Simple Linear Regression Fundamentals

Rahul Singh rsingh@arrsingh.com

re-gres-sion

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

re-gres-sion

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

in other words...

if we see some data (x, y) we can use linear regression to predict the y values for other values of x

re-gres-sion

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

$$y = f(x)$$

in other words...

if we see some data (x, y) we can use linear regression to predict the y values for other values of x

re-gres-sion

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

$$y = f(x)$$

in other words...

if we see some data (x, y) we can use linear regression to predict the y values for other values of x

x is the independent variable

re-gres-sion

noun

A statistical method used to predict the relationship between a dependent variable and one or more independent variables

y = f(x)

in other words...

if we see some data (x, y) we can use linear regression to predict the y values for other values of x

x is the independent variable

y is the dependent variable

Lets take a simple example...

A simple example...

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

A simple example...

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

A simple example...

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192

Lets begin by plotting the data

Y Axis = Distance Travelled (Miles)

X Axis = Time (Hours)

Question: Can we predict how far the car will have traveled in 4.7 hours?

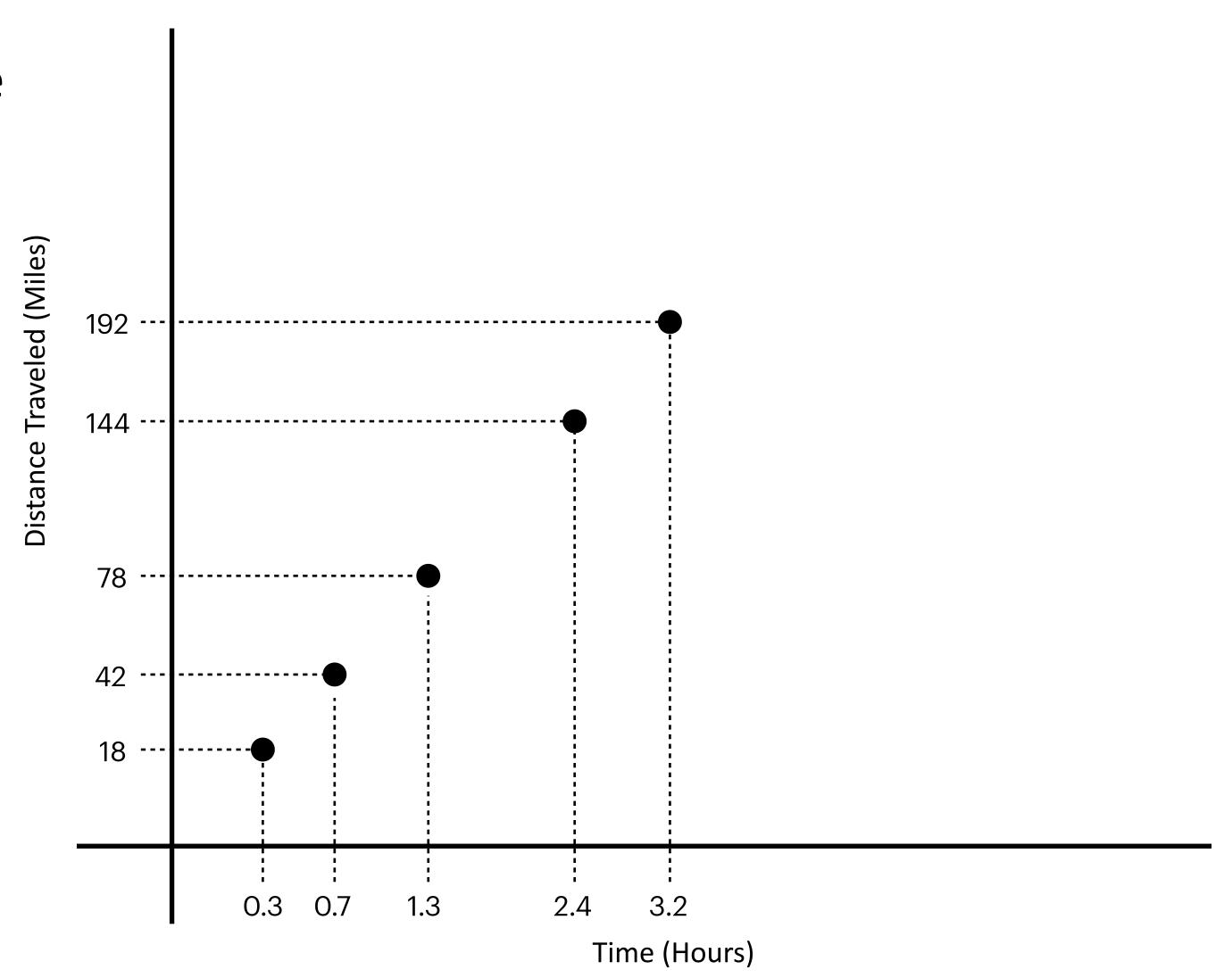
Time (Hours)

Distance Traveled (Miles)

A simple example...

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

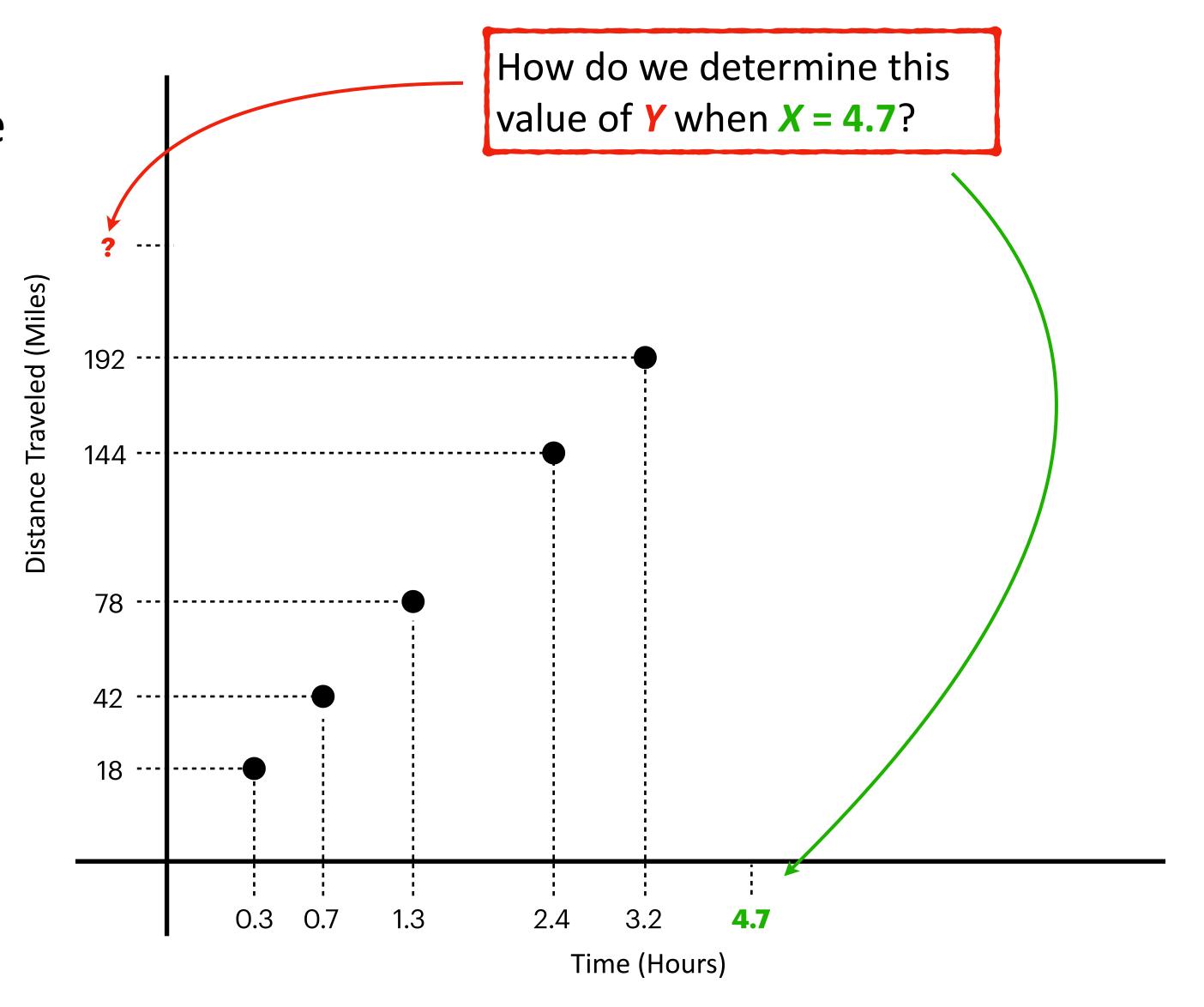
Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192



A simple example...

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

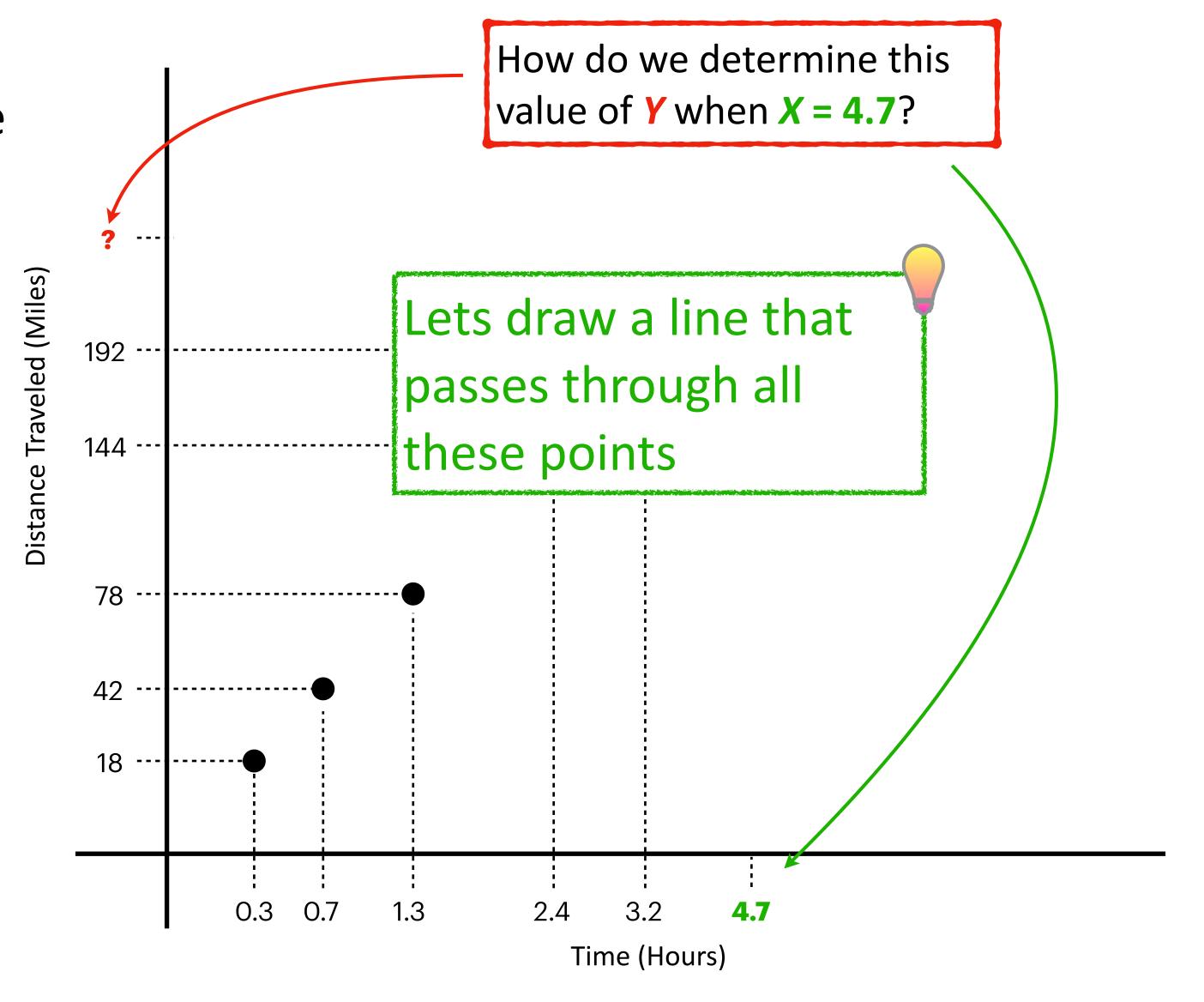
Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192



A simple example...

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

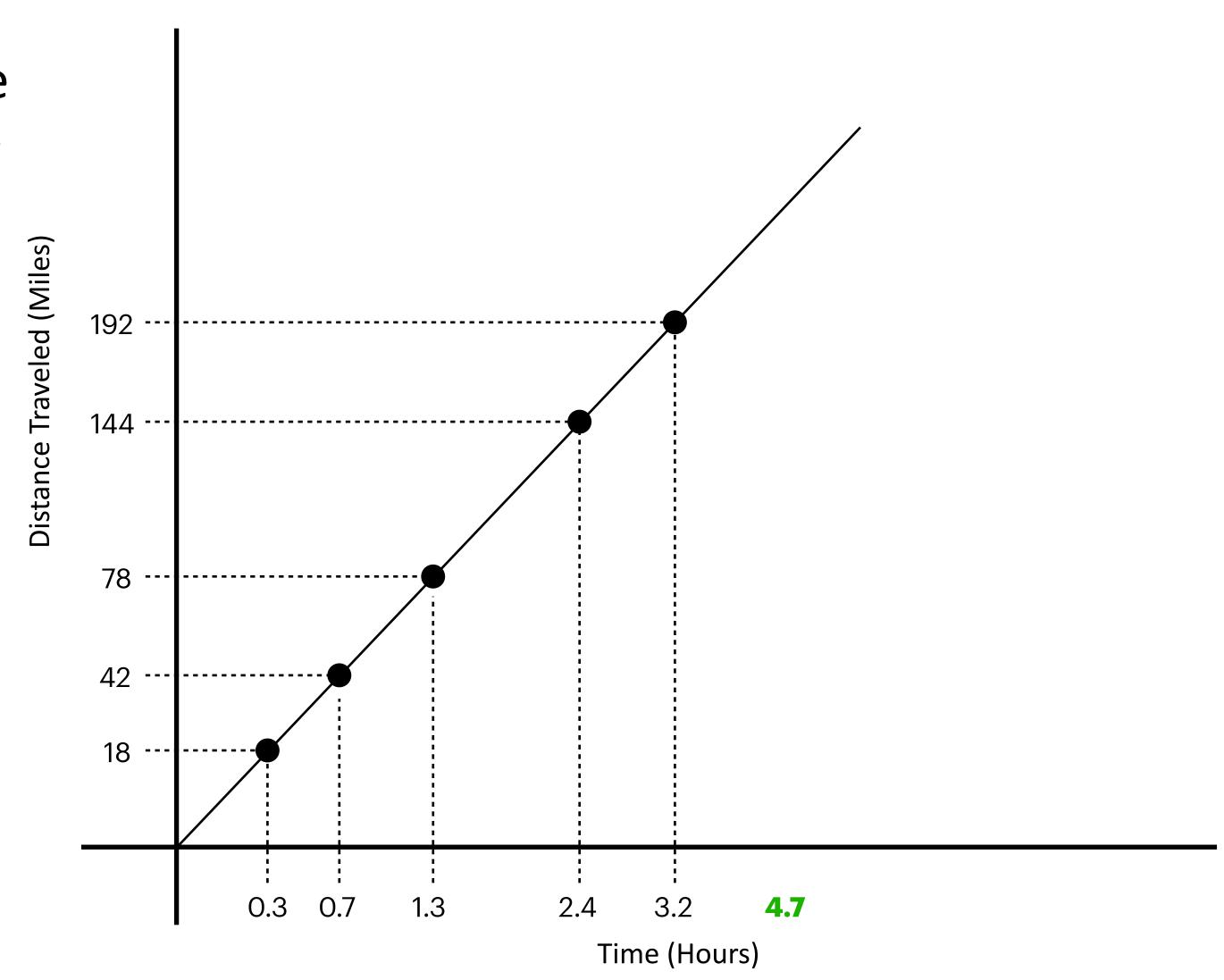
Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192



A simple example...

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

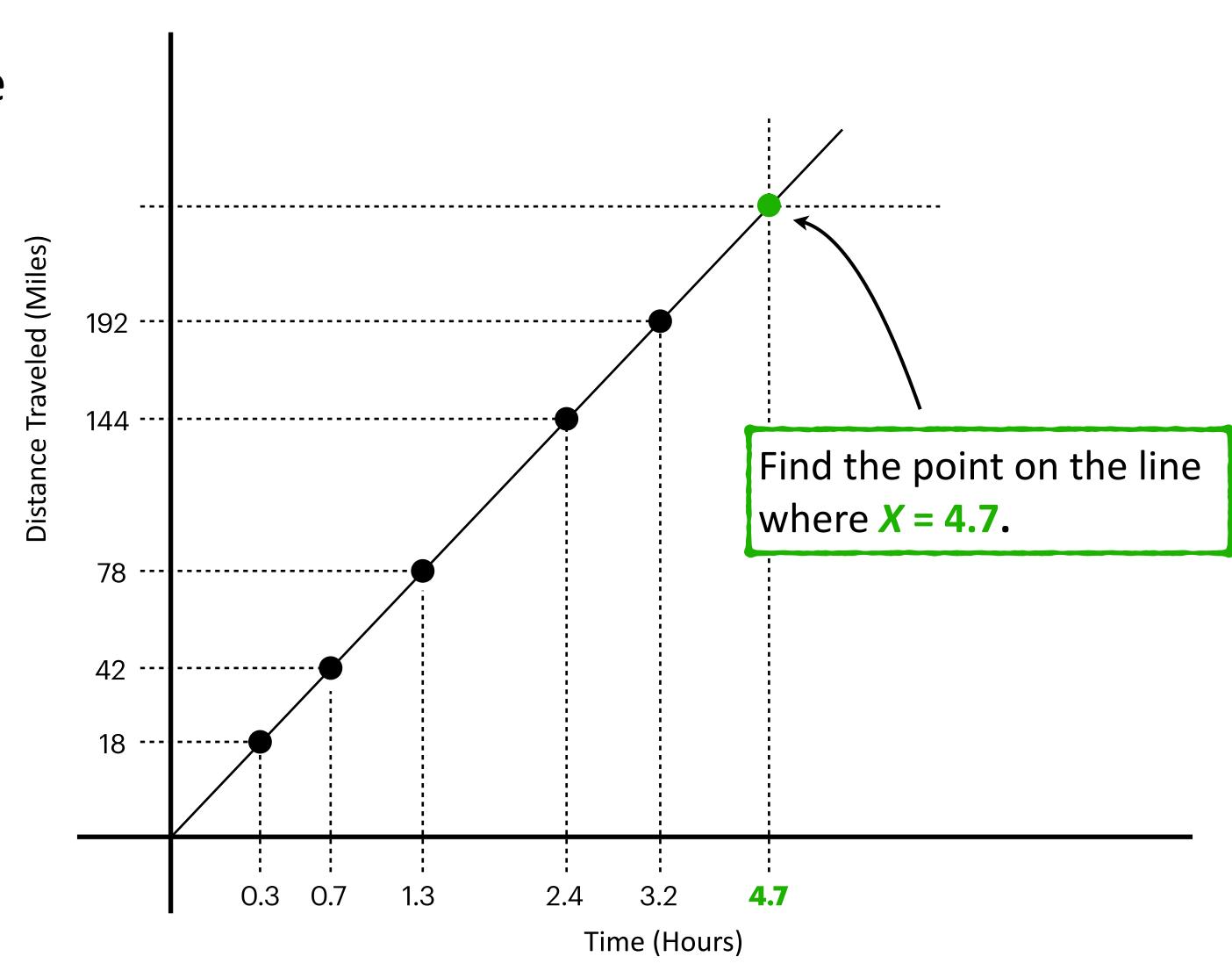
Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192



A simple example...

