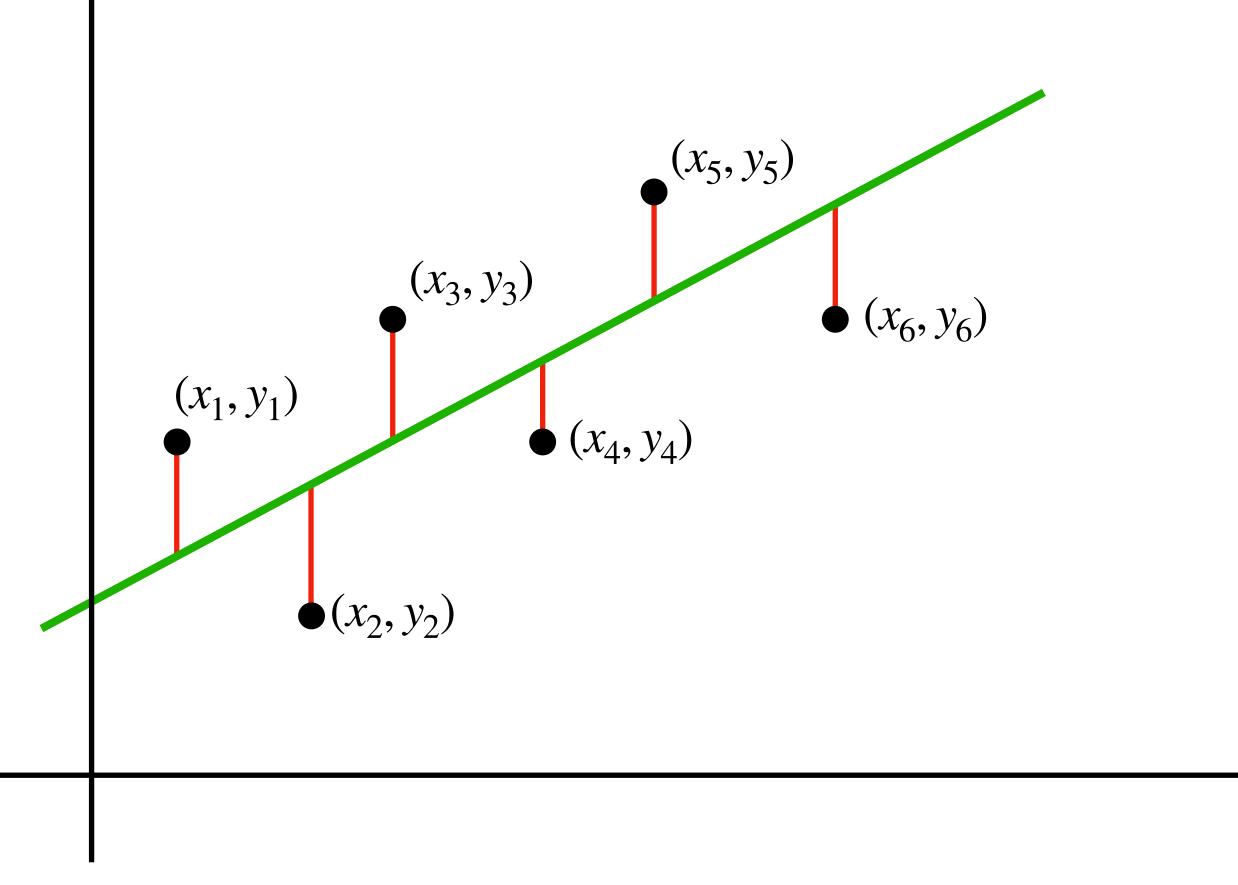
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$ Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