A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

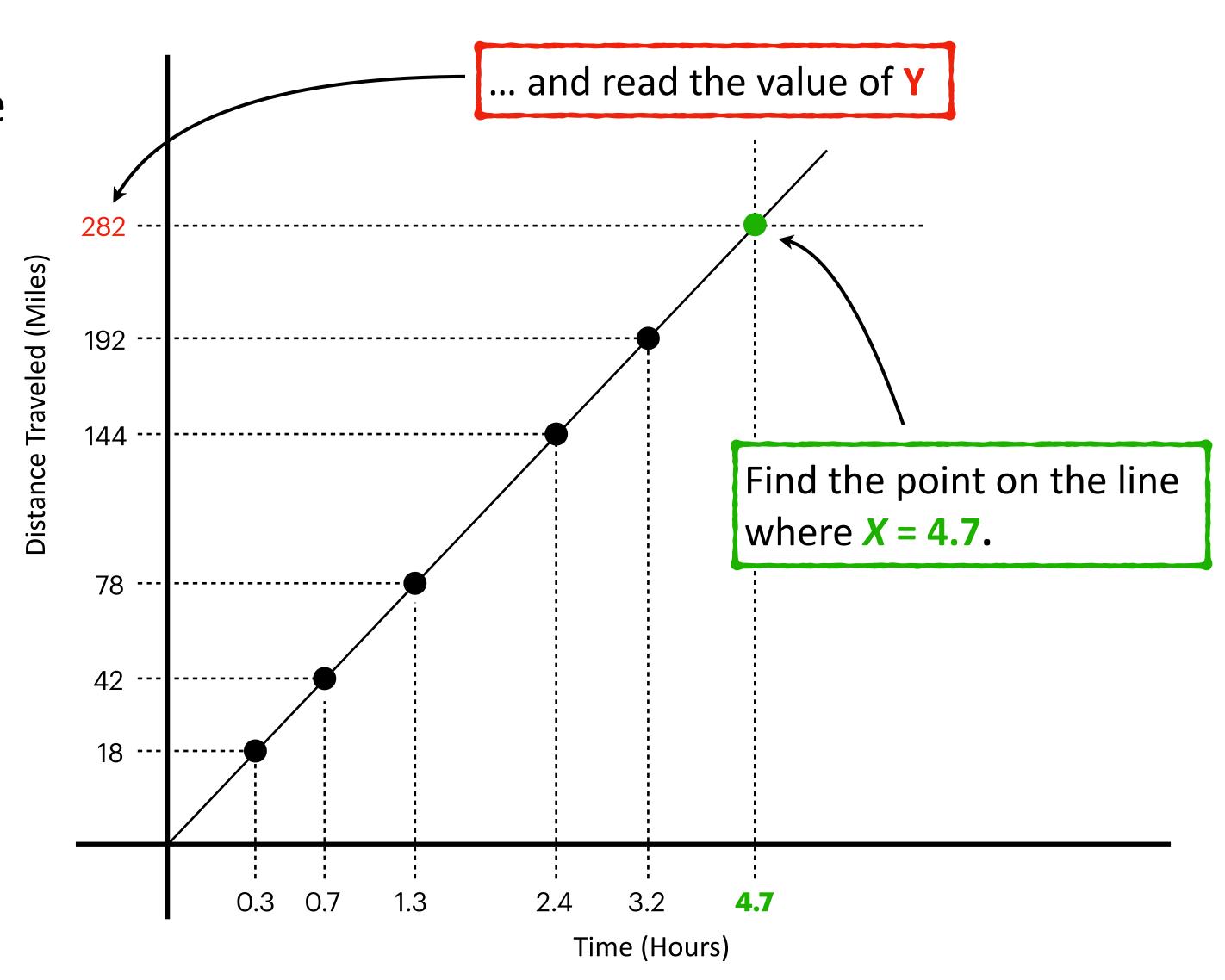
Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192



A simple example...

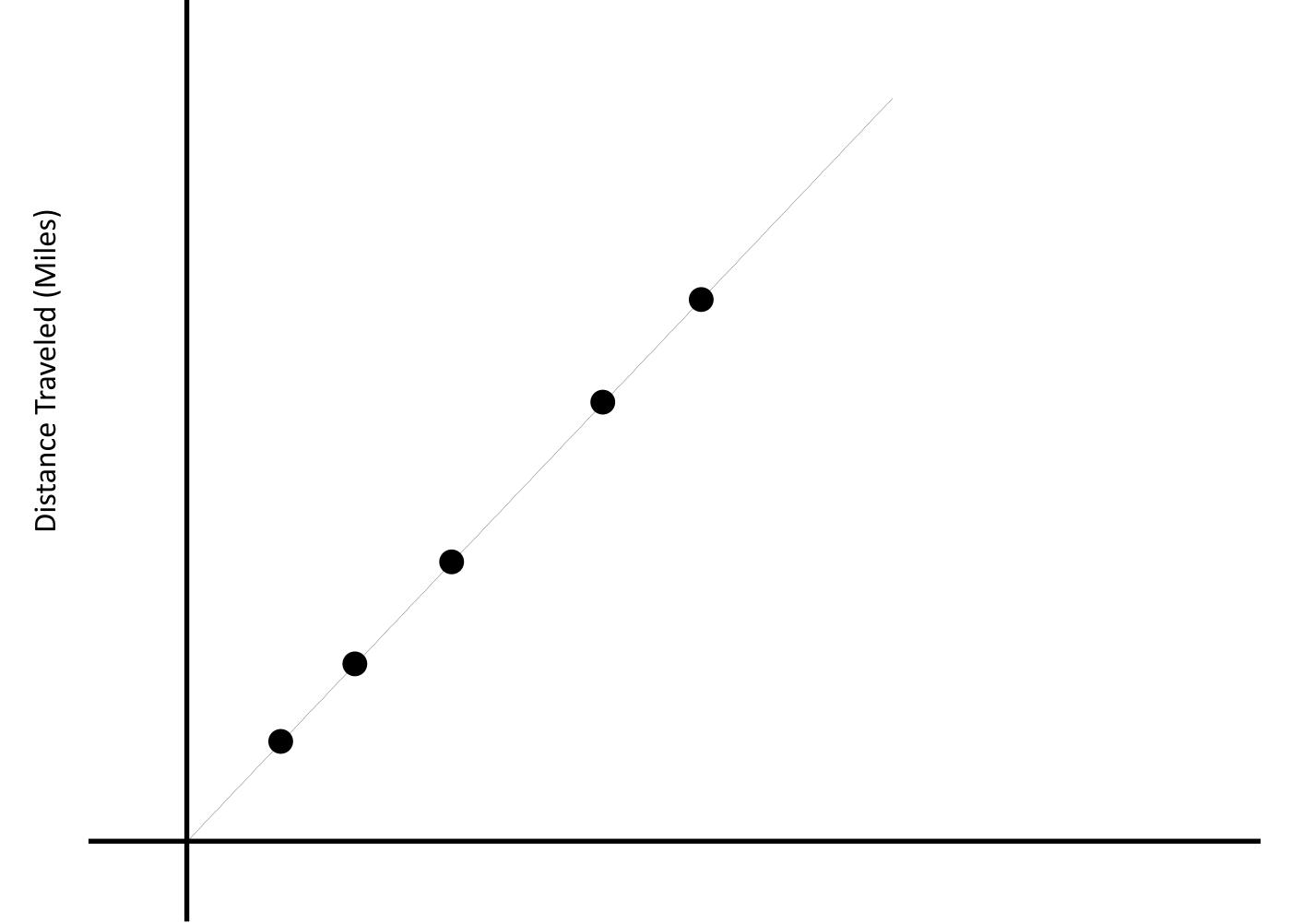
A car is traveling at a <u>constant</u> speed. We observe the distance travelled by the car at various times during its journey.

Time (Hours)	Distance Traveled (Miles)
0.3	18
0.7	42
1.3	78
2.4	144
3.2	192



A few things to note...

- All the data points line up perfectly
- The slope of the line (i.e. speed of the car) is easy to determine:

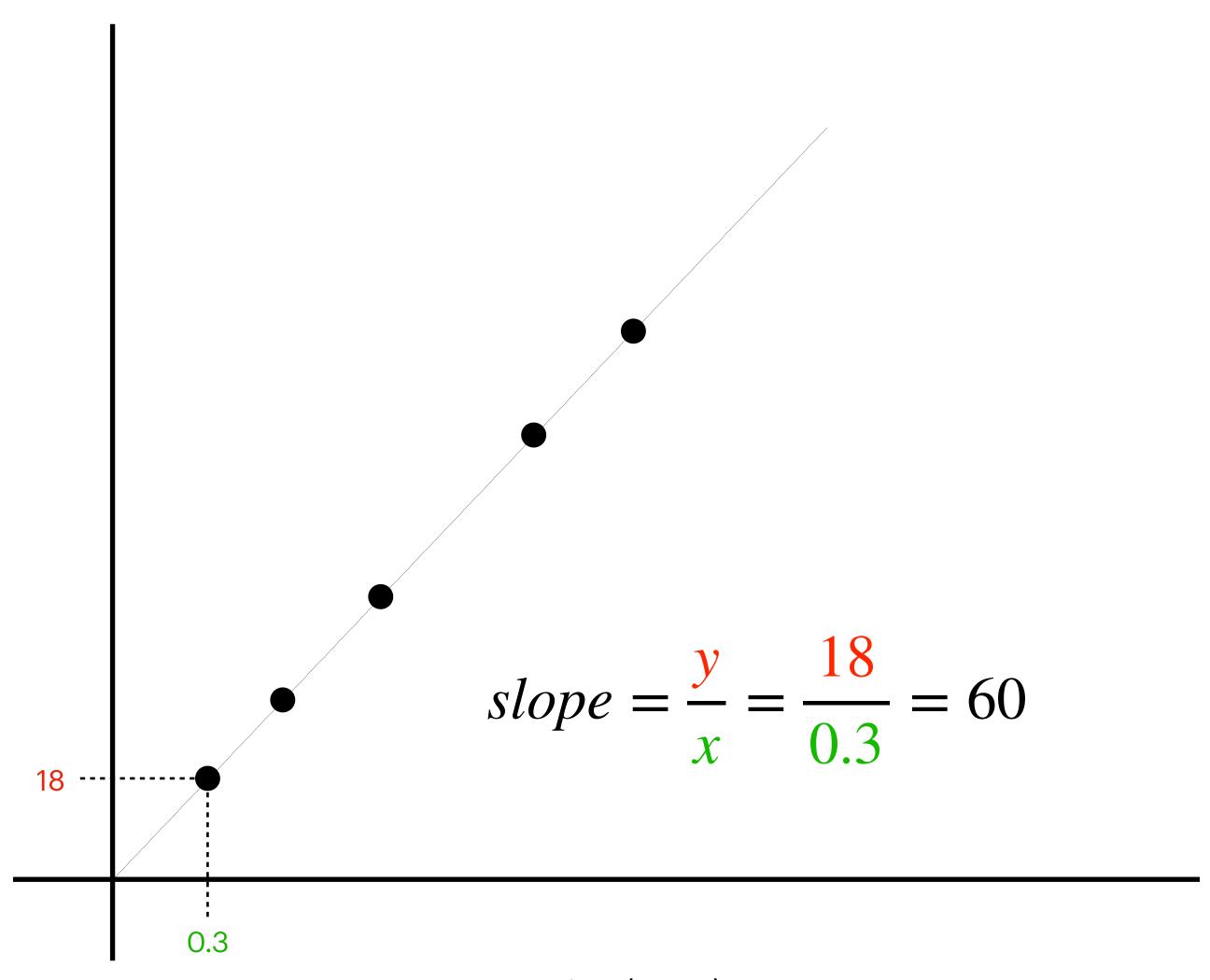


The slope of the line (i.e. speed of the car) is easy to determine:

Slope at
$$x = 0.3$$
, $y = 18$

Time (Hours)	Distance Traveled (Miles)	Speed (mph)
0.3	18	18 / 0.3 = 60

Distance Traveled (Miles)

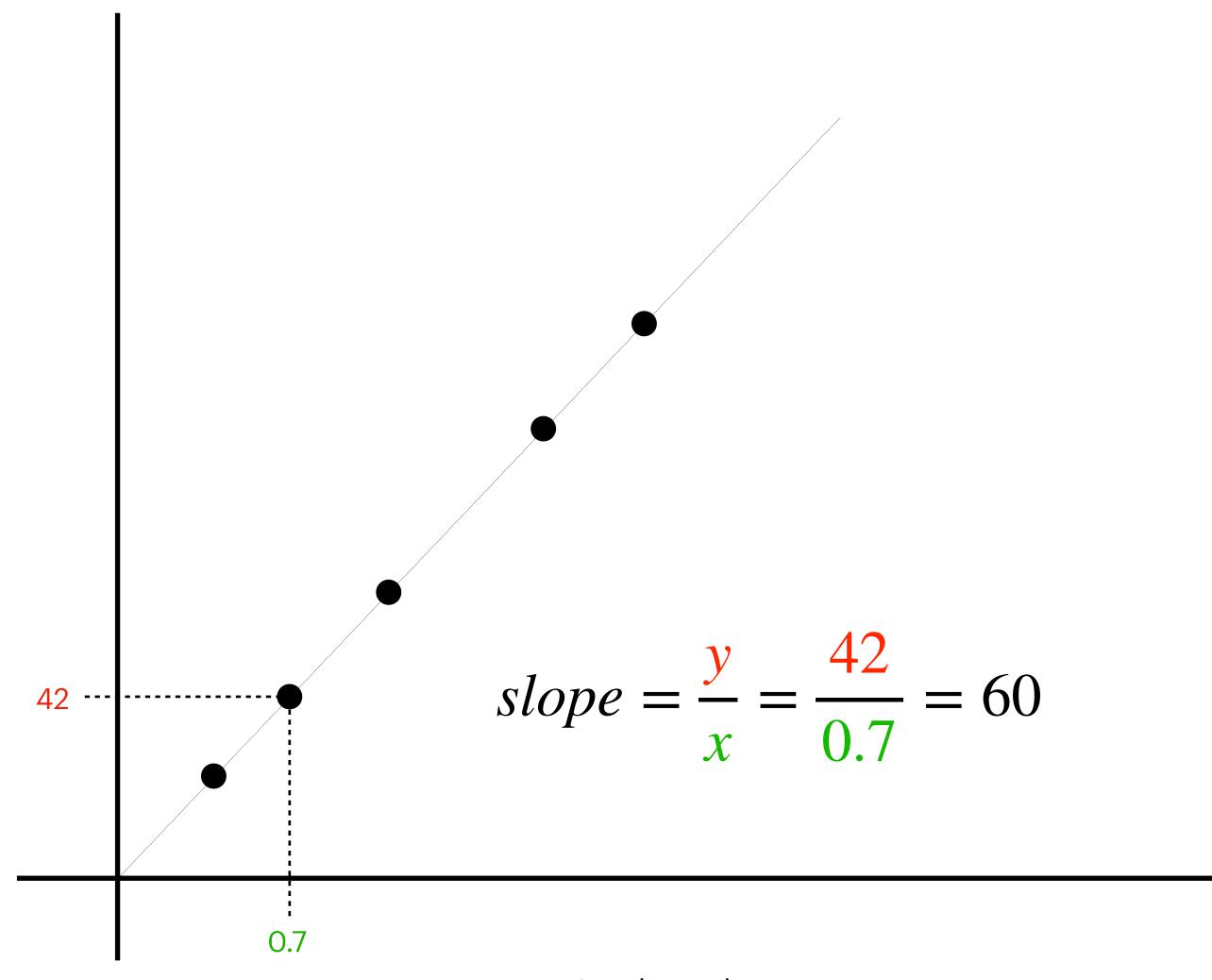


The slope of the line (i.e. speed of the car) is easy to determine:

Slope at
$$x = 0.7$$
, $y = 42$

Time (Hours)	Distance Traveled (Miles)	Speed (mph)
0.3	18	18 / 0.3 = 60
0.7	42	42 / 0.7 = 60

Distance Traveled (Miles)

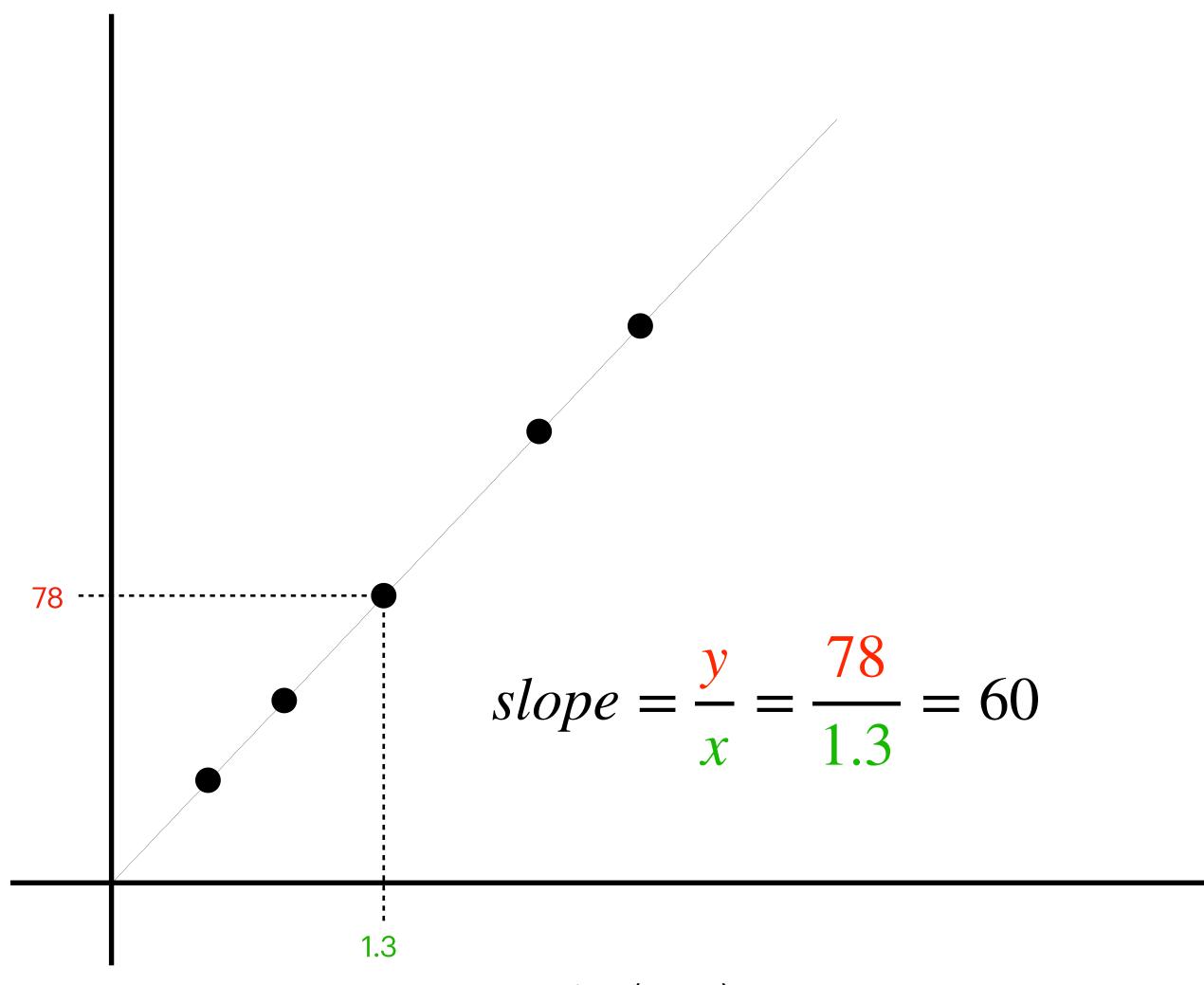


The slope of the line (i.e. speed of the car) is easy to determine:

Slope at
$$x = 1.3$$
, $y = 78$

Time (Hours)	Distance Traveled (Miles)	Speed (mph)
0.3	18	18 / 0.3 = 60
0.7	42	42 / 0.7 = 60
1.3	78	78 / 1.3 = 60

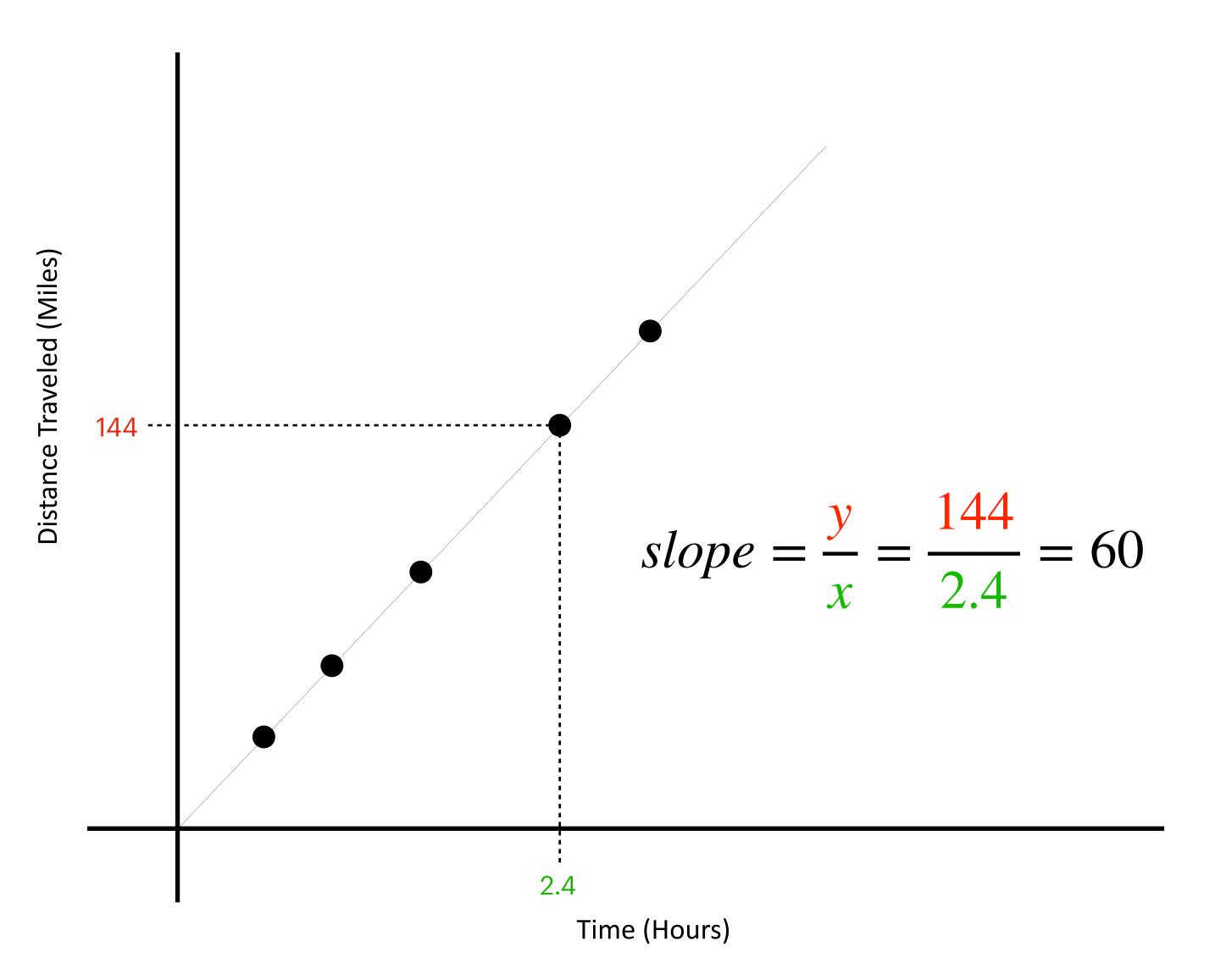
Distance Traveled (Miles)