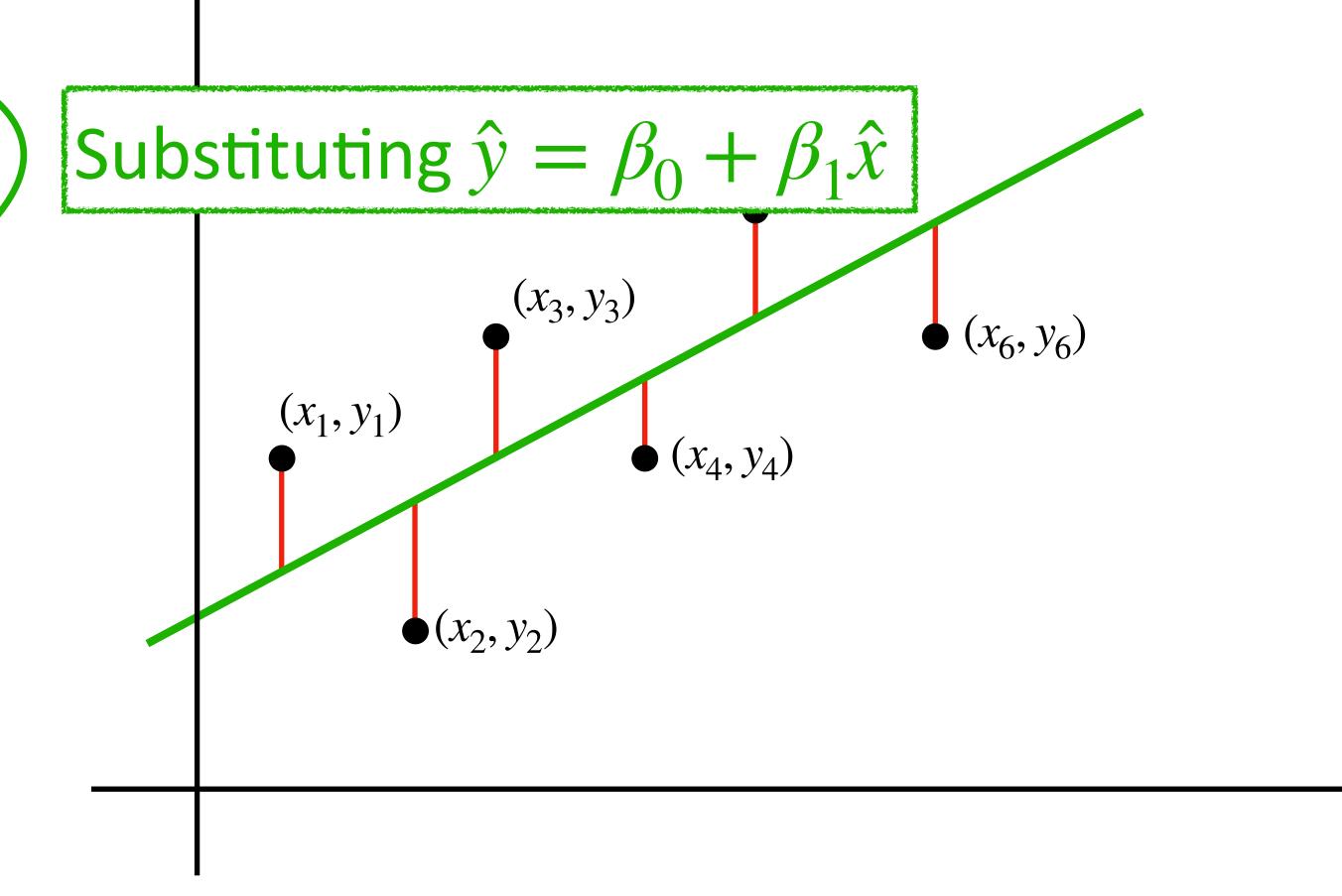


Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

Mean Squared Error (MSE):