The slope of the line (i.e. speed of the car) is easy to determine:

Slope at
$$x = 2.4$$
, $y = 144$

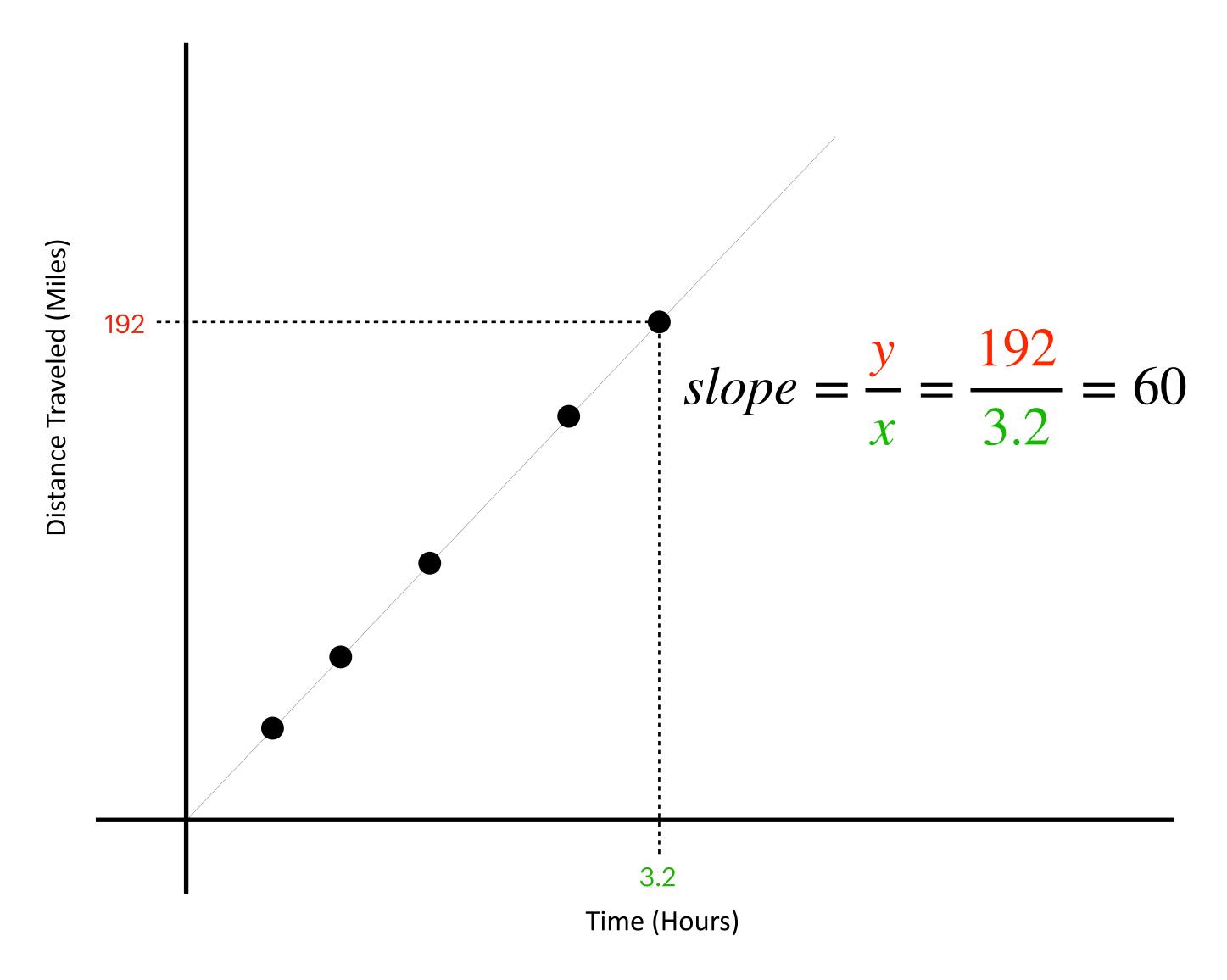
Time (Hours)	Distance Traveled (Miles)	Speed (mph)
0.3	18	18 / 0.3 = 60
0.7	42	42 / 0.7 = 60
1.3	78	78 / 1.3 = 60
2.4	144	144 / 2.4 = 60



The slope of the line (i.e. speed of the car) is easy to determine:

Slope at
$$x = 3.2$$
, $y = 192$

Time (Hours)	Distance Traveled (Miles)	Speed (mph)
0.3	18	18 / 0.3 = 60
0.7	42	42 / 0.7 = 60
1.3	78	78 / 1.3 = 60
2.4	144	144 / 2.4 = 60
3.2	192	192 / 3.2 = 60



Once we know the slope of the line...

$$slope = 60$$

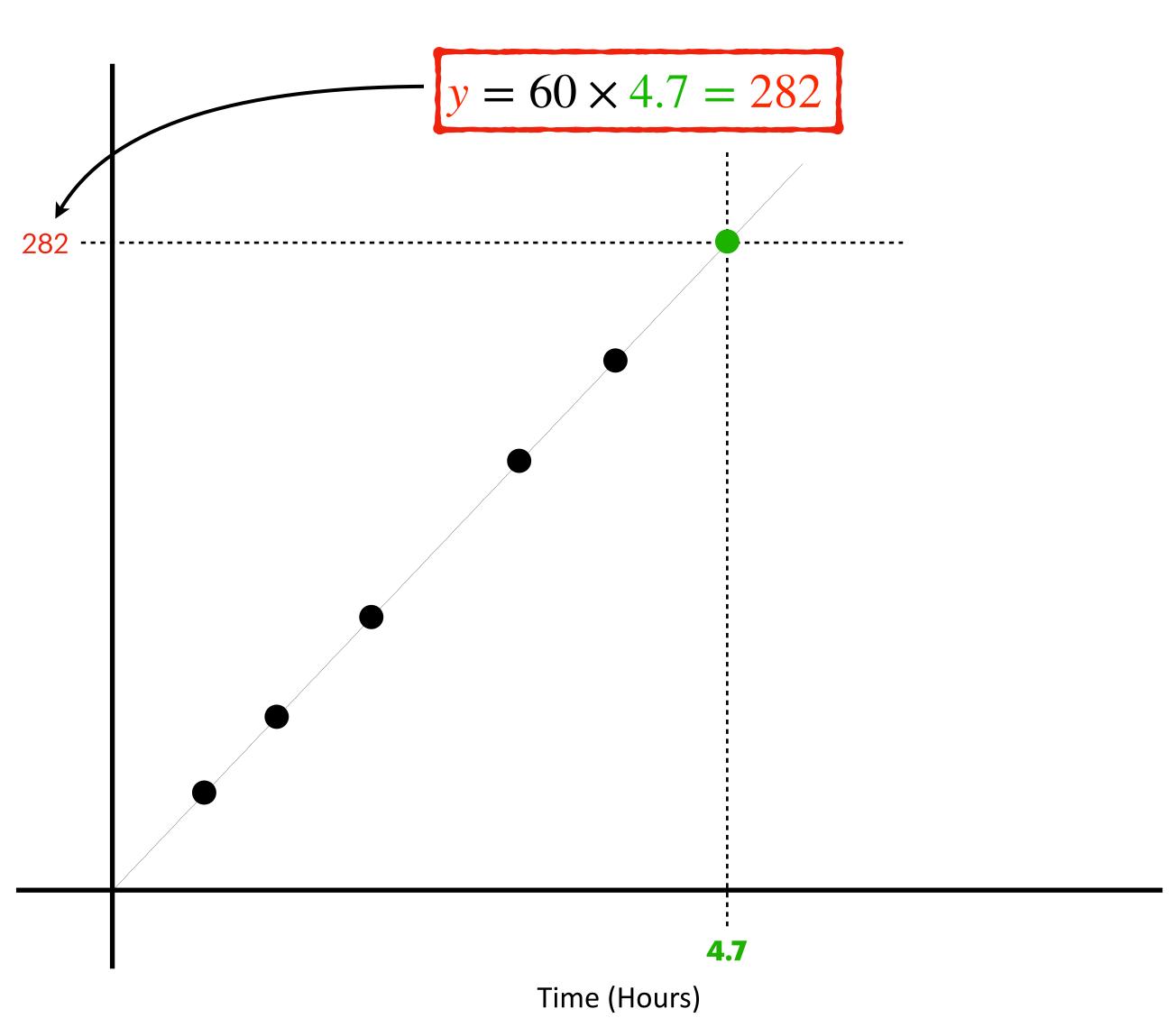
• Once we know the slope of the line, we can plot it using the formula for a line $v = \beta x$

$$y = \beta x$$

 $distance = speed \times time$

 Once we have a line then we can find the distance traveled at any point in time

$$y = 60 \times 4.7 = 282$$



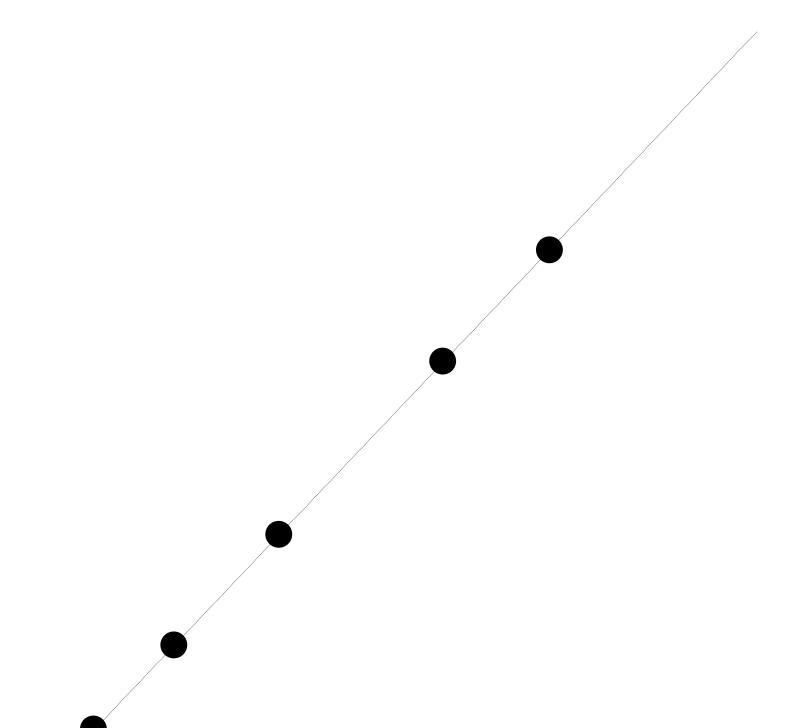
In General...

- Given a set of data points (x, y) ...
- We plot a line that fits that data...
- Then we use the line to calculate the
 y values for any value of x

This was a simple (contrived?) example...

- All the data points lined up perfectly
- The line fit the data perfectly
- We could have simply used the formula for the distance

 $distance = speed \times time$



Lets take a more realistic example...

A realistic example...

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

A realistic example...

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

A realistic example...

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (lbs)

Lets begin by plotting the data

Y Axis = Weight (lbs)

X Axis = Height (inches)

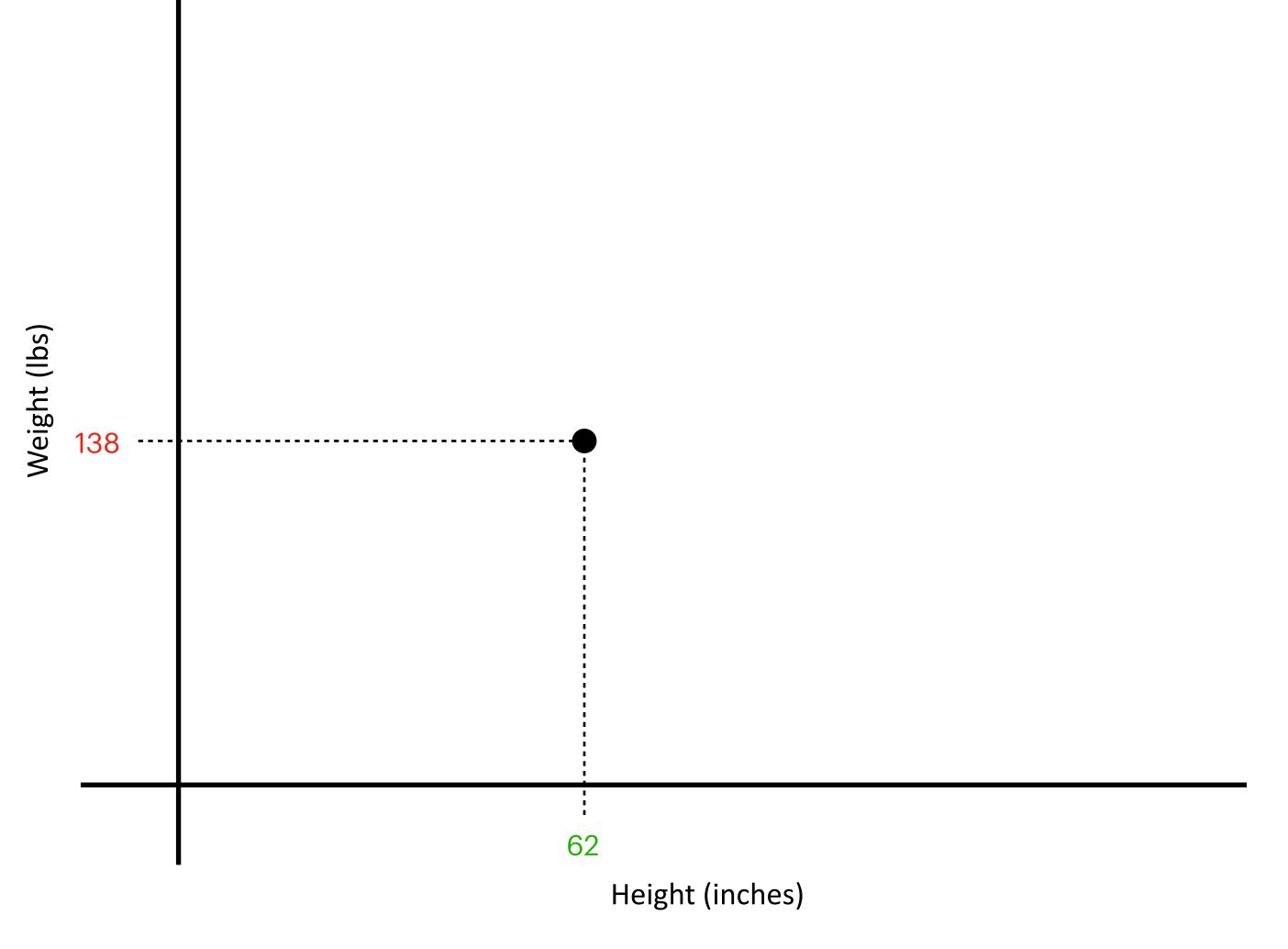
Question: Can we predict the weight of a person that is 71 inches tall?

Height (inches)

A realistic example...

We observe the heights and weights of 6 people

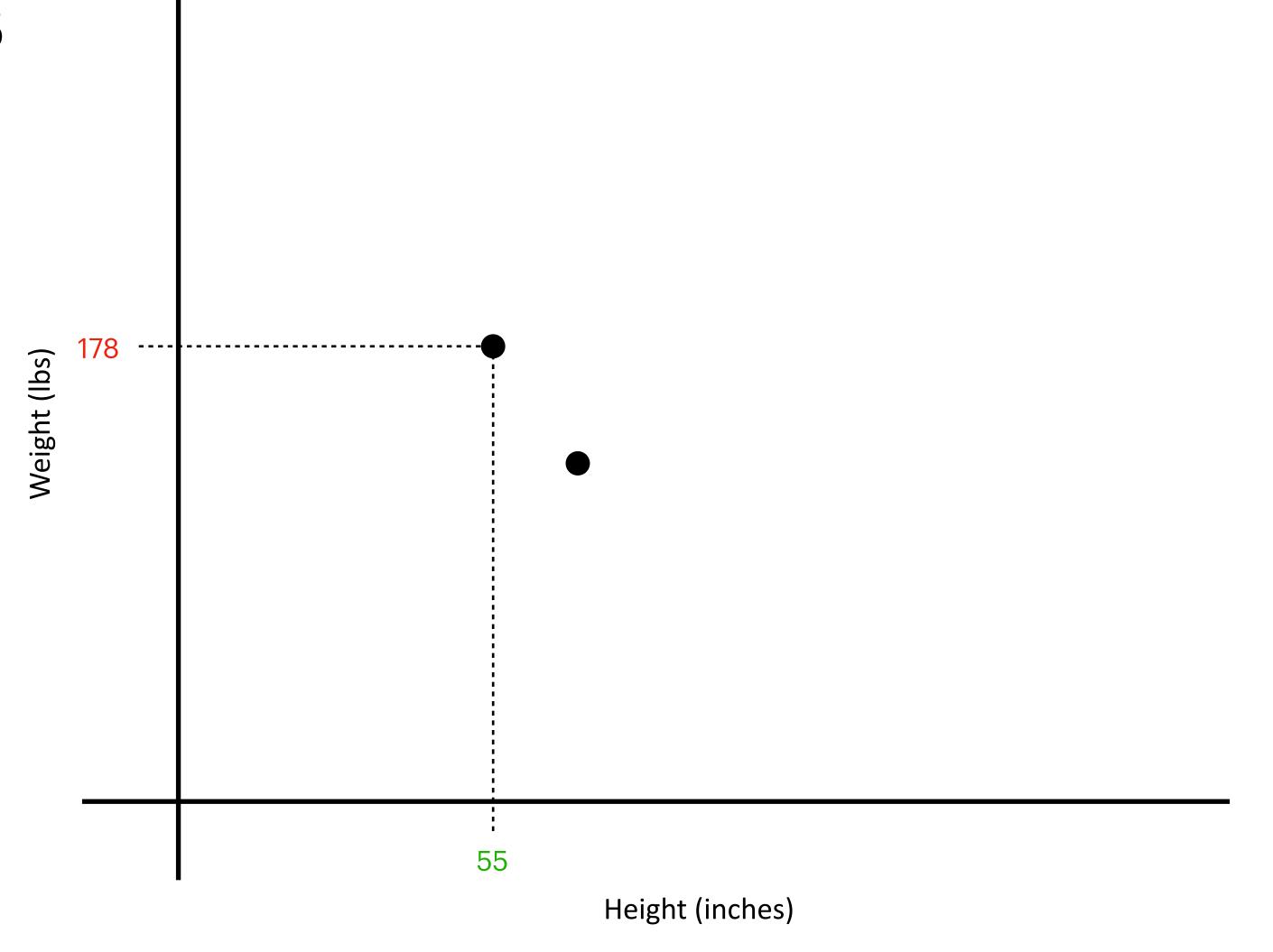
Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102



A realistic example...

We observe the heights and weights of 6 people

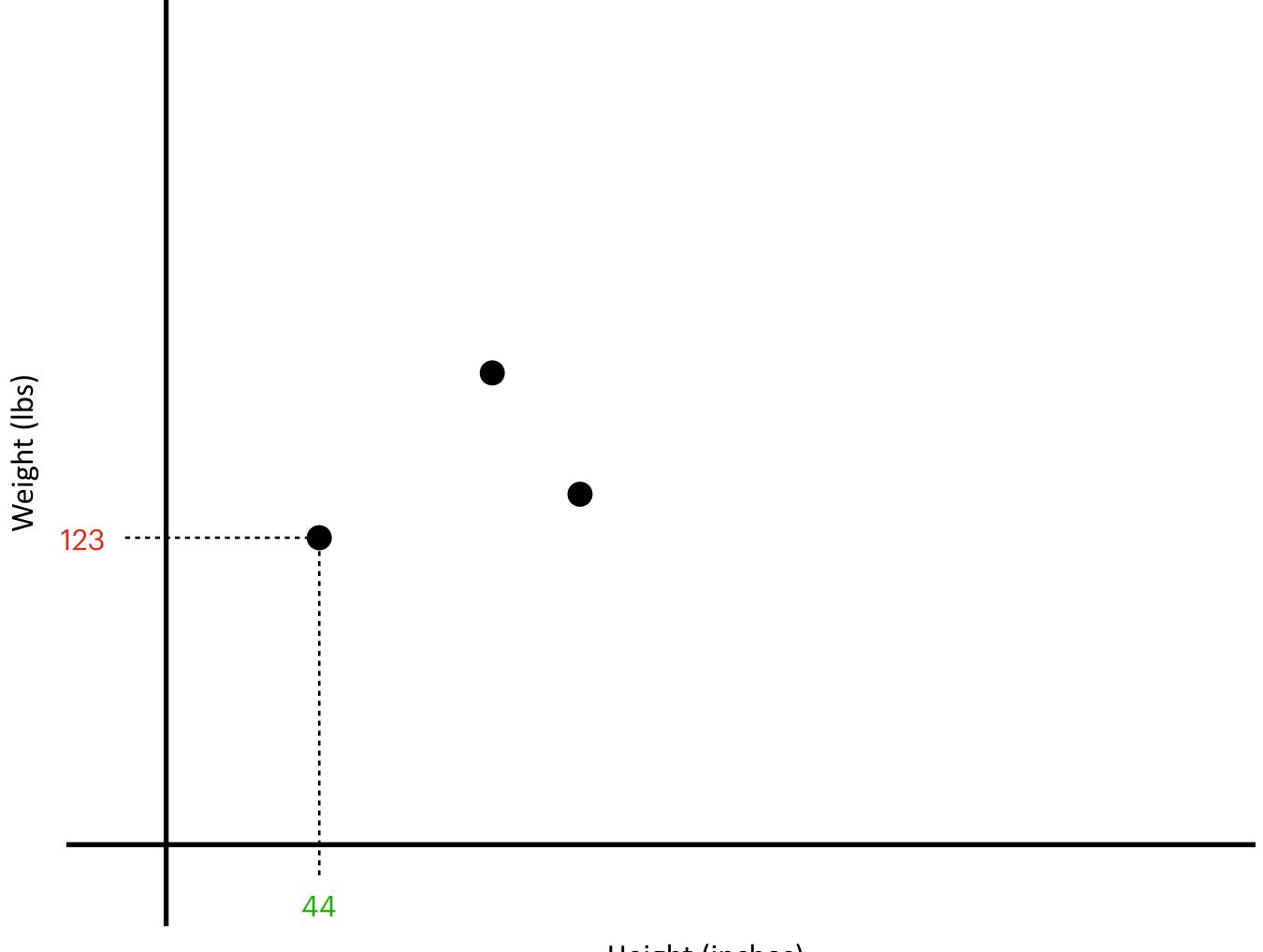
Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102



A realistic example...

We observe the heights and weights of 6 people

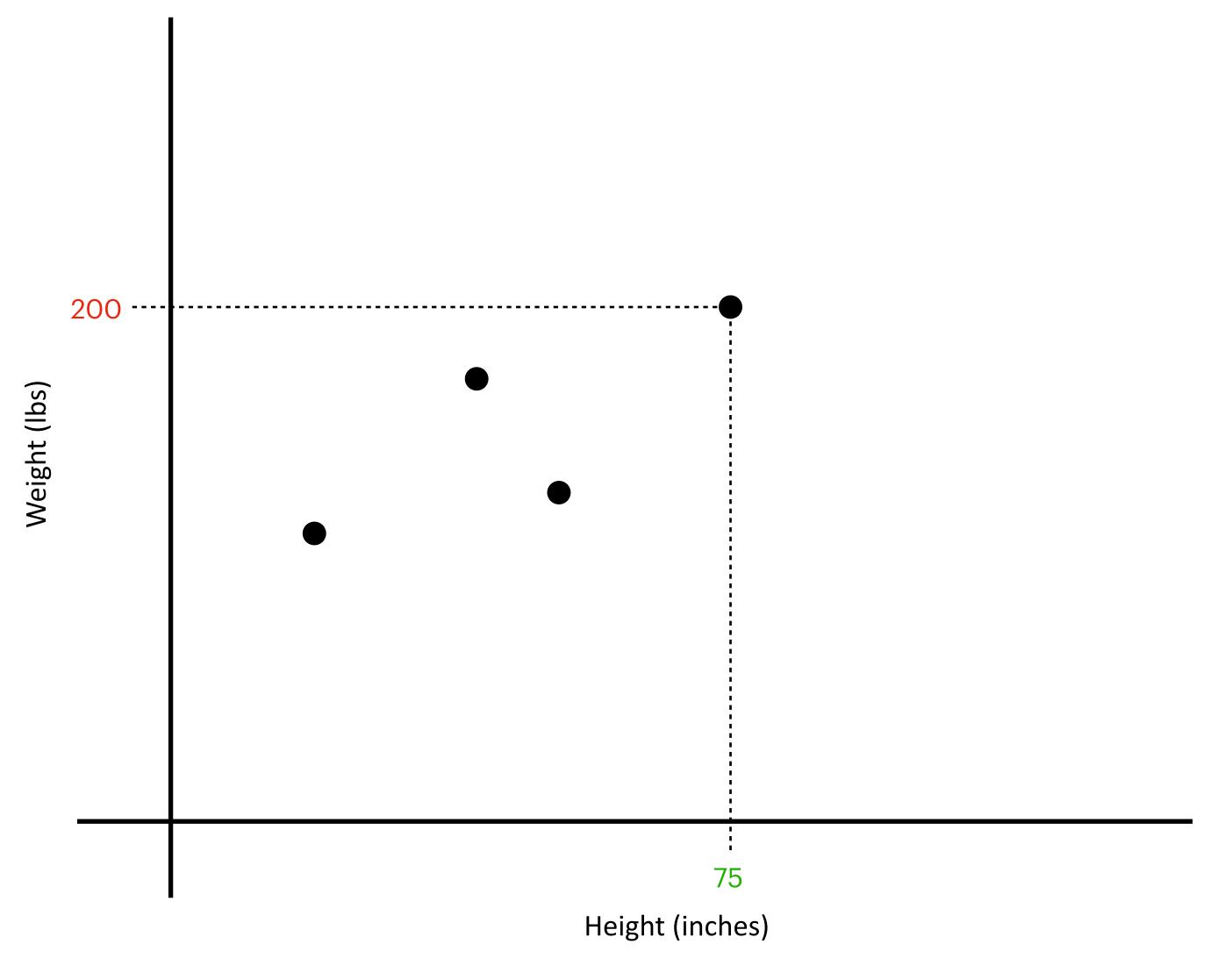
Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102



A realistic example...

We observe the heights and weights of 6 people

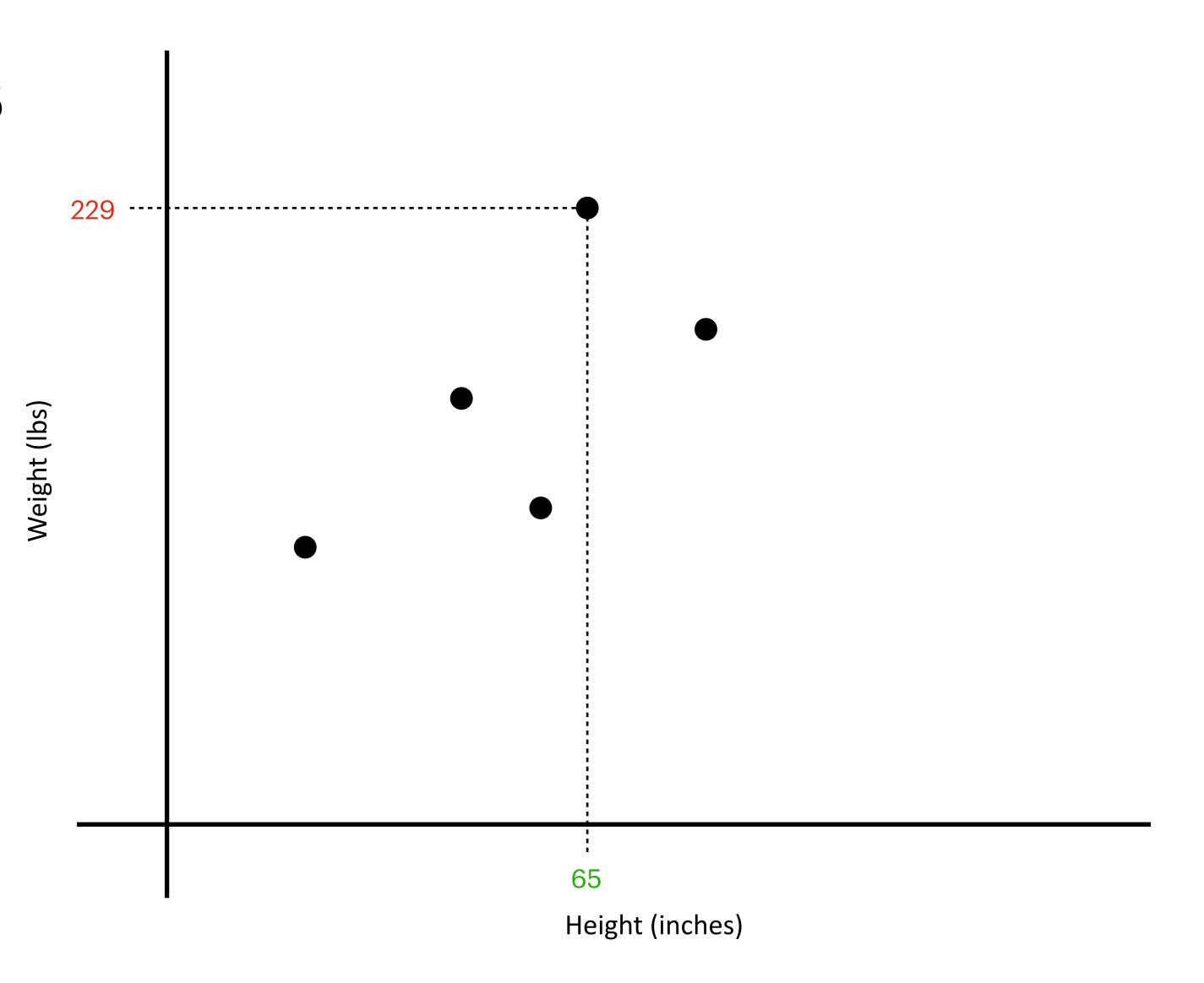
Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102



A realistic example...

We observe the heights and weights of 6 people

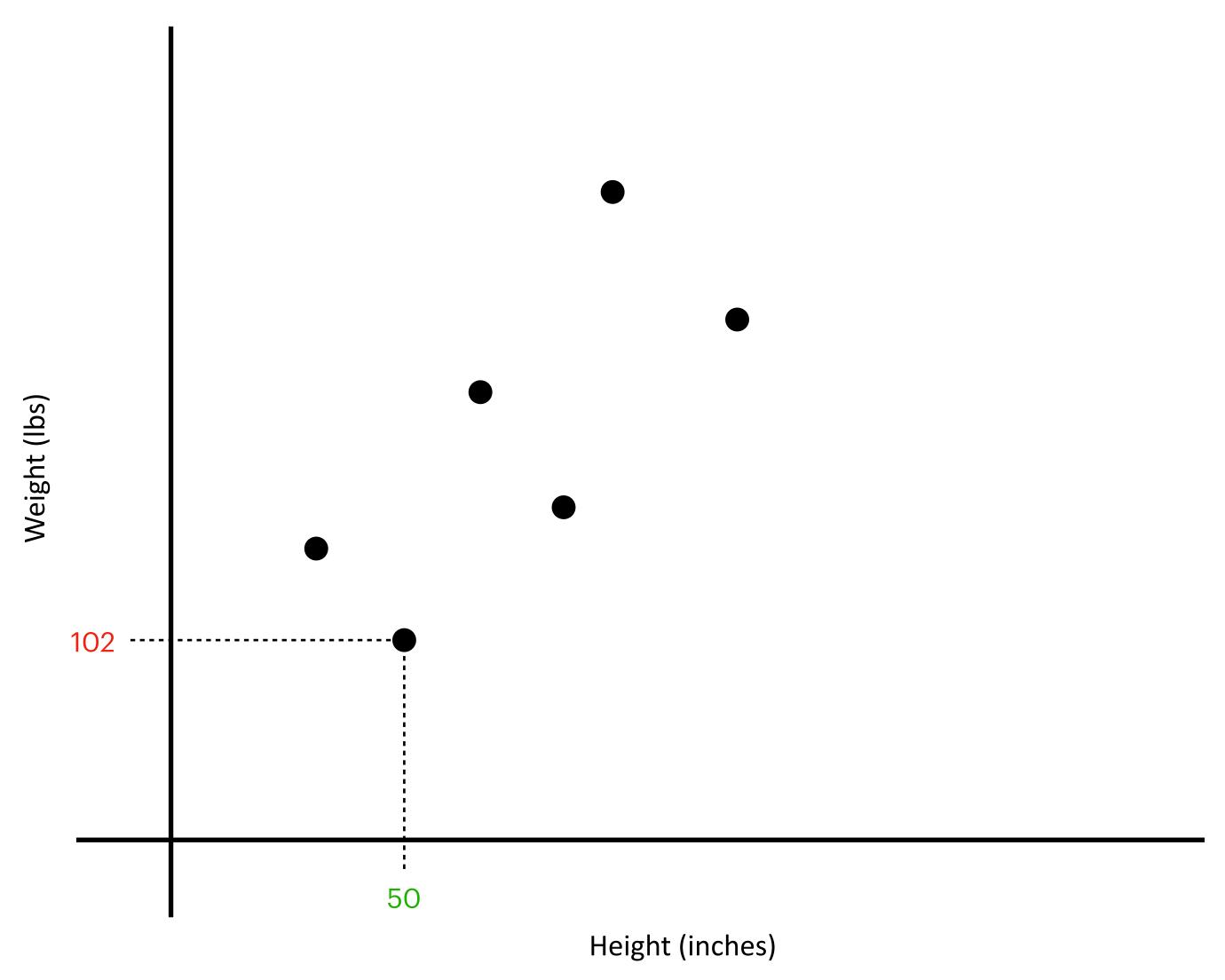
Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102



A realistic example...

We observe the heights and weights of 6 people

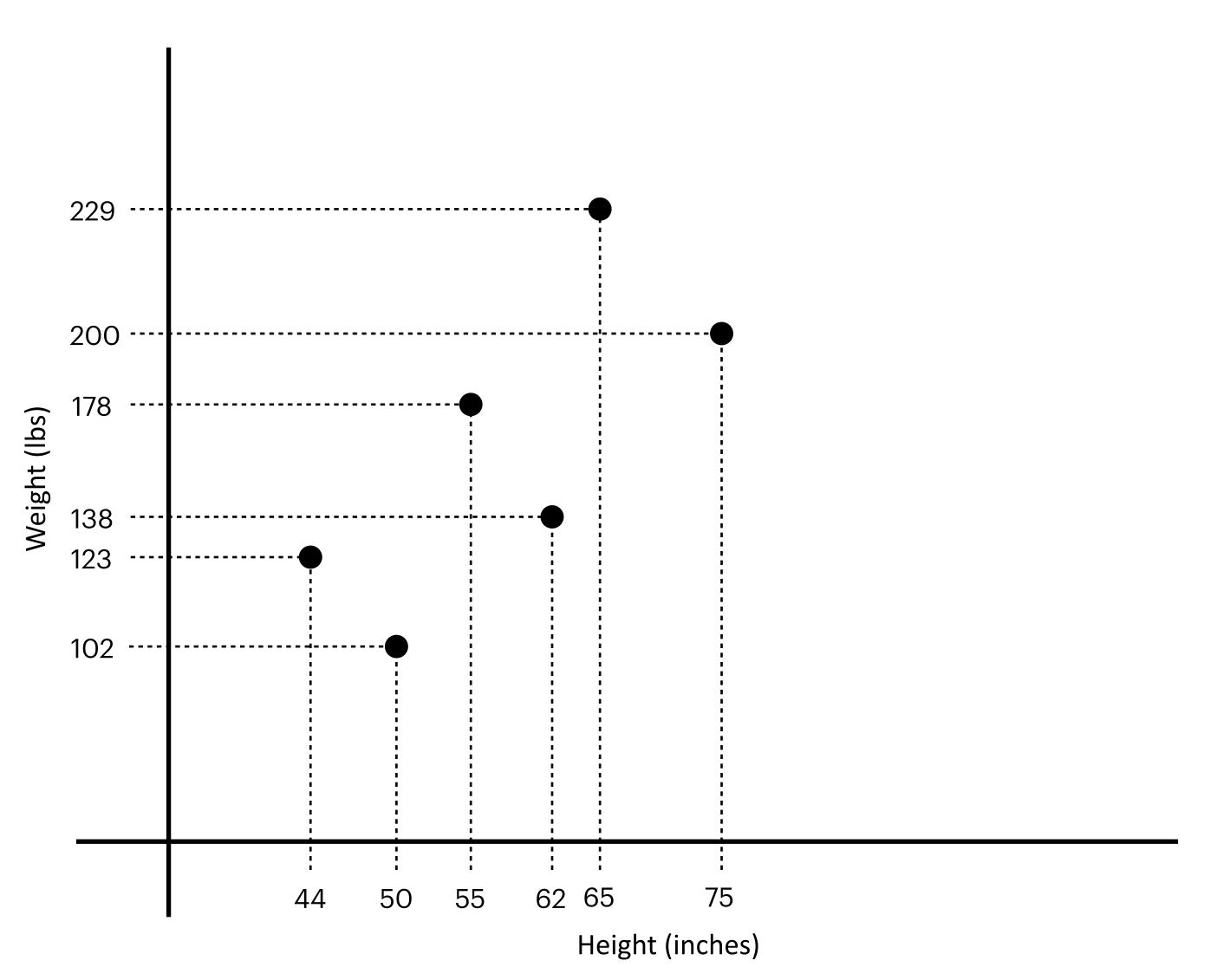
Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102



A realistic example...

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102



A realistic example...

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (lbs)

Can we draw a line that passes through all these points?

Question: Can we predict the weight of a person that is 71 inches tall?

Height (inches)

A realistic example...

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (lbs)

Can we draw a line that passes through all these points?

We can't because its not a perfect linear relationship

Question: Can we predict the weight of a person that is 71 inches tall?

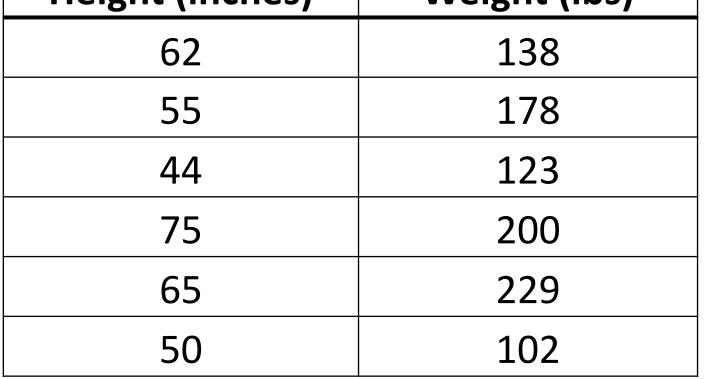
A realistic example...

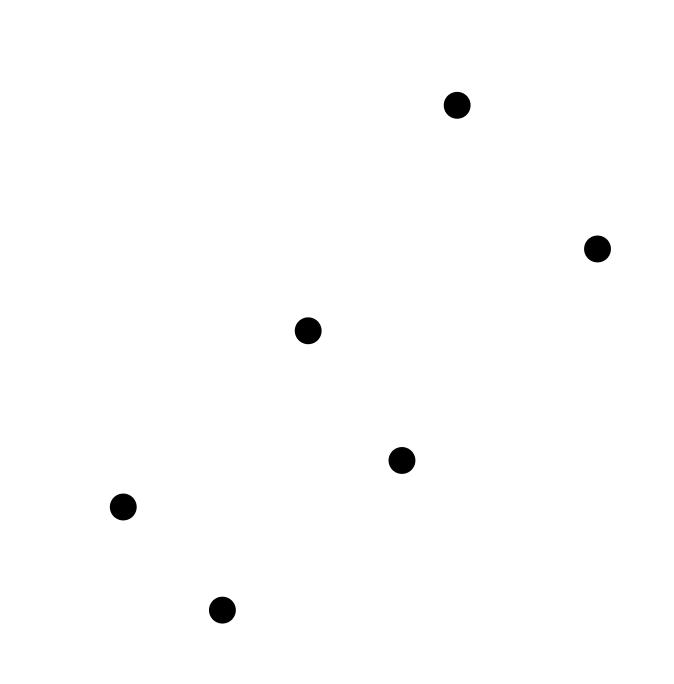
the data?