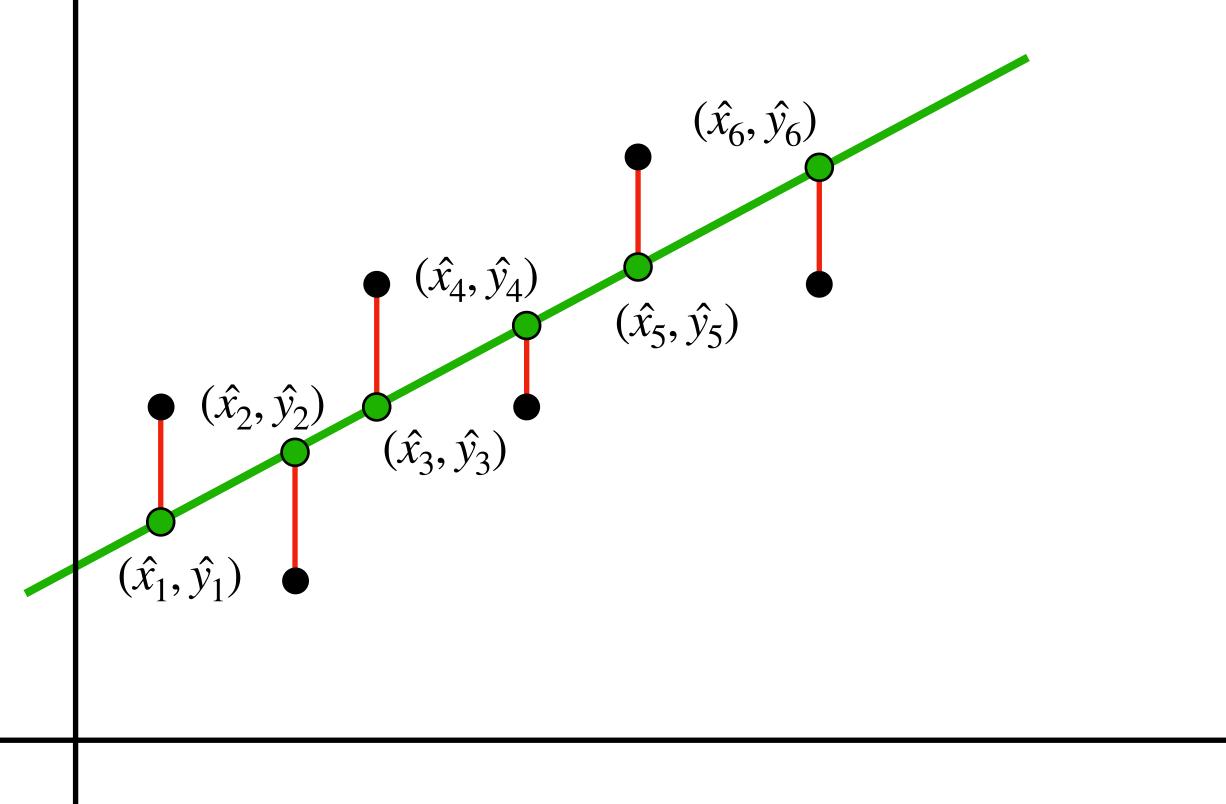
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$ Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