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (lbs)





Height (inches)

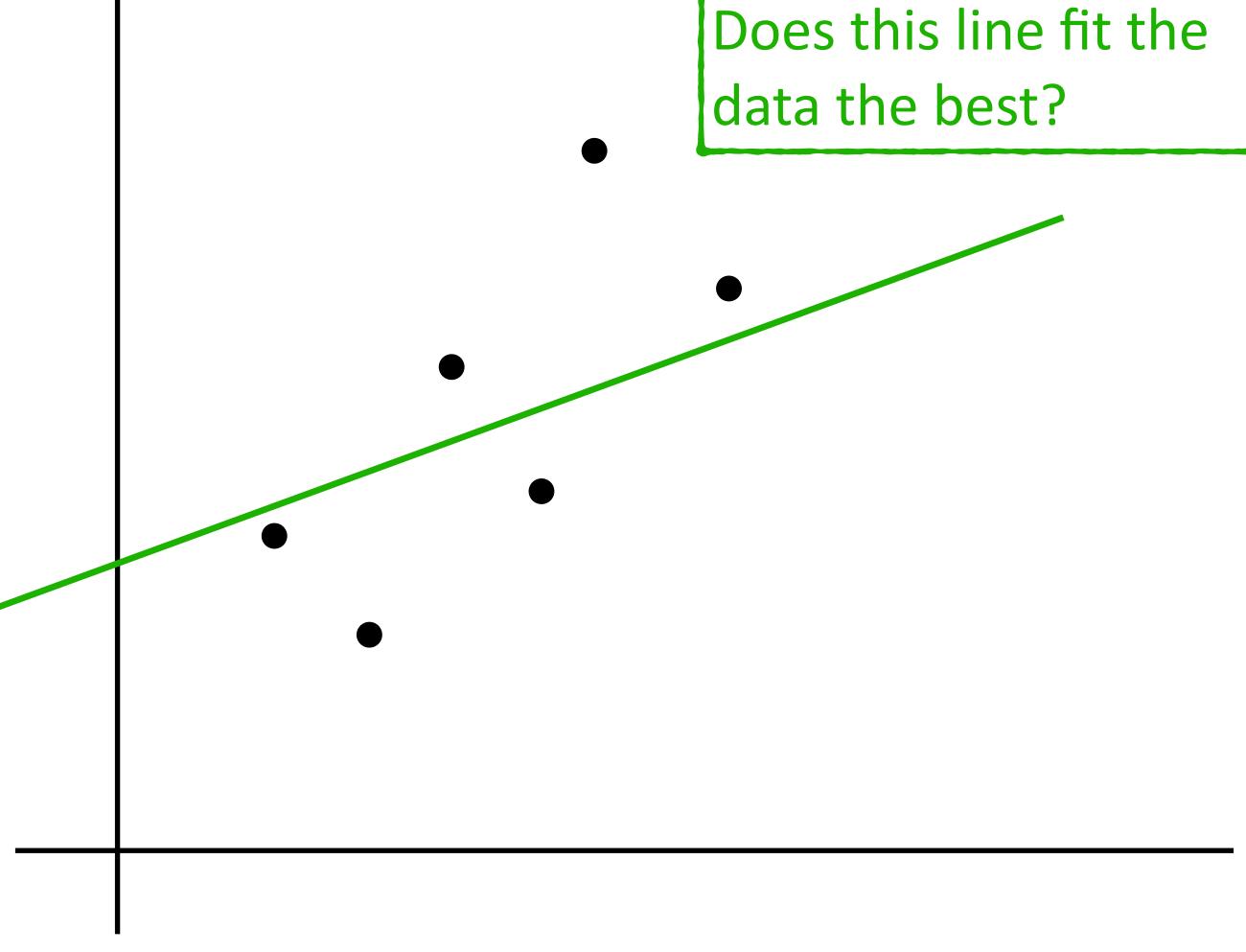
Question: So what's the line that best fits

A realistic example...

We observe the heights and weights of 6 people

Weight (lbs)

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102



Question: So what's the line that best fits the data?

A realistic example...

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Or does this line fit the data the best?

Weight (lbs)

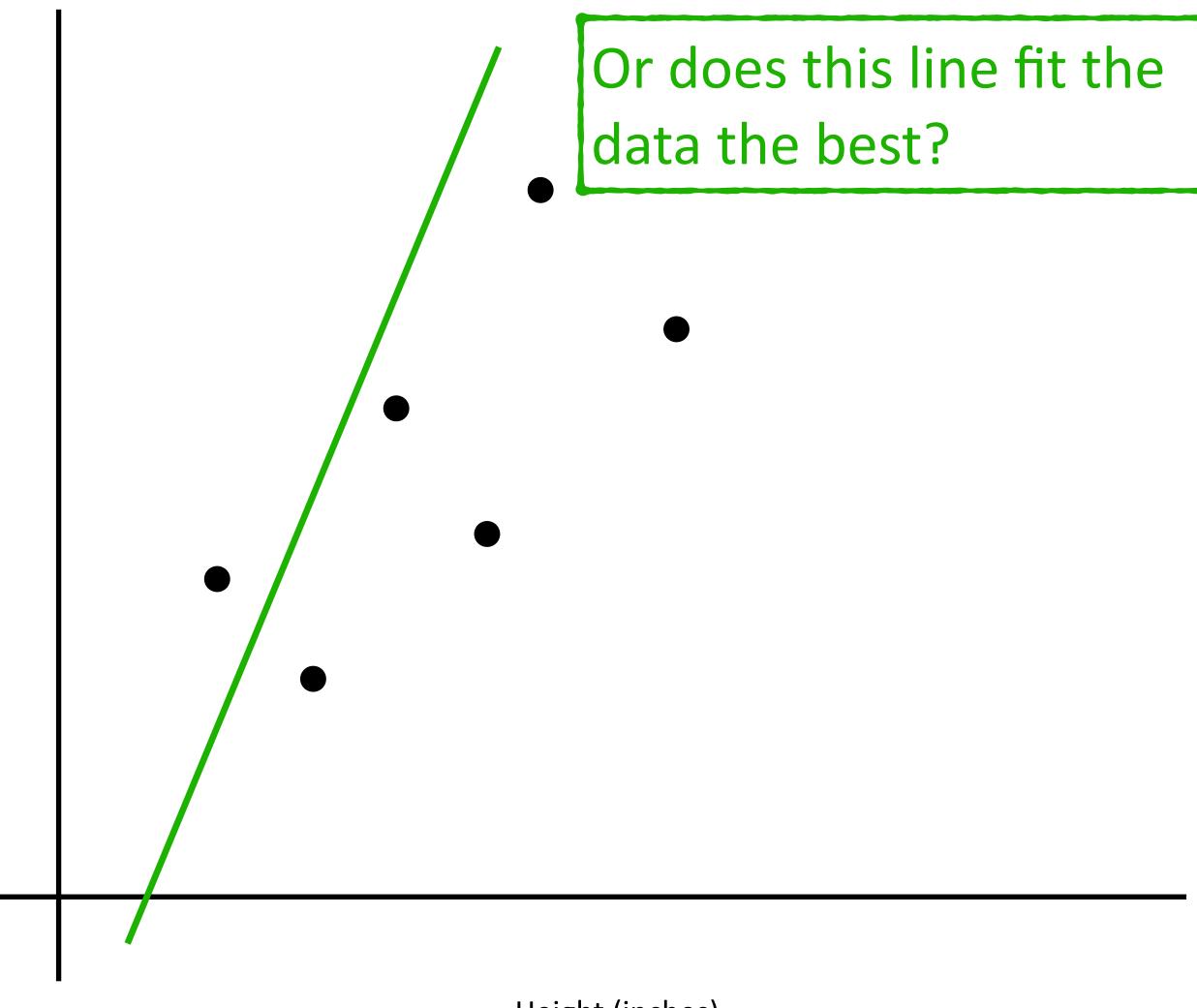
Question: So what's the line that best fits the data?

A realistic example...

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (lbs)



Question: So what's the line that best fits the data?

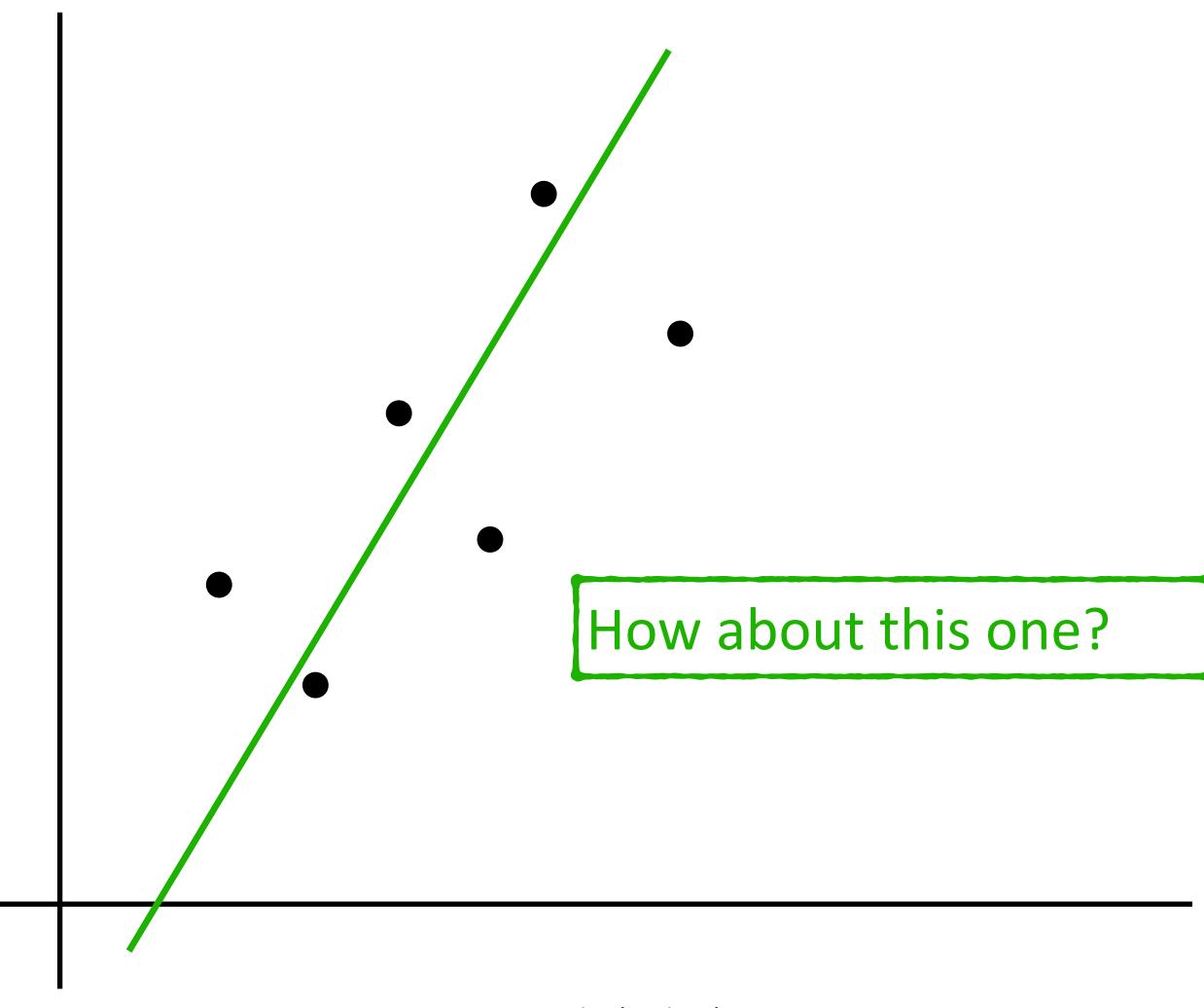
A realistic example...

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (lbs)

Question: So what's the line that best fits the data?



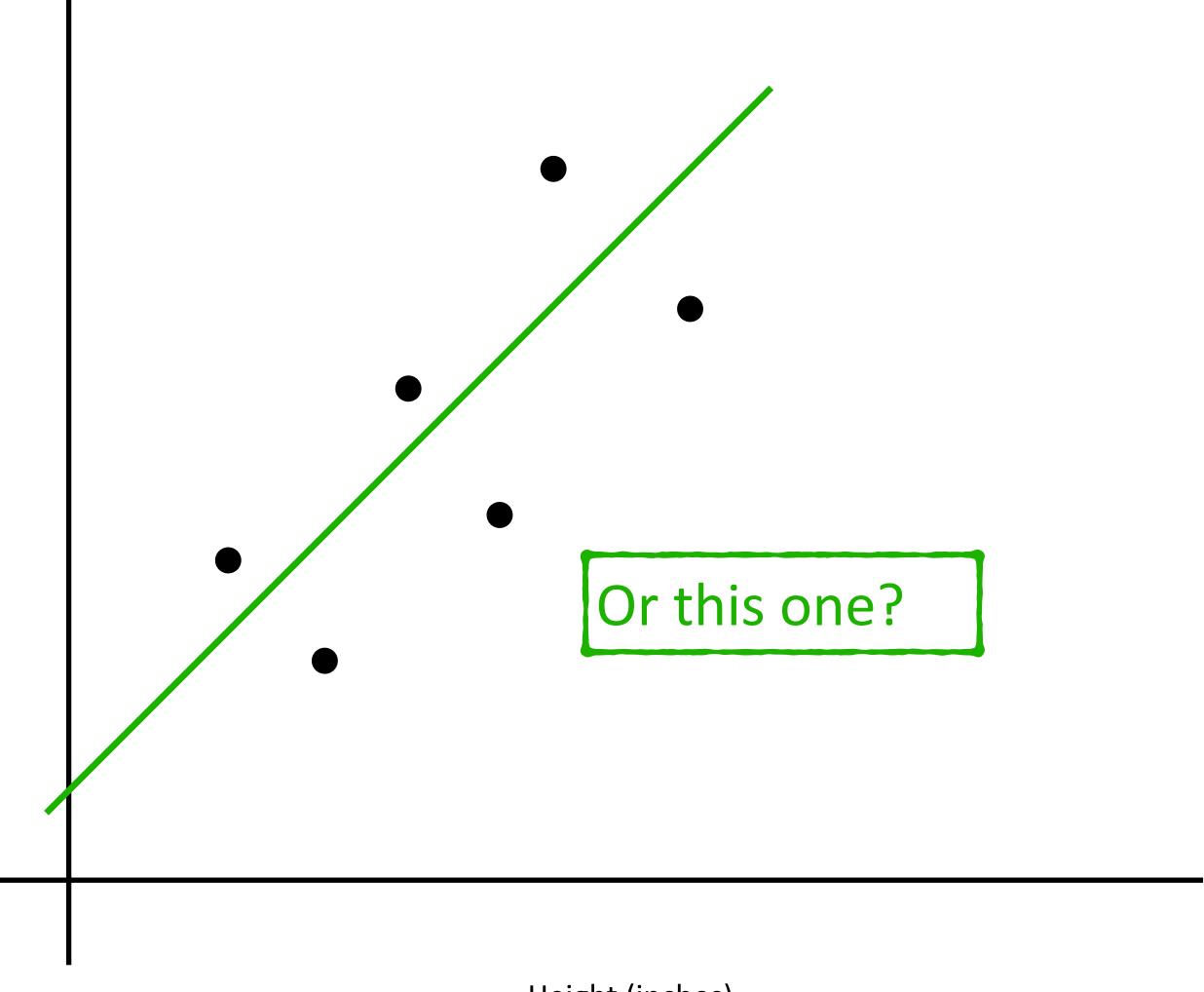
A realistic example...

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

Weight (lbs)

Question: So what's the line that best fits the data?



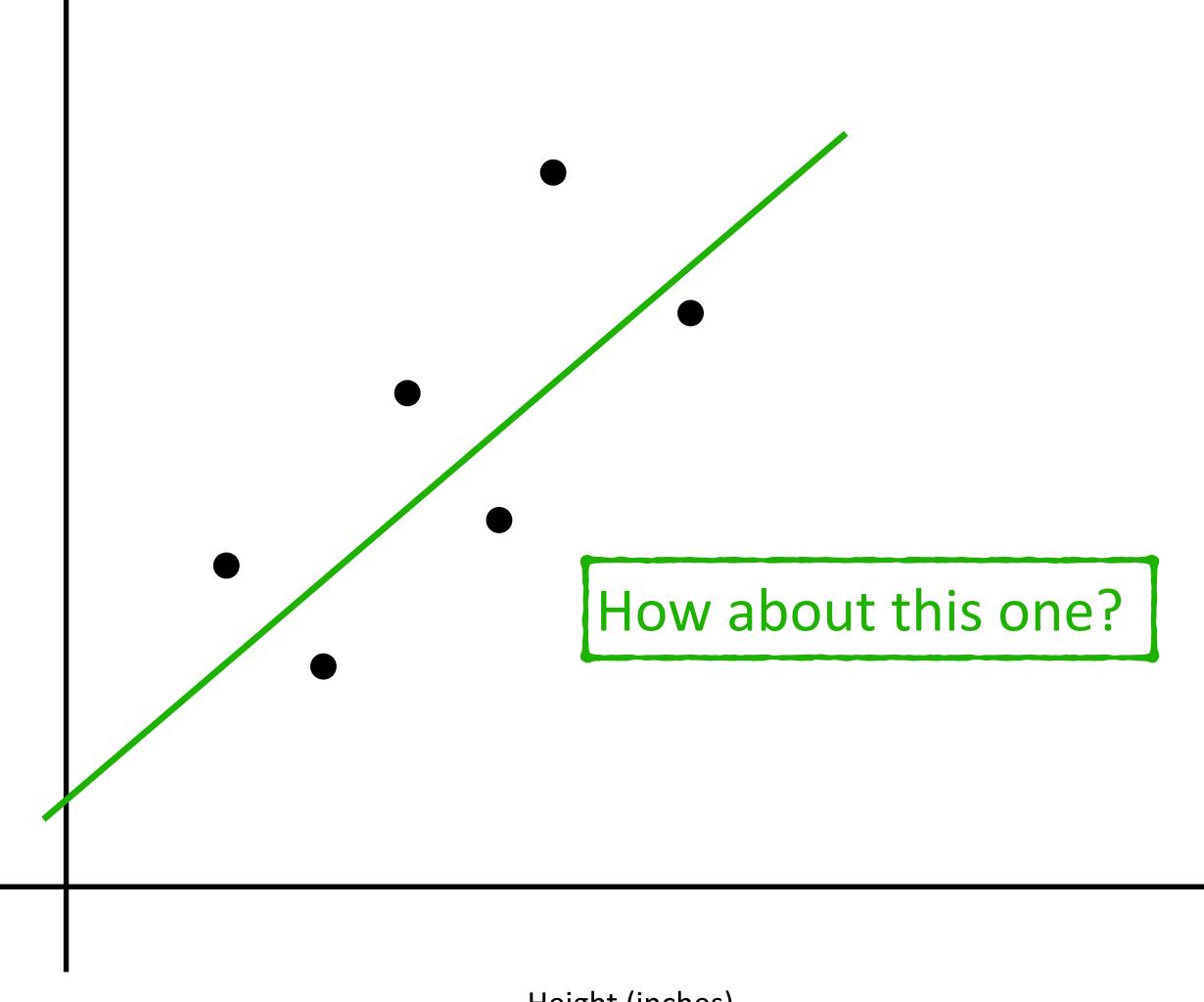
A realistic example...

We observe the heights and weights of 6 people

Height (inches)	Weight (lbs)
62	138
55	178
44	123
75	200
65	229
50	102

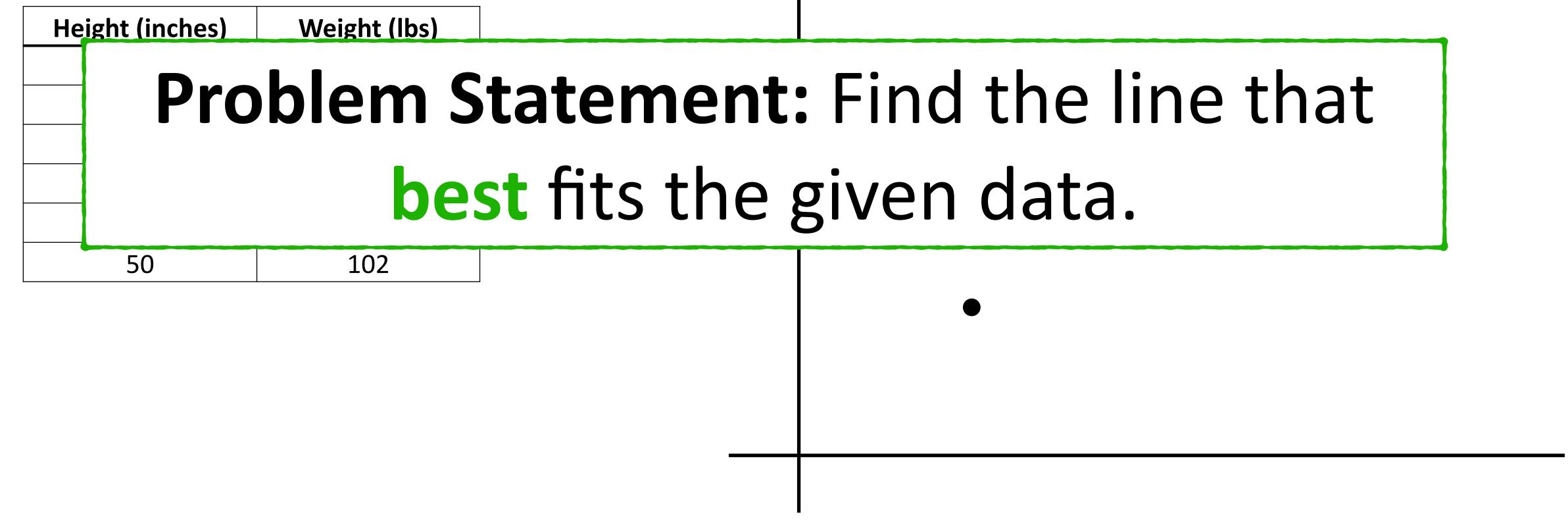
Weight (lbs)

Question: So what's the line that best fits the data?