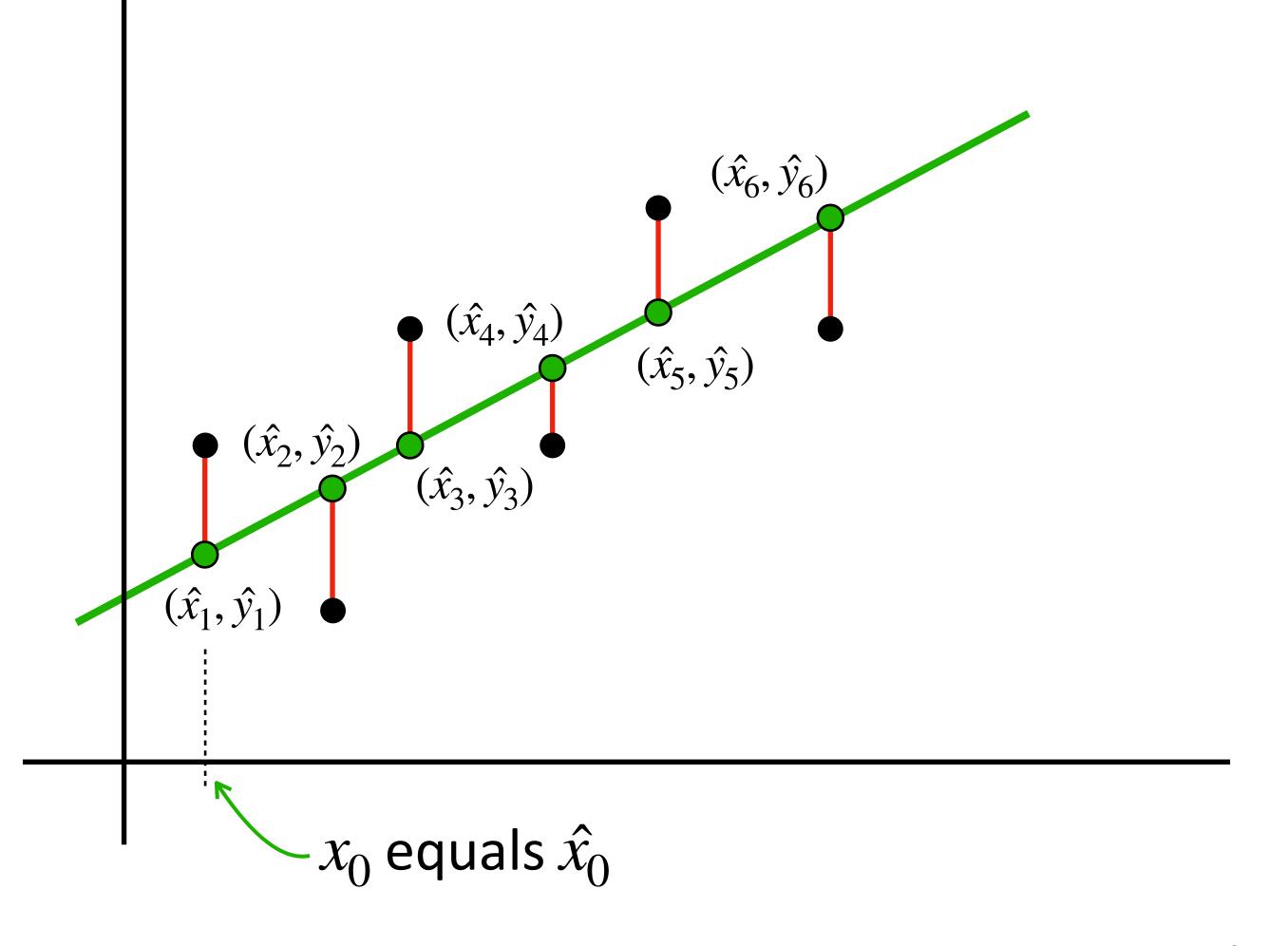


Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$ Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

For every value of i, \hat{x}_i equals x_i Substitute x_i for \hat{x}_i

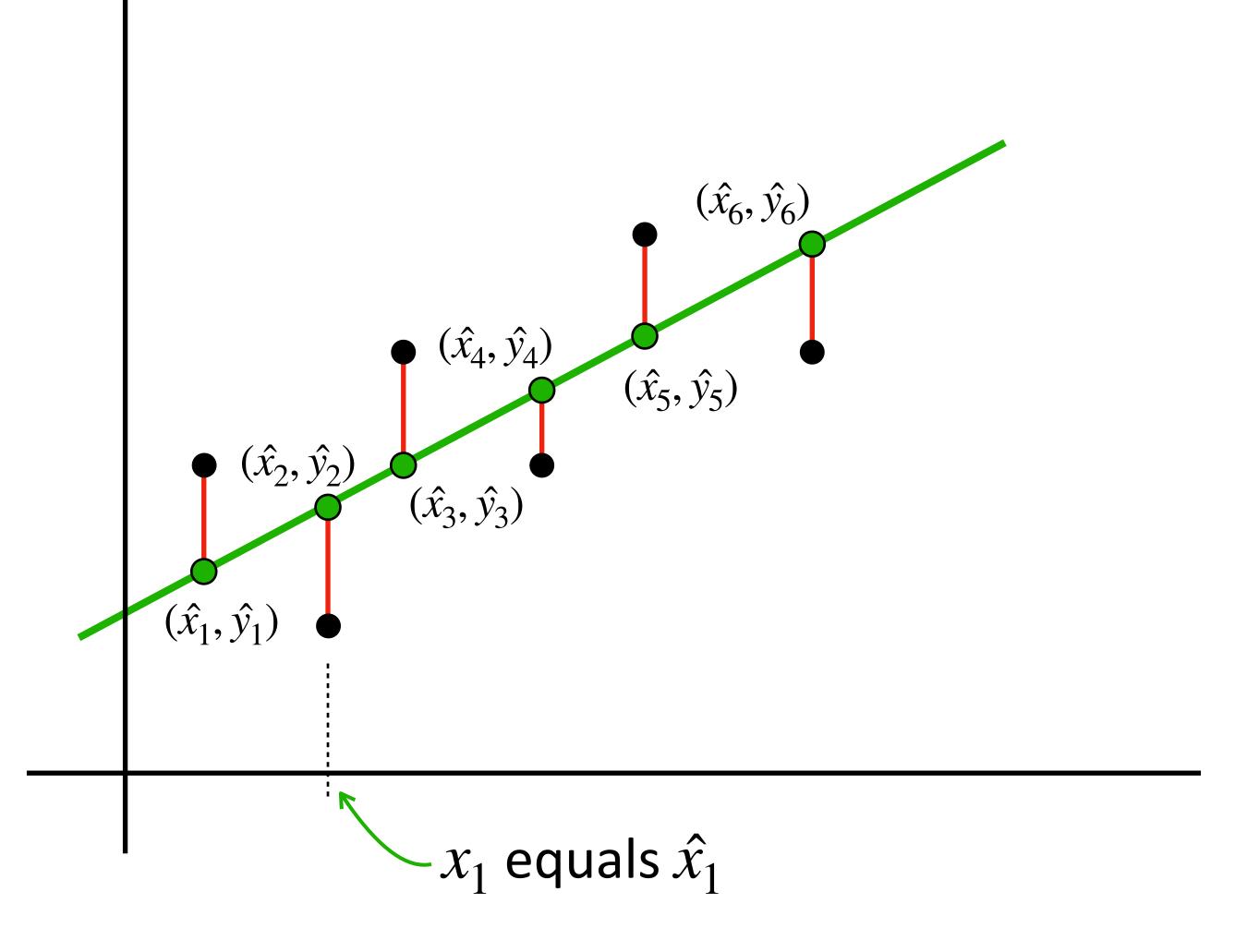


Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$ Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

For every value of i, \hat{x}_i equals x_i Substitute x_i for \hat{x}_i



Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

$$= \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

For every value of i, \hat{x}_i equals x_i Substitute x_i for \hat{x}_i

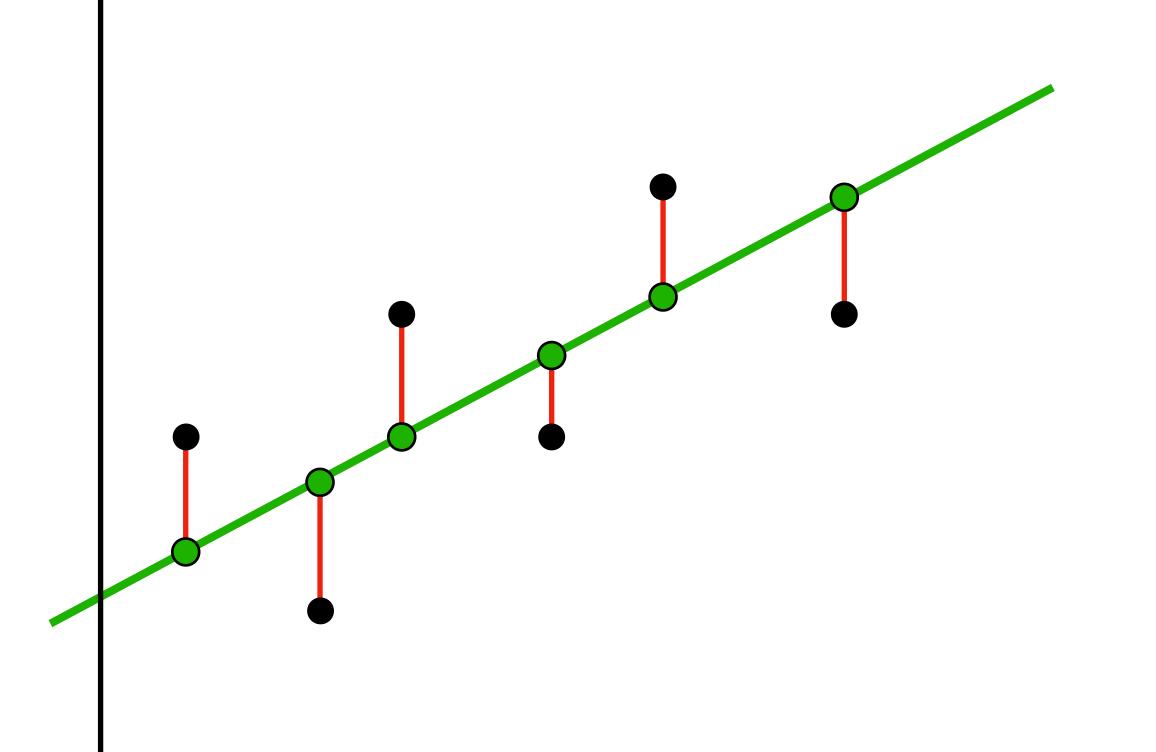


Given a set of data points in \mathbb{R}^2 , (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , ... (x_n, y_n) , find the line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$ Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Least Squares Regression: Find the values of β_0 and β_1 such that the Mean Squared Error (MSE) is minimized.