A realistic example...

We observe the heights and weights of 6 people



A realistic example...

We observe the heights and weights of 6 people

Problem Statement: Given a set of data points in

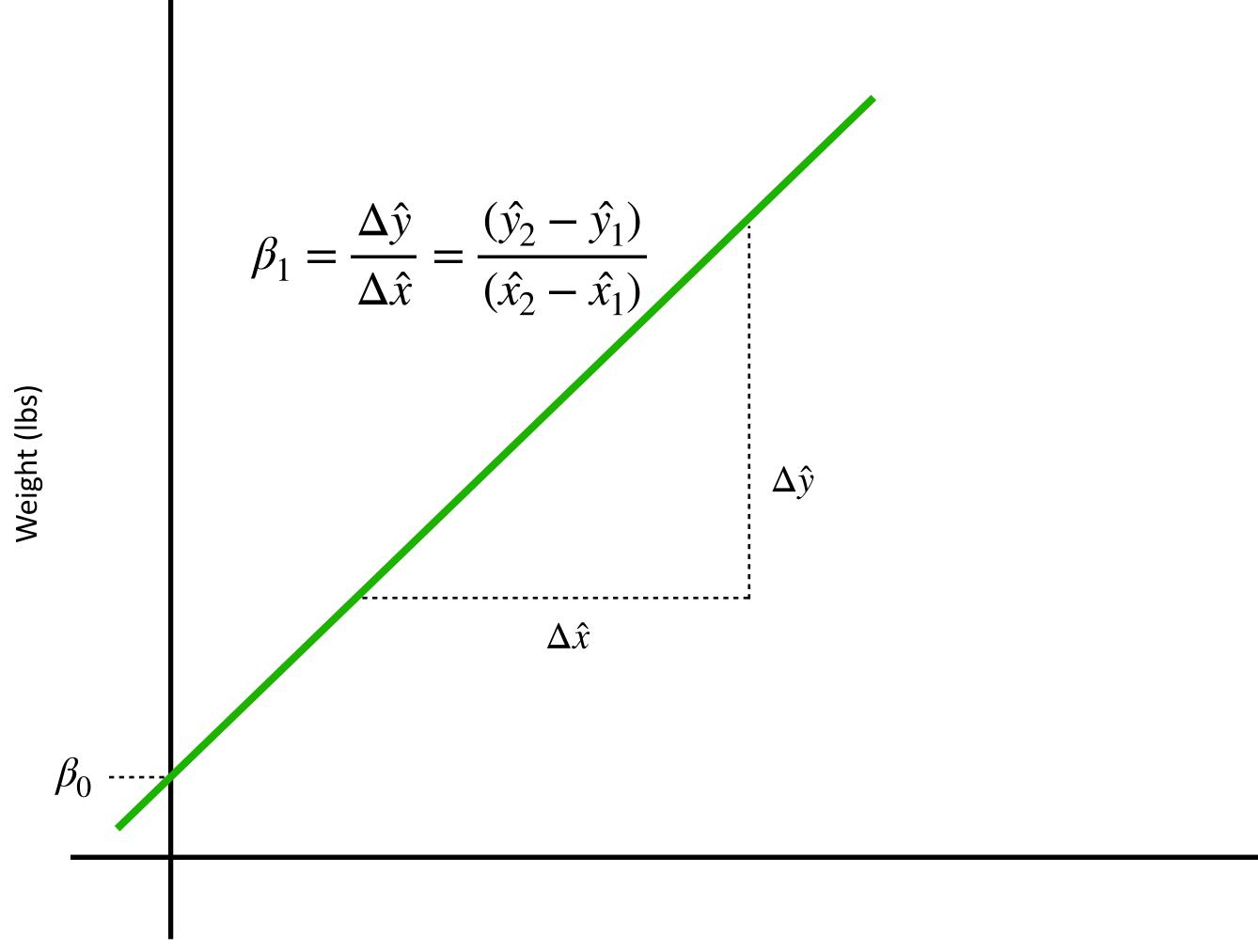
$$\mathbb{R}^2$$
, (x_1, y_1) , (x_2, y_2) , (x_3, y_3) ... (x_n, y_n) , find the

line that best fits the data

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

 β_0 Is the Y intercept

 β_1 Is the slope of the line



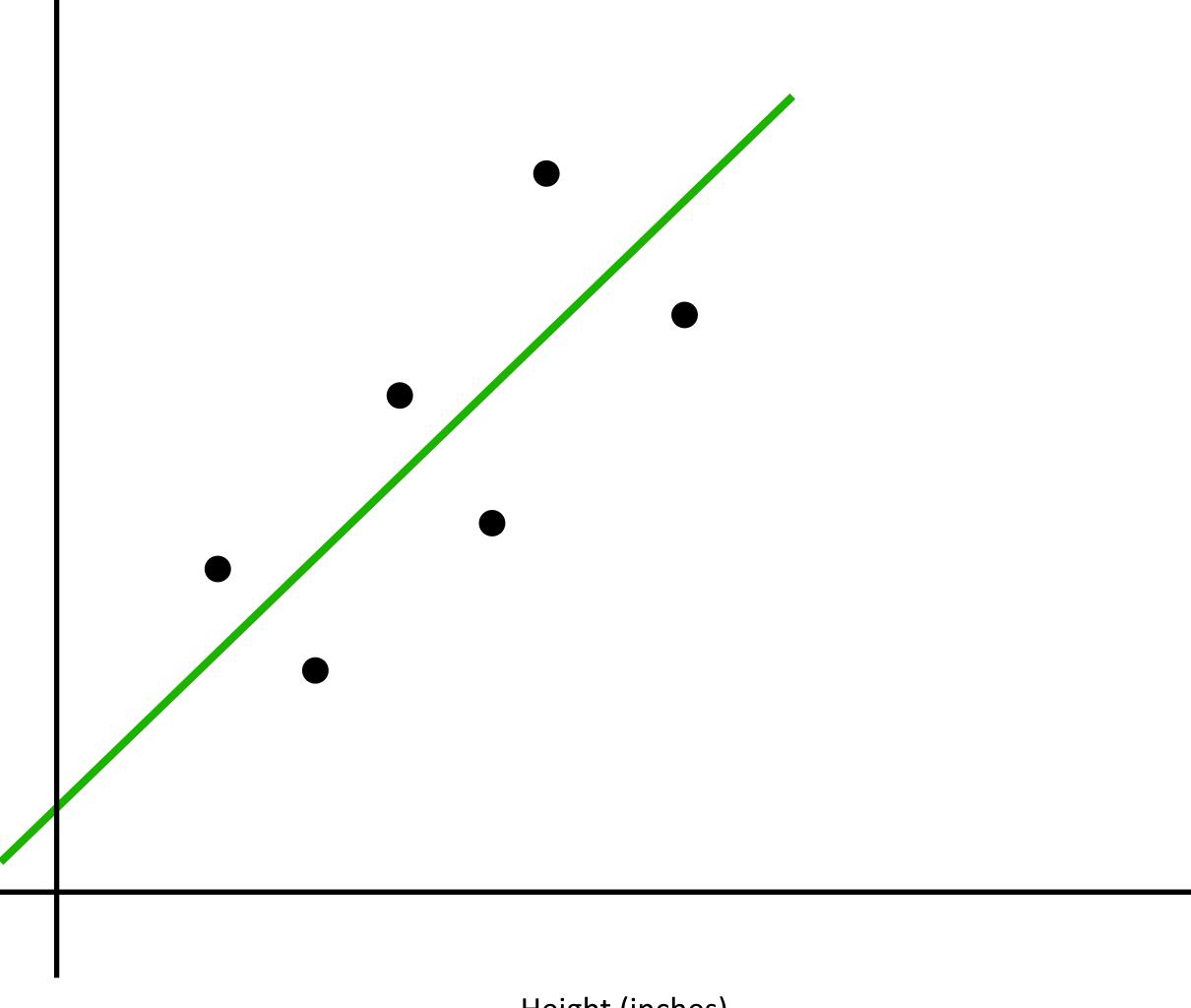
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

 β_0 Is the Y intercept

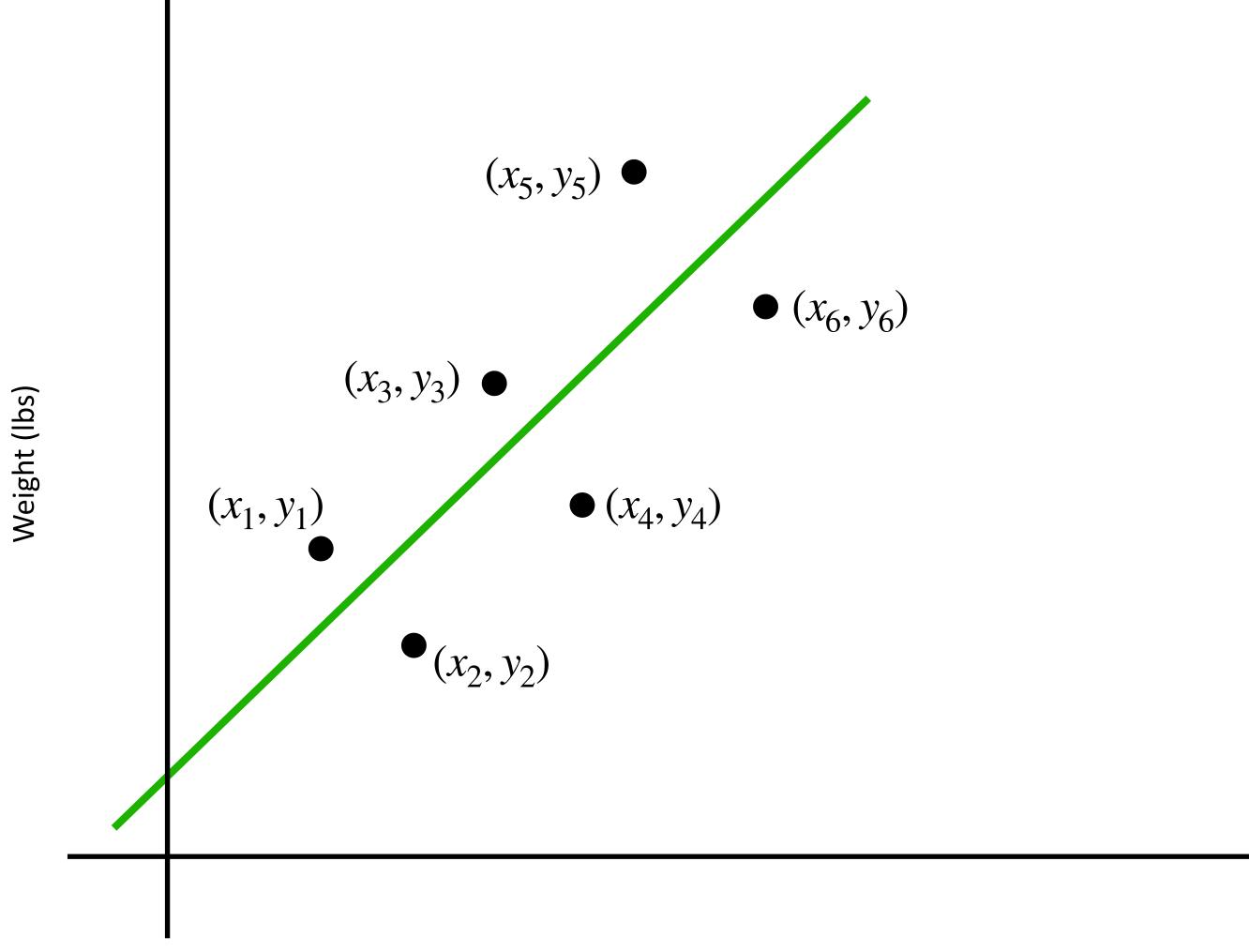
 β_1 Is the slope of the line

Weight (lbs)

Problem Statement: Find the values of β_0 and β_1 for the line that best fits the given data.



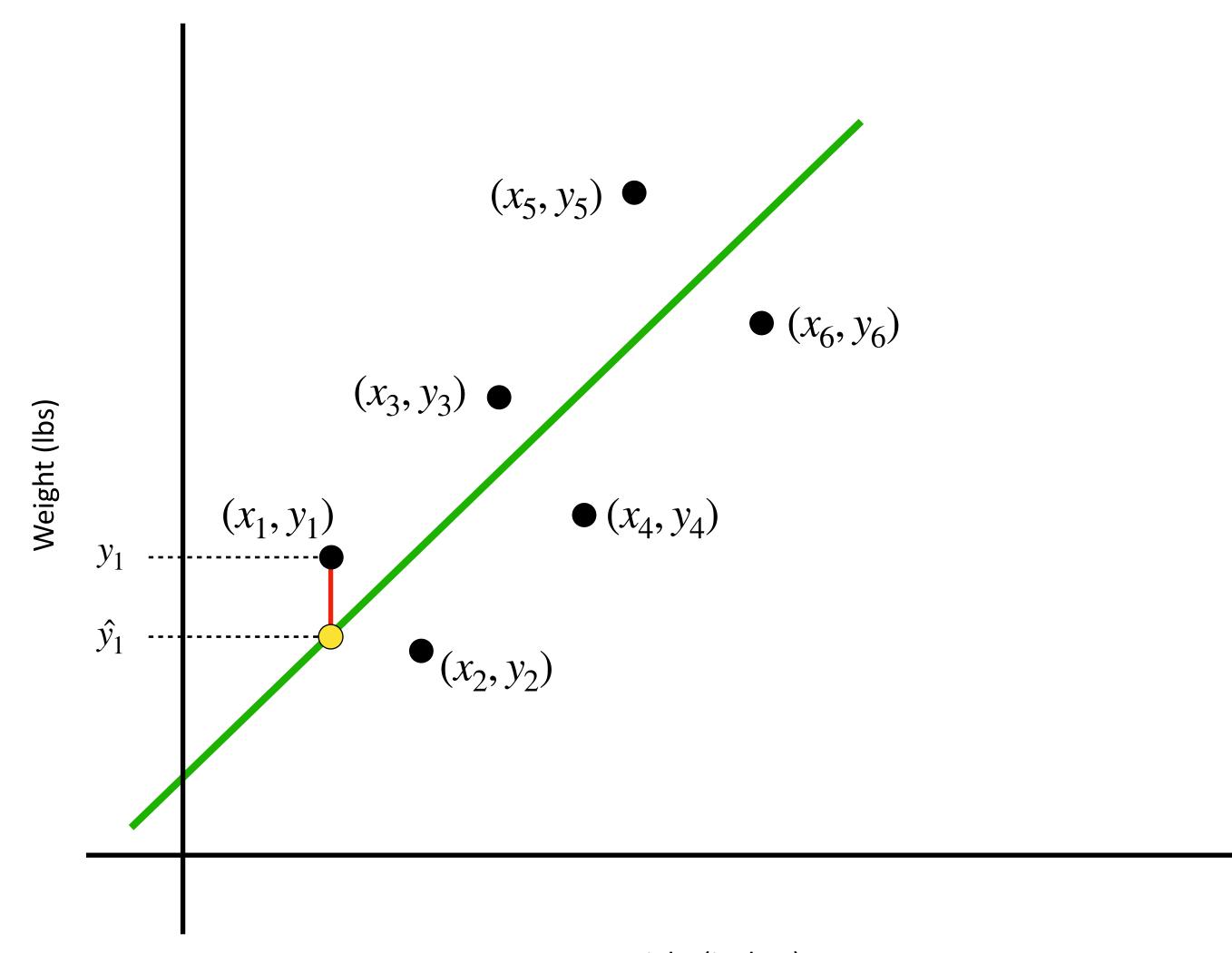
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$



The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the distance to the line (the error)

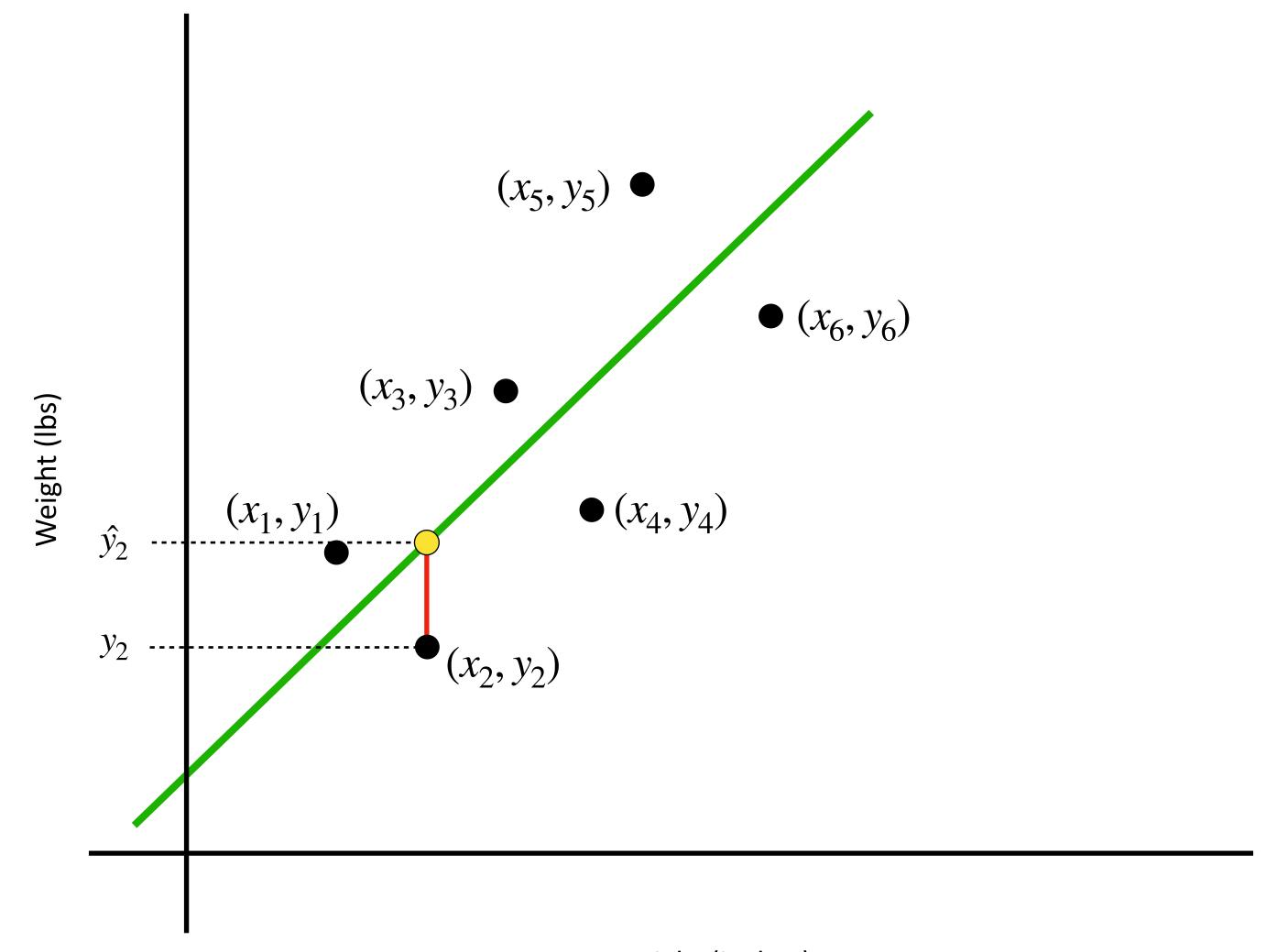
$$(y_1 - \hat{y_1})$$



The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the distance to the line (the error)