Solution:

$$\beta_0 = \frac{\sum_{i=1}^n y_i - \beta_1 \sum_{i=1}^n x_i}{n}$$

$$\beta_1 = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

Lets walk through the proof...

Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

To derive the values of β_0 and β_1 , we calculate the partial derivative of the Mean Squared Error (MSE) w.r.t β_0 and β_1 and solve the two equations

Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

To derive the values of β_0 and β_1 , we calculate the partial derivative of the Mean Squared Error (MSE) w.r.t β_0 and β_1 and solve the two equations

Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Partial derivatives w.r.t eta_0 and eta_1 we get two equations:

To derive the values of β_0 and β_1 , we calculate the partial derivative of the Mean Squared Error (MSE) w.r.t β_0 and β_1 and solve the two equations

Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Partial derivatives w.r.t eta_0 and eta_1 we get two equations:

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(1)$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(2)$$

To derive the values of β_0 and β_1 , we calculate the partial derivative of the Mean Squared Error (MSE) w.r.t β_0 and β_1 and solve the two equations

Mean Squared Error (MSE):

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Partial derivatives w.r.t eta_0 and eta_1 we get two equations:

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(1)$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \quad \dots \quad eq(2)$$

The Mean Squared Error (MSE) is minimized when the partial derivative is zero

Solving equation 1 (take the partial derivative w.r.t β_0):

Solving equation 1 (take the partial derivative w.r.t β_0):

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

Solving equation 1 (take the partial derivative w.r.t β_0):

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) \frac{\partial}{\partial \beta_0} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

Chain Rule & Power Rule

See Tutorial on Derivatives

Solving equation 1 (take the partial derivative w.r.t β_0):

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) \frac{\partial}{\partial \beta_0} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)(-1) = 0$$

Chain Rule & Power Rule

See Tutorial on Derivatives

Taking the partial derivative of
$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)$$

$$\frac{\partial}{\partial \beta_0} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = (-1)$$
 See Tutorial on Derivatives

$$\frac{\partial}{\partial \beta_0} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = (-1)$$

19

Solving equation 1 (take the partial derivative w.r.t β_0):

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) \frac{\partial}{\partial \beta_0} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)(-1) = 0$$

$$\Rightarrow \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

Chain Rule & Power Rule

See Tutorial on Derivatives

Divide both sides by $-\frac{2}{n}$

Solving equation 1 (take the partial derivative w.r.t β_0):

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) \frac{\partial}{\partial \beta_0} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)(-1) = 0$$

$$\Rightarrow \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\Rightarrow \sum_{i=1}^{n} y_i - n\beta_0 - \beta_1 \sum_{i=1}^{n} x_i = 0$$

Chain Rule & Power Rule

See Tutorial on Derivatives

Solving equation 1 (take the partial derivative w.r.t β_0):

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) \frac{\partial}{\partial \beta_0} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)(-1) = 0$$

$$\Rightarrow \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\Rightarrow \sum_{i=1}^{n} y_i - n\beta_0 - \beta_1 \sum_{i=1}^{n} x_i = 0 \qquad \Rightarrow \beta_0 = \frac{\sum_{i=1}^{n} y_i - \beta_1 \sum_{i=1}^{n} x_i}{n}$$

Chain Rule & Power Rule

See Tutorial on Derivatives

Solving equation 2 (take the partial derivative w.r.t β_1 :

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

Solving equation 2 (take the partial derivative w.r.t β_1 :

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) \frac{\partial}{\partial \beta_1} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

Chain Rule & Power Rule

See Tutorial on Derivatives

Solving equation 2 (take the partial derivative w.r.t β_1 :

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) \frac{\partial}{\partial \beta_1} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)(-x_i) = 0$$
Tall