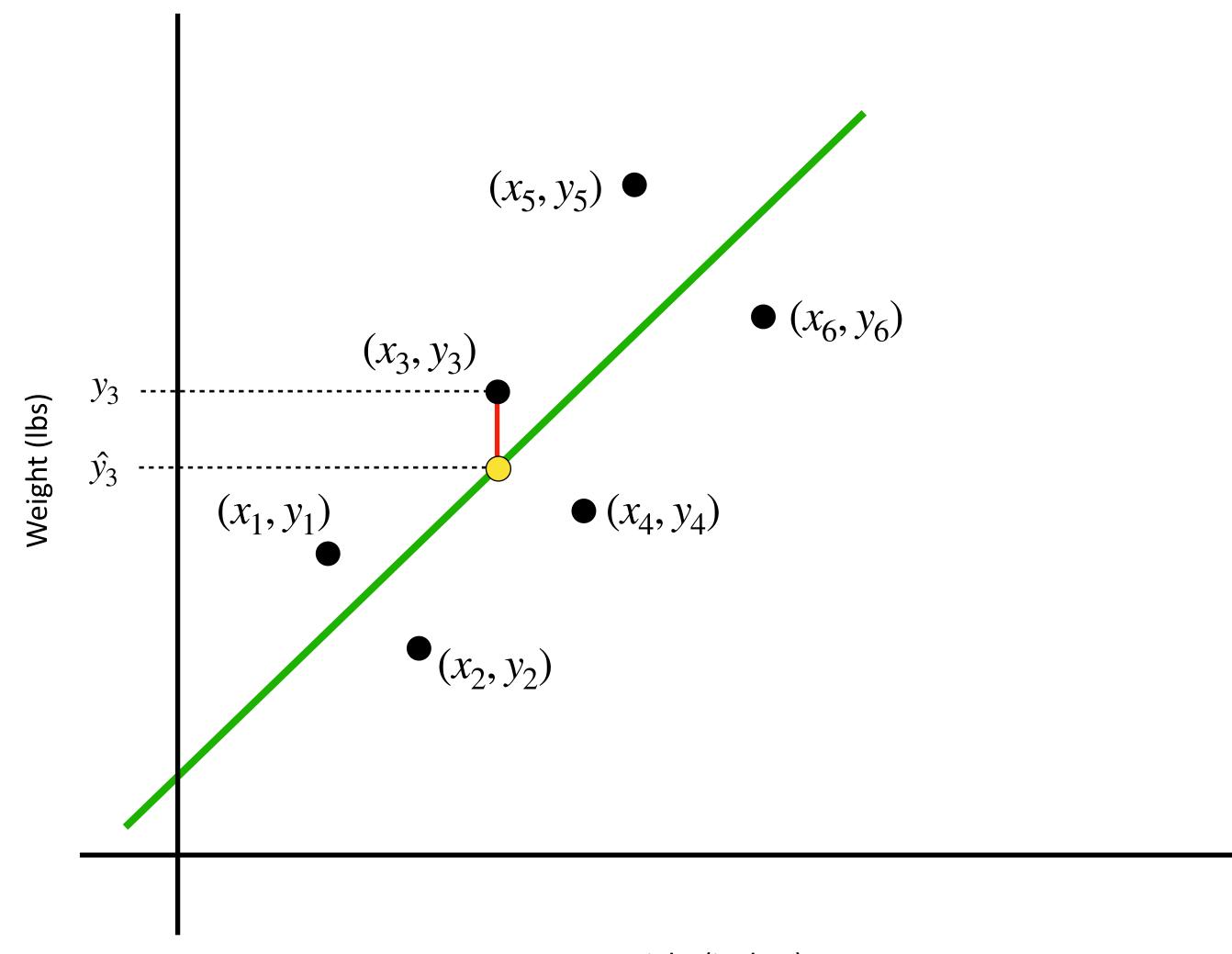
$$(y_1 - \hat{y_1}) + (y_2 - \hat{y_2})$$



The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the distance to the line (the error)

$$(y_1 - \hat{y_1}) + (y_2 - \hat{y_2}) + (y_3 - \hat{y_3})$$

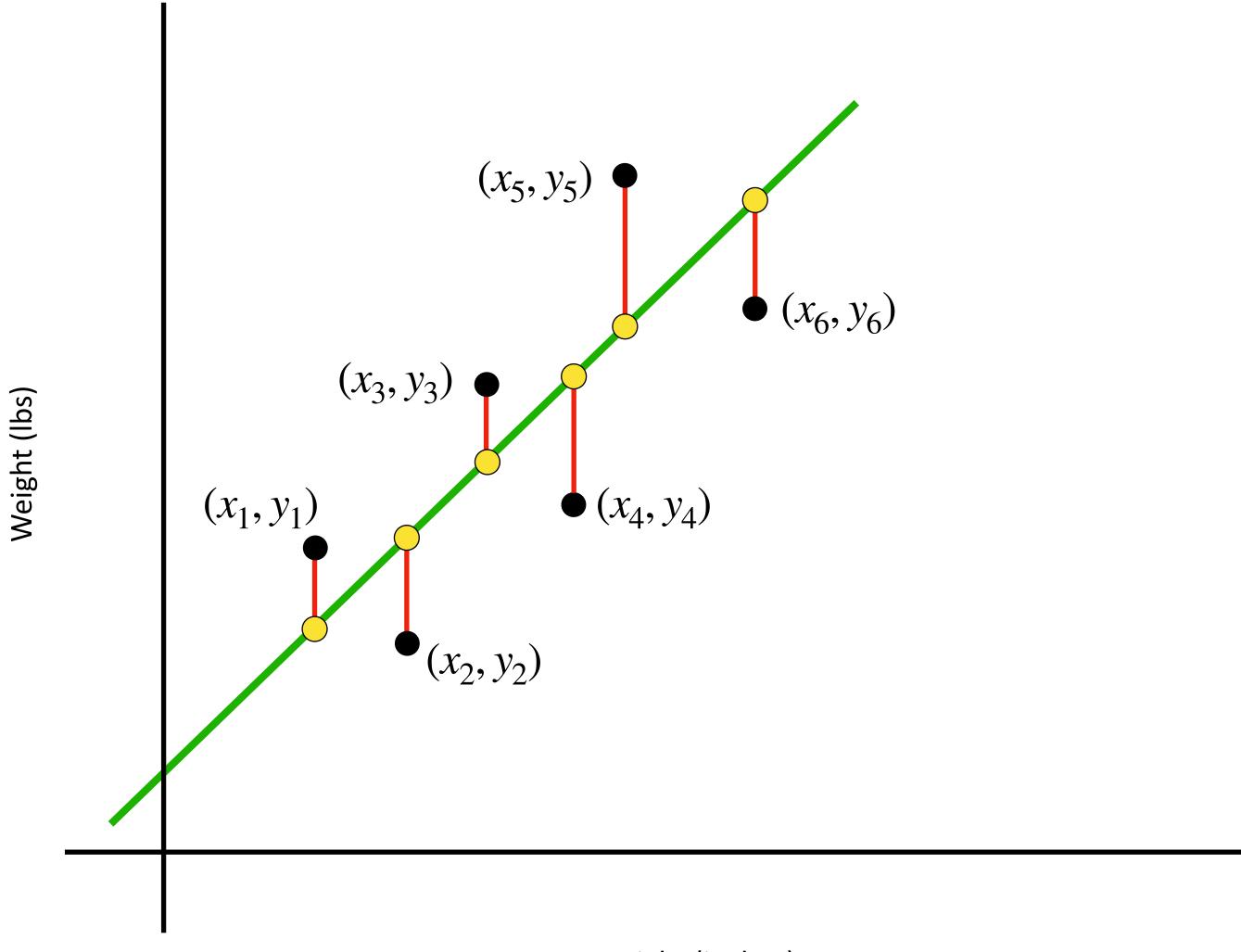


The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the distance to the line (the error)

$$(y_1 - \hat{y_1}) + (y_2 - \hat{y_2}) + (y_3 - \hat{y_3})$$

 $+(y_4 - \hat{y_4}) + (y_5 - \hat{y_5}) + (y_6 - \hat{y_6})$



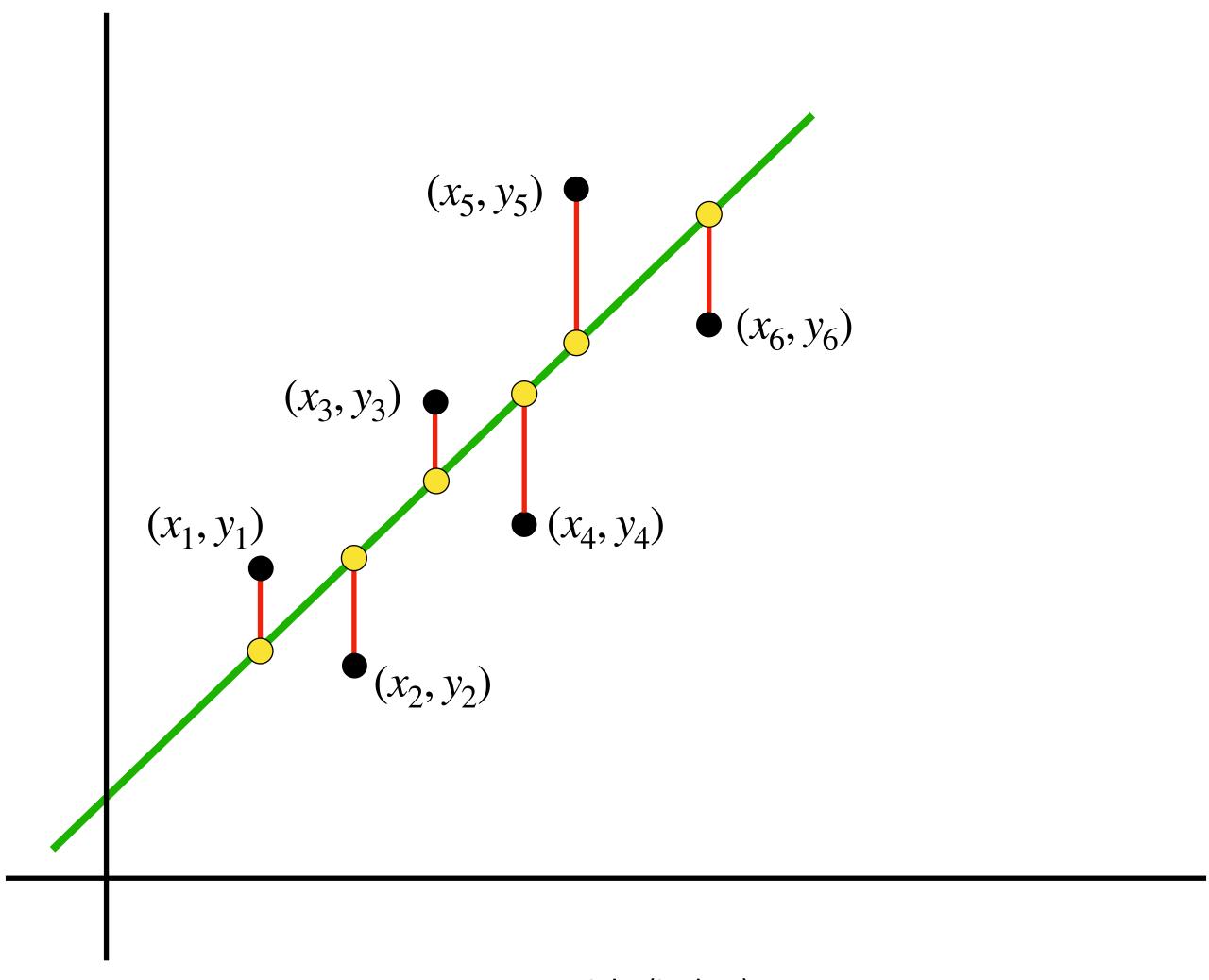
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the distance to the line (the error)

$$(y_1 - \hat{y_1}) + (y_2 - \hat{y_2}) + (y_3 - \hat{y_3})$$

 $+(y_4 - \hat{y_4}) + (y_5 - \hat{y_5}) + (y_6 - \hat{y_6})$

But there's a small problem...



Height (inches)

Weight (lbs)

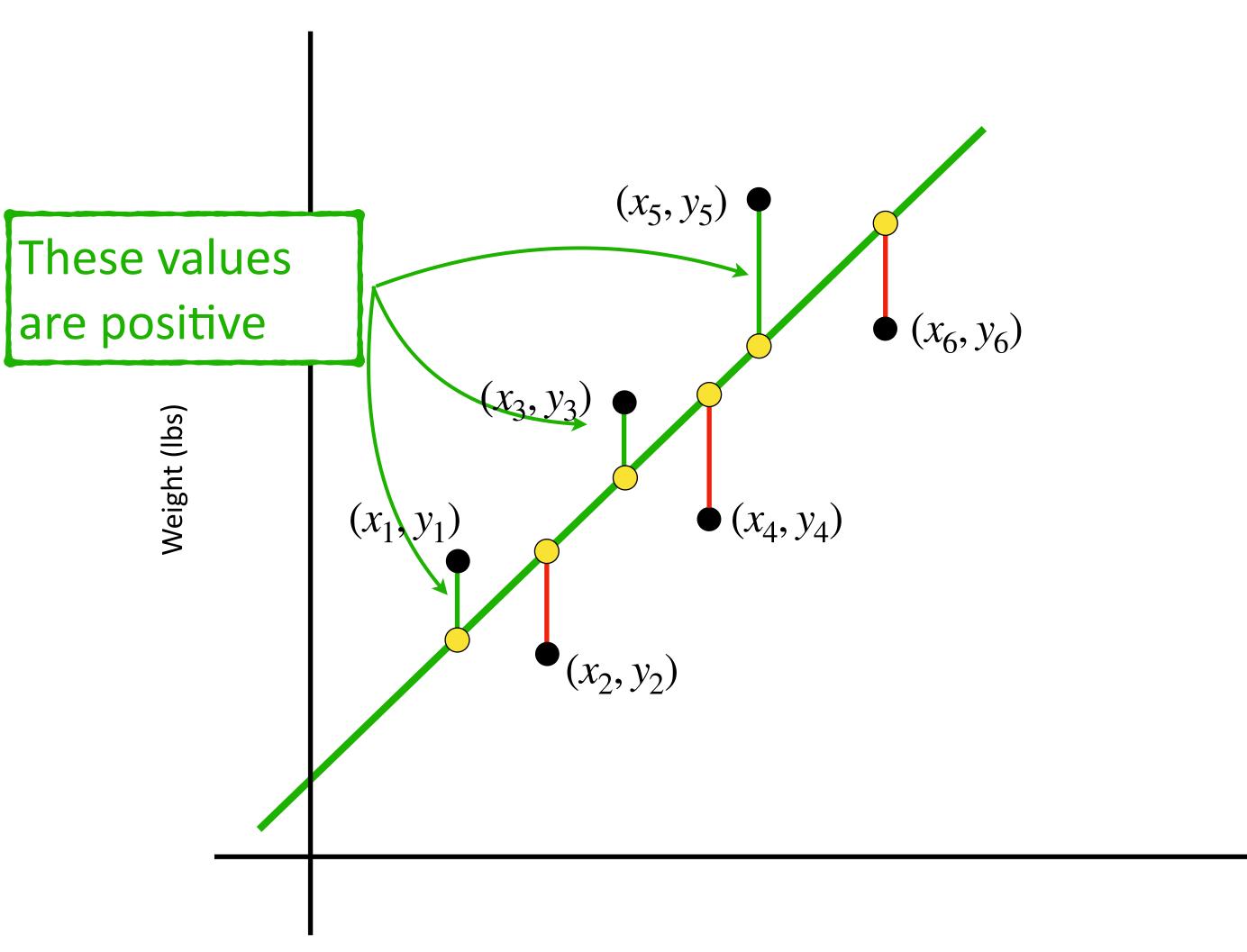
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the distance to the line (the error)

$$(y_1 - \hat{y_1}) + (y_2 - \hat{y_2}) + (y_3 - \hat{y_3})$$

 $+(y_4 - \hat{y_4}) + (y_5 - \hat{y_5}) + (y_6 - \hat{y_6})$

But there's a small problem...



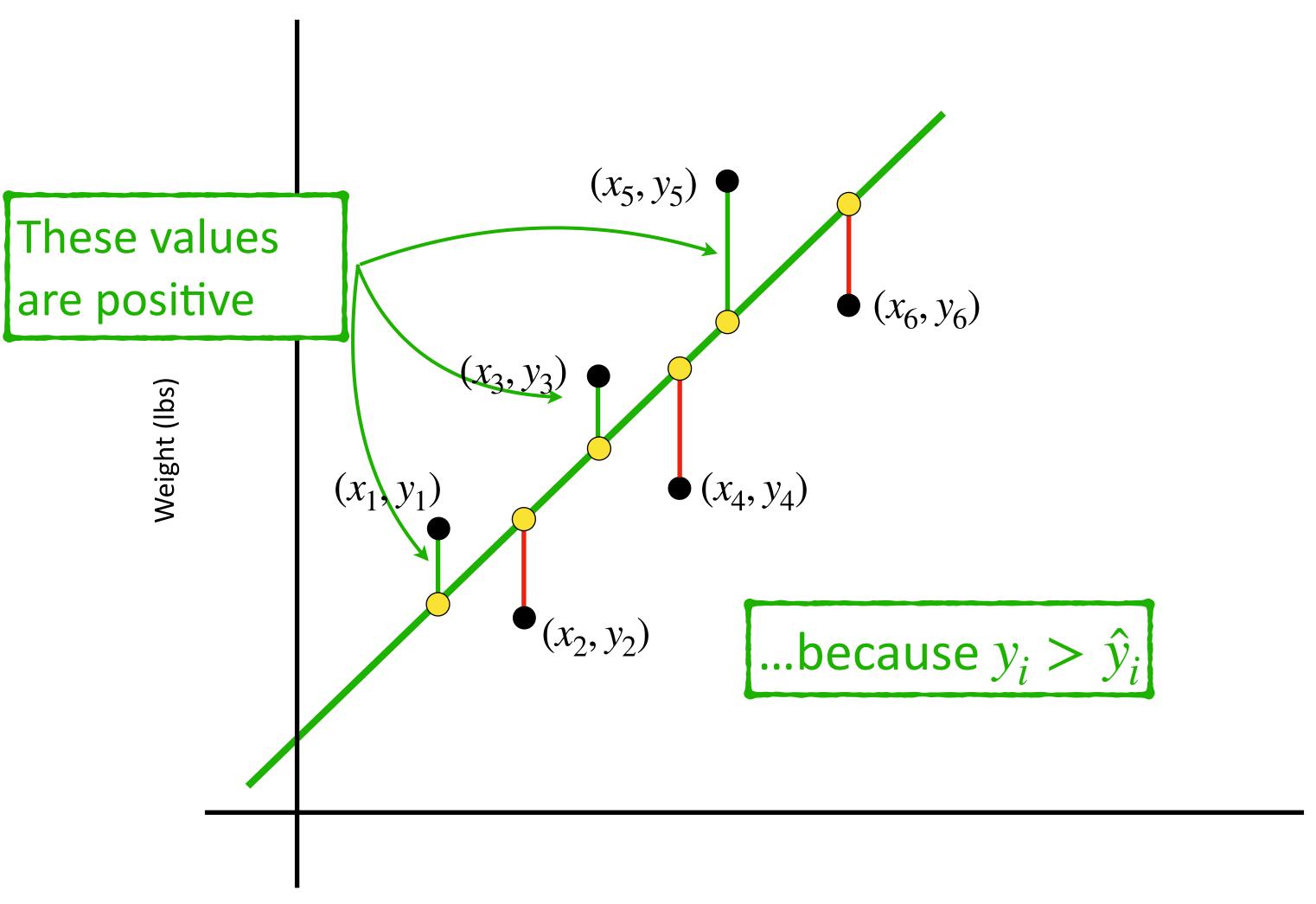
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the distance to the line (the error)

$$(y_1 - \hat{y_1}) + (y_2 - \hat{y_2}) + (y_3 - \hat{y_3})$$

 $+(y_4 - \hat{y_4}) + (y_5 - \hat{y_5}) + (y_6 - \hat{y_6})$

But there's a small problem...



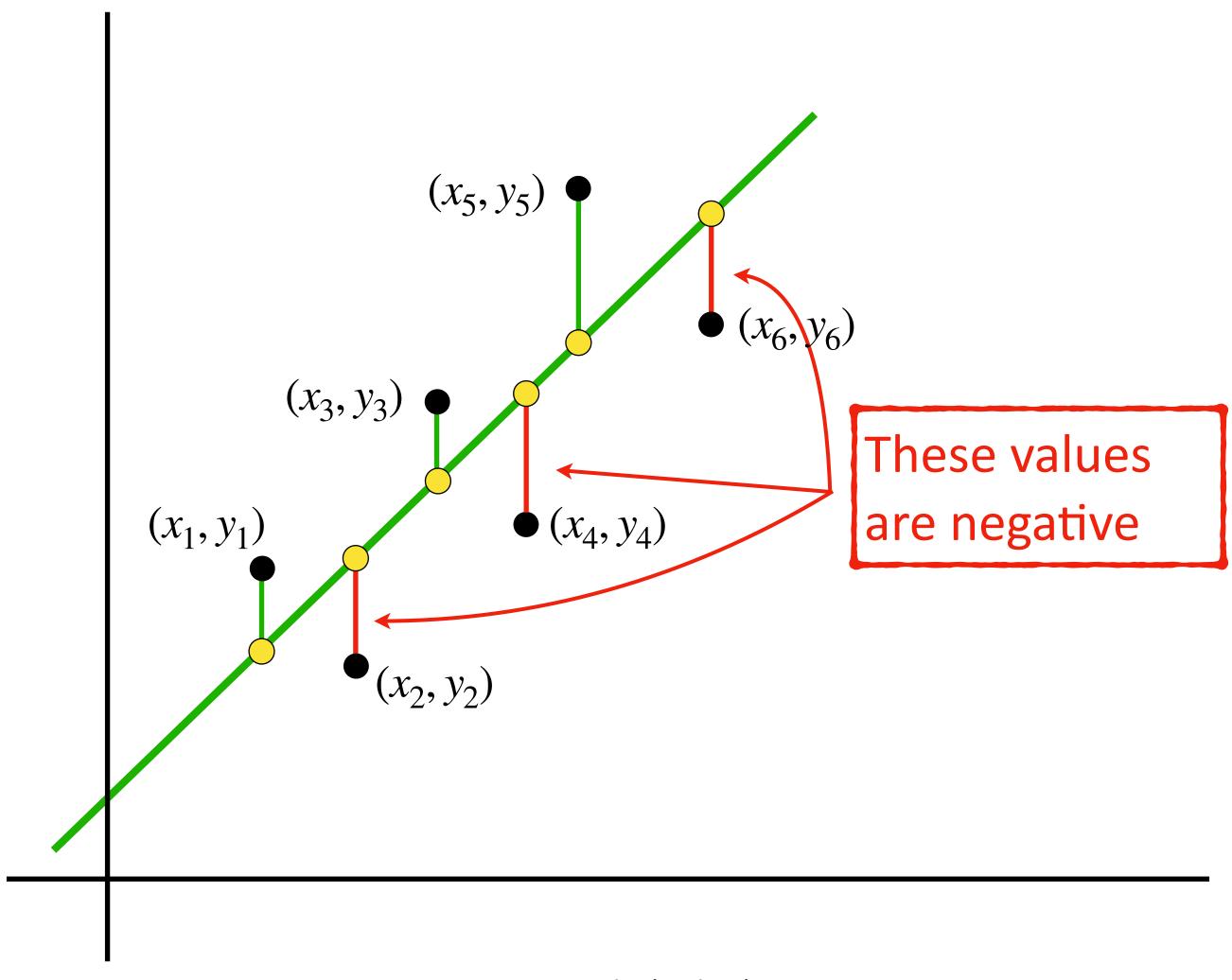
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the distance to the line (the error)

$$(y_1 - \hat{y_1}) + (y_2 - \hat{y_2}) + (y_3 - \hat{y_3})$$

 $+(y_4 - \hat{y_4}) + (y_5 - \hat{y_5}) + (y_6 - \hat{y_6})$

But there's a small problem...