Taking the partial derivative of $\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)$ $\frac{\partial}{\partial \beta_1} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = (-x_i)$ See Tutorial on Derivatives

$$\frac{\partial}{\partial \beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = (-x_i)$$

Solving equation 2 (take the partial derivative w.r.t β_1 :

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) \frac{\partial}{\partial \beta_1} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)(-x_i) = 0$$

$$\Rightarrow \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)(x_i) = 0$$

Divide both sides by $-\frac{2}{n}$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) \frac{\partial}{\partial \beta_1} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\Rightarrow \frac{2}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)(-x_i) = 0$$

$$\Rightarrow \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)(x_i) = 0$$

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - \beta_0 \sum_{i=1}^{n} x_i - \beta_1 \sum_{i=1}^{n} x_i^2 = 0$$

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - \beta_0 \sum_{i=1}^{n} x_i - \beta_1 \sum_{i=1}^{n} x_i^2 = 0$$

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - \beta_0 \sum_{i=1}^{n} x_i - \beta_1 \sum_{i=1}^{n} x_i^2 = 0$$

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - \beta_1 \sum_{i=1}^{n} x_i - \beta_1 \sum_{i=1}^{n} x_i$$

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - \beta_1 \sum_{i=1}^{n} x_i^2 - \left(\frac{\sum_{i=1}^{n} y_i - \beta_1 \sum_{i=1}^{n} x_i}{n}\right) \sum_{i=1}^{n} x_i = 0$$
Substitute $\beta_0 = \frac{\sum_{i=1}^{n} y_i - \beta_1 \sum_{i=1}^{n} x_i}{n}$

Solving equation 2 (take the partial derivative w.r.t β_1 :

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - \beta_0 \sum_{i=1}^{n} x_i - \beta_1 \sum_{i=1}^{n} x_i^2 = 0$$

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - \beta_1 \sum_{i=1}^{n} x_i^2 - \left(\frac{\sum_{i=1}^{n} y_i - \beta_1 \sum_{i=1}^{n} x_i}{n} \right) \sum_{i=1}^{n} x_i = 0$$

$$\Rightarrow n \sum_{i=0}^{n} x_i y_i - \beta_1 n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i - \beta_1 \left(\sum_{i=1}^{n} x_i \right)^2 \right) = 0$$

Divide both sides by *n* and simplify

$$\Rightarrow \sum_{i=1}^{n} x_i y_i - \beta_0 \sum_{i=1}^{n} x_i - \beta_1 \sum_{i=1}^{n} x_i^2 = 0$$

$$\Rightarrow \sum_{i=1}^{n} x_{i} y_{i} - \beta_{1} \sum_{i=1}^{n} x_{i}^{2} - \left(\frac{\sum_{i=1}^{n} y_{i} - \beta_{1} \sum_{i=1}^{n} x_{i}}{n} \right) \sum_{i=1}^{n} x_{i} = 0$$

$$\Rightarrow n \sum_{i=0}^{n} x_i y_i - \beta_1 n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i - \beta_1 \left(\sum_{i=1}^{n} x_i \right)^2 \right) = 0$$

$$\Rightarrow n \sum_{i=1}^{n} x_i y_i - \beta_1 n \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i + \beta_1 \left(\sum_{i=1}^{n} x_i\right)^2 = 0$$

$$\Rightarrow n \sum_{i=1}^{n} x_i y_i - \beta_1 n \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i + \beta_1 \left(\sum_{i=1}^{n} x_i\right)^2 = 0$$

$$\Rightarrow n \sum_{i=1}^{n} x_i y_i - \beta_1 n \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i + \beta_1 \left(\sum_{i=1}^{n} x_i\right)^2 = 0$$

$$\Rightarrow \beta_1 \left(\sum_{i=1}^n x_i \right)^2 - \beta_1 n \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i \sum_{i=1}^n y_i - n \sum_{i=1}^n x_i y_i$$

Add
$$\sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i - n \sum_{i=1}^{n} x_i y_i$$
to both sides

$$\Rightarrow n \sum_{i=1}^{n} x_{i} y_{i} - \beta_{1} n \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i} + \beta_{1} \left(\sum_{i=1}^{n} x_{i}\right)^{2} = 0$$

$$\Rightarrow \beta_{1} \left(\sum_{i=1}^{n} x_{i}\right)^{2} - \beta_{1} n \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i} - n \sum_{i=1}^{n} x_{i} y_{i}$$

$$\Rightarrow \beta_{1} \left(\sum_{i=1}^{n} x_{i}\right)^{2} - \beta_{1} n \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i} - n \sum_{i=1}^{n} x_{i} y_{i}$$

$$\Rightarrow b = 0$$
Add
$$\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i} - n \sum_{i=1}^{n} x_{i} y_{i}$$

$$\Rightarrow b = 0$$
The proof of th

$$\Rightarrow n \sum_{i=1}^{n} x_i y_i - \beta_1 n \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i + \beta_1 \left(\sum_{i=1}^{n} x_i\right)^2 = 0$$

$$\Rightarrow \beta_1 \left(\sum_{i=1}^n x_i \right)^2 - \beta_1 n \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i \sum_{i=1}^n y_i - n \sum_{i=1}^n x_i y_i$$

$$\Rightarrow \beta_1 n \sum_{i=1}^n x_i^2 - \beta_1 \left(\sum_{i=1}^n x_i\right)^2 = n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i$$
 Multiply both sides by -1

$$\Rightarrow n \sum_{i=1}^{n} x_i y_i - \beta_1 n \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i + \beta_1 \left(\sum_{i=1}^{n} x_i\right)^2 = 0$$

$$\Rightarrow \beta_1 \left(\sum_{i=1}^n x_i\right)^2 - \beta_1 n \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i \sum_{i=1}^n y_i - n \sum_{i=1}^n x_i y_i$$

$$\Rightarrow \beta_1 n \sum_{i=1}^n x_i^2 - \beta_1 \left(\sum_{i=1}^n x_i\right)^2 = n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i$$
Multiply both sides by -1

$$\Rightarrow \beta_1 n \sum_{i=1}^n x_i^2 - \beta_1 \left(\sum_{i=1}^n x_i\right)^2 = n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i$$

$$\Rightarrow \beta_1 n \sum_{i=1}^n x_i^2 - \beta_1 \left(\sum_{i=1}^n x_i\right)^2 = n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i$$

$$\Rightarrow \beta_1 \left(n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2\right) = n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i$$

$$\Rightarrow \beta_1 \left(n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2\right) = n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i$$

Solving equation 2 (take the partial derivative w.r.t β_1 :

$$\Rightarrow \beta_1 n \sum_{i=1}^n x_i^2 - \beta_1 \left(\sum_{i=1}^n x_i\right)^2 = n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i$$

$$\Rightarrow \beta_1 \left(n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i \right)^2 \right) = n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i$$

$$\Rightarrow \beta_1 = \frac{n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$

Divide both sides by $n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2$

$$\Rightarrow \beta_1 n \sum_{i=1}^n x_i^2 - \beta_1 \left(\sum_{i=1}^n x_i\right)^2 = n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i$$

$$\Rightarrow \beta_1 \left(n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i \right)^2 \right) = n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i$$

$$\Rightarrow \beta_1 = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

Solution:

$$\beta_0 = \frac{\sum_{i=1}^n y_i - \beta_1 \sum_{i=1}^n x_i}{n}$$

$$\beta_1 = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

Related Tutorials & Textbooks

Simple Linear Regression

A statistical technique of making predictions from data. The tutorial introduces a linear model in two dimensions and uses that model to predict the value of one dependent variable given one independent variable.

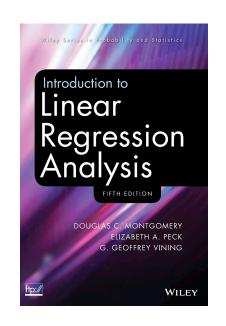
Multiple Regression []

Multiple regression extends the two dimensional linear model introduced in Simple Linear Regression to k+1 dimensions with one dependent variable, k independent variables and k+1 parameters.

Gradient Descent for Simple Linear Regression

An introduction to the Gradient Descent algorithm and a deep dive on how it can be used to optimize the two parameters β_0 and β_1 for Simple Linear Regression.

Recommended Textbooks



Introduction to Linear Regression Analysis

by Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

For a complete list of tutorials see:

https://arrsingh.com/ai-tutorials