Weight (lbs)

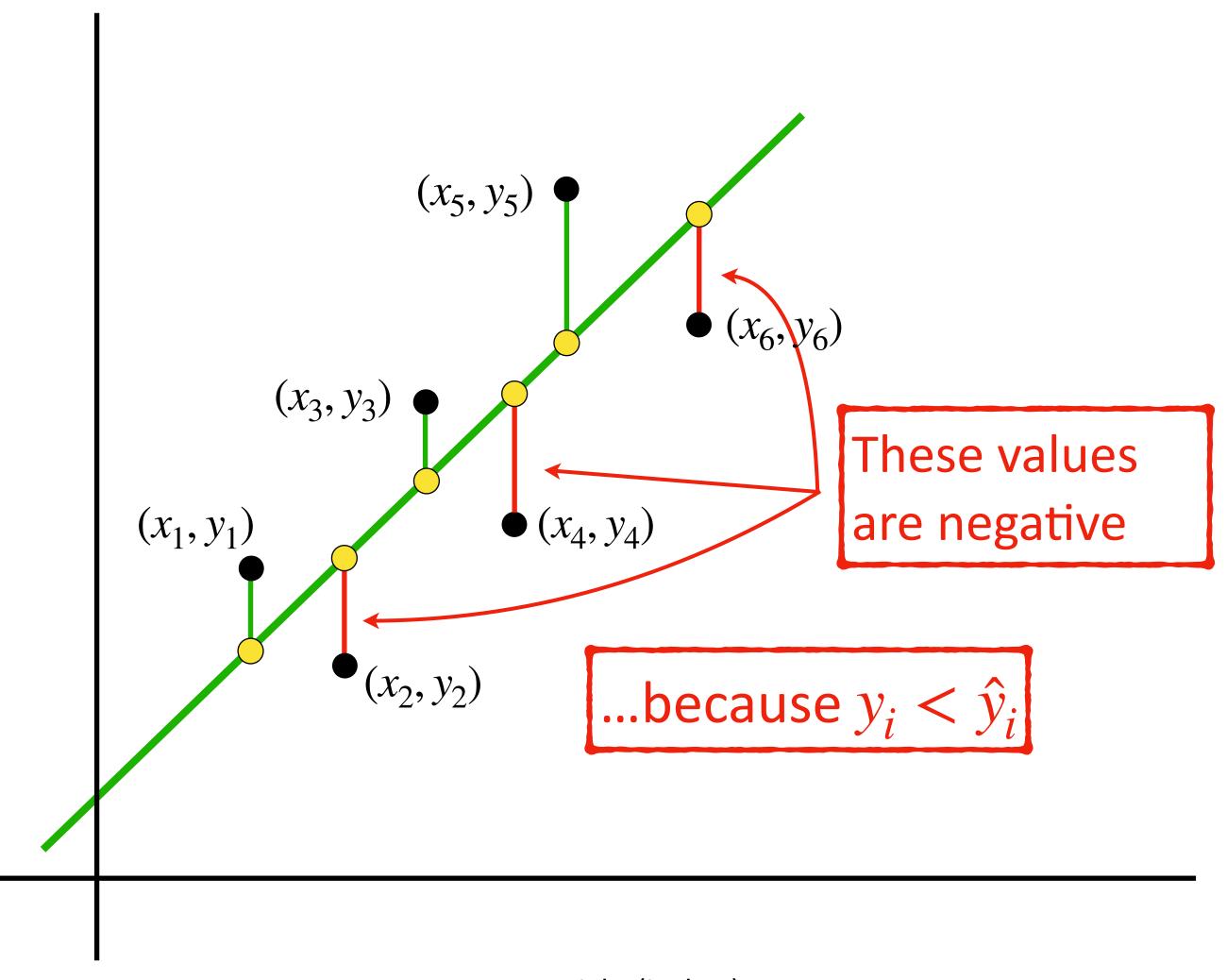
The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the distance to the line (the error)

$$(y_1 - \hat{y_1}) + (y_2 - \hat{y_2}) + (y_3 - \hat{y_3})$$

 $+(y_4 - \hat{y_4}) + (y_5 - \hat{y_5}) + (y_6 - \hat{y_6})$

But there's a small problem...



Weight (lbs)

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

For each point calculate the distance to the line (the error)

$$(y_1 - \hat{y_1}) + (y_2 - \hat{y_2}) + (y_3 - \hat{y_3})$$

 $+(y_4 - \hat{y_4}) + (y_5 - \hat{y_5}) + (y_6 - \hat{y_6})$

 (x_5, y_5) These values are positive (x_3, y_3) Weight (lbs) These values (x_4, y_4) are negative (x_2, y_2)

... the positive and negative values will cancel each other out

The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

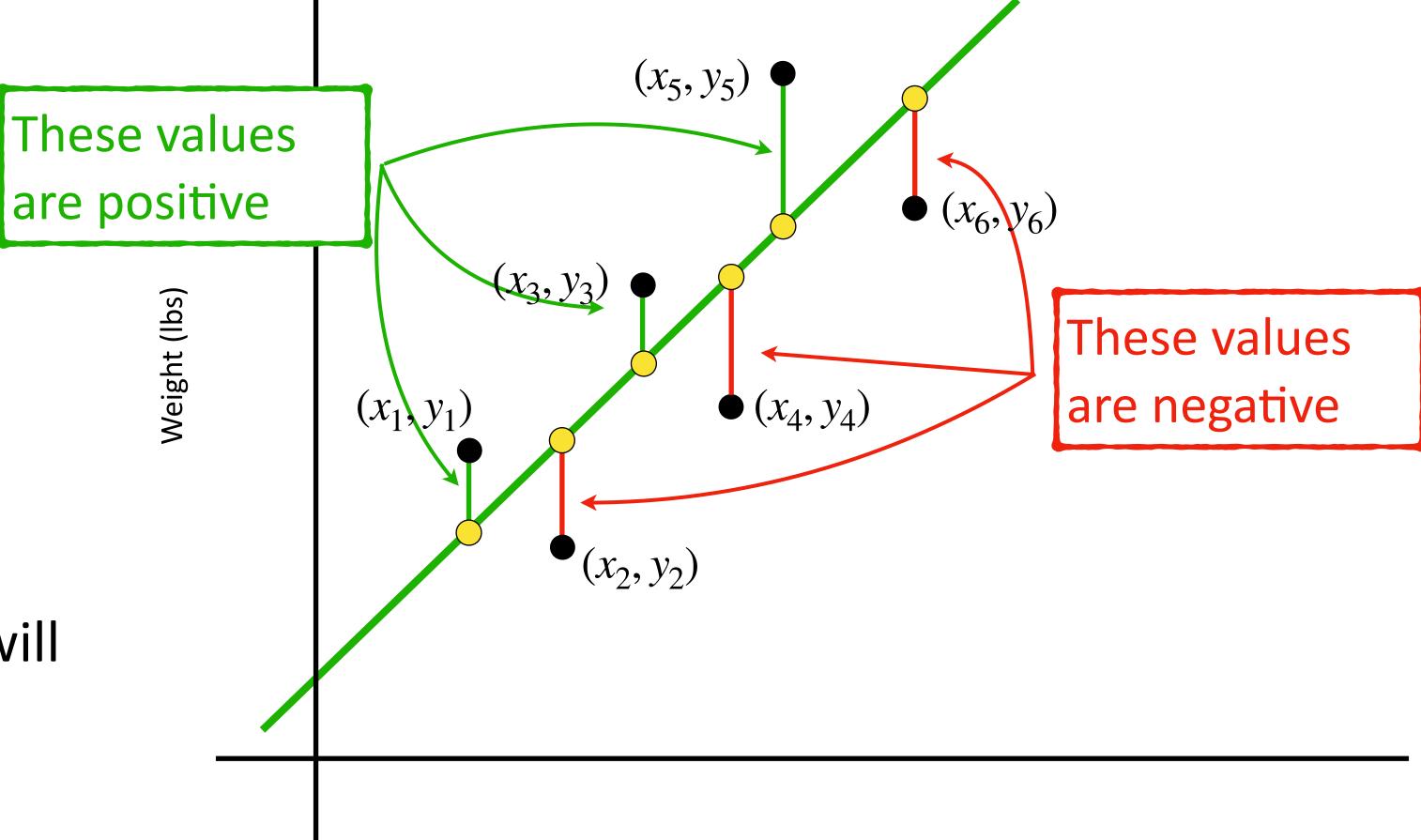
For each point calculate the distance to the line (the error)

$$(y_1 - \hat{y_1}) + (y_2 - \hat{y_2}) + (y_3 - \hat{y_3})$$

 $+(y_4 - \hat{y_4}) + (y_5 - \hat{y_5}) + (y_6 - \hat{y_6})$

To fix that, we square each term

... the positive and negative values will cancel each other out

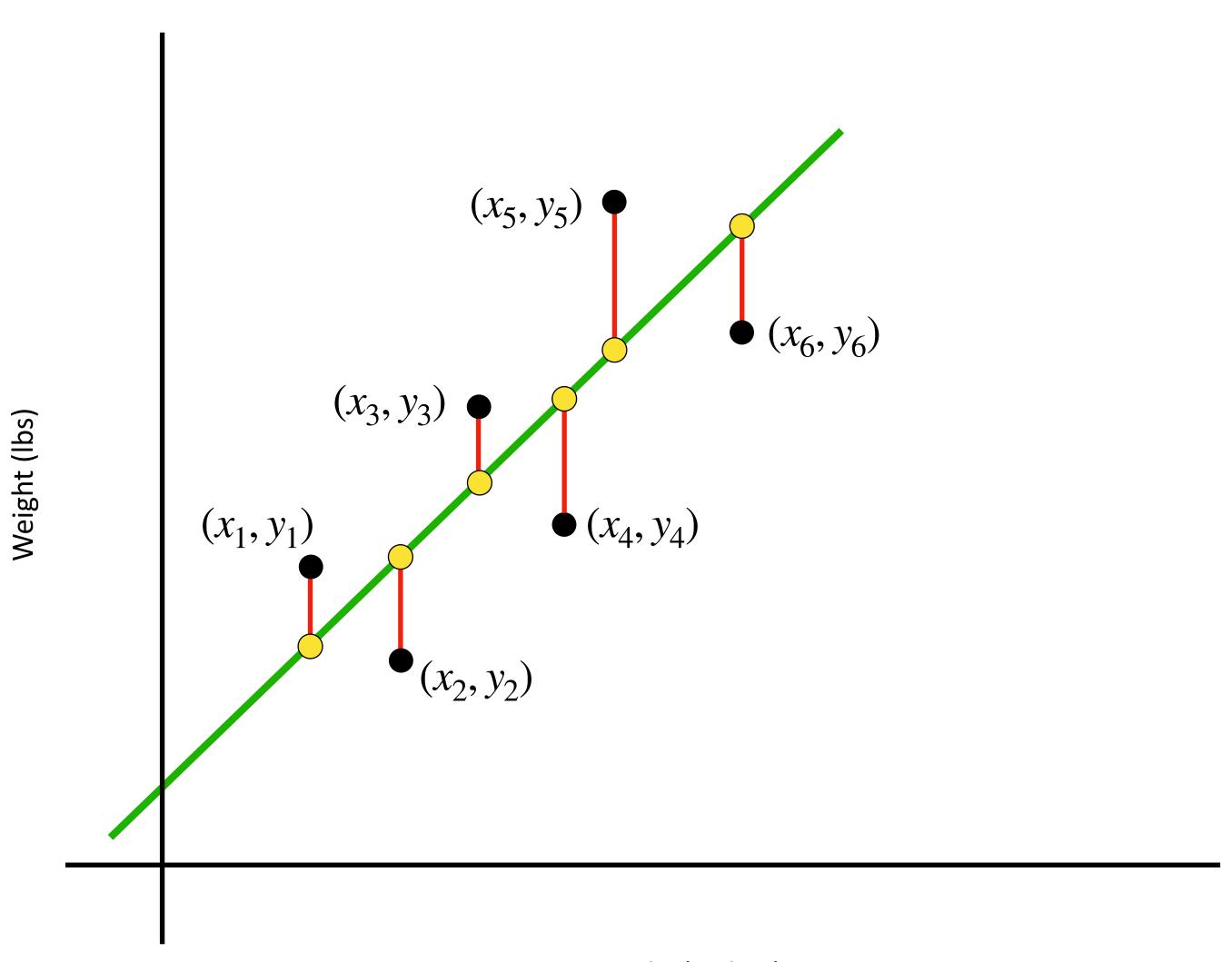


The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2 + (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2 + (y_6 - \hat{y}_6)^2$$

To fix that, we square each term

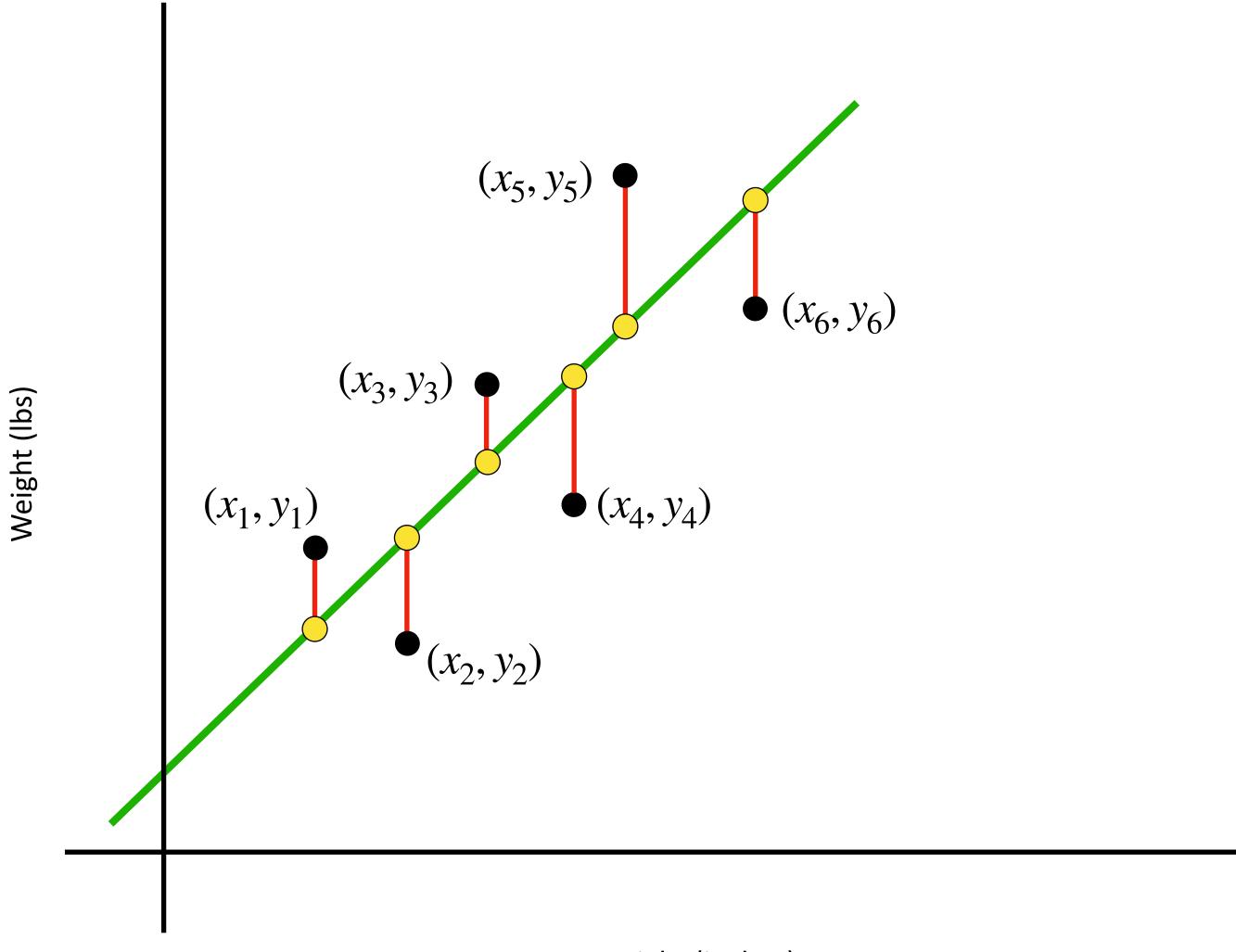
This is the sum of squared errors.



The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

Sum of squared errors:

$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2 + (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2 + (y_6 - \hat{y}_6)^2$$

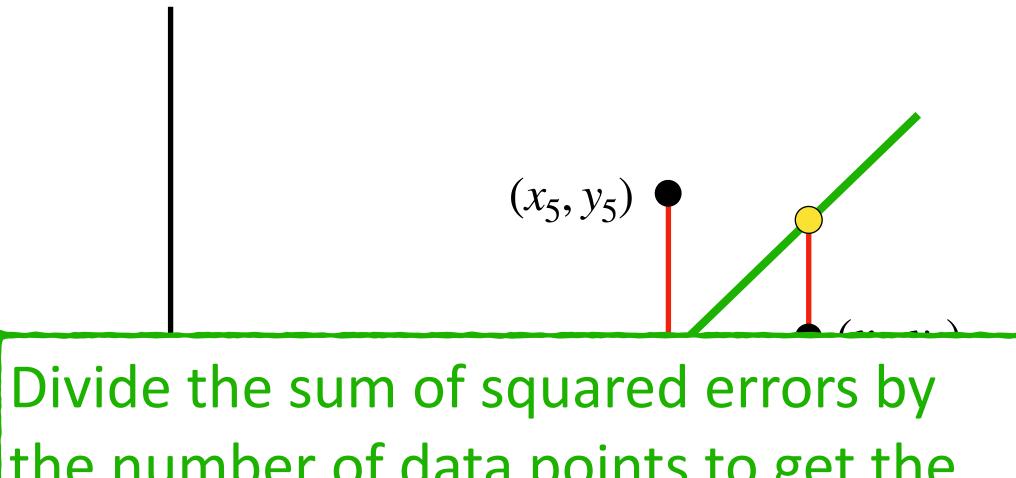


The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

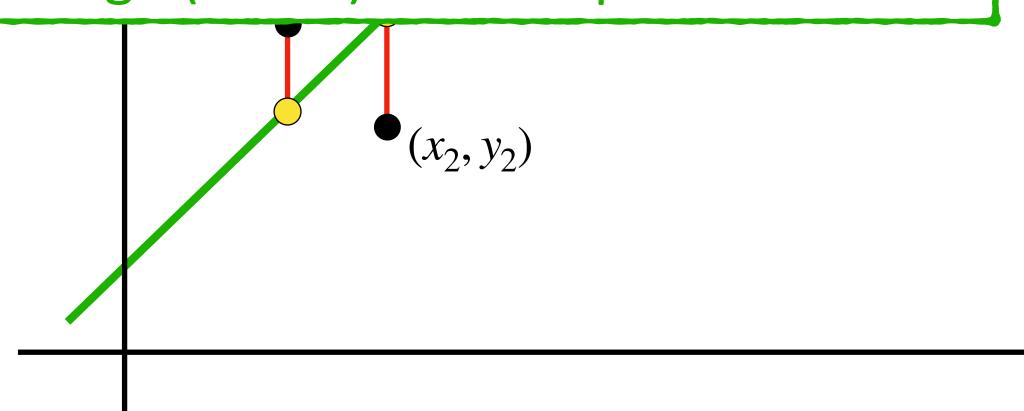
$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2$$

$$+ (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2 + (y_6 - \hat{y}_6)^2$$

$$n$$



the number of data points to get the average (mean) of the squared errors.



The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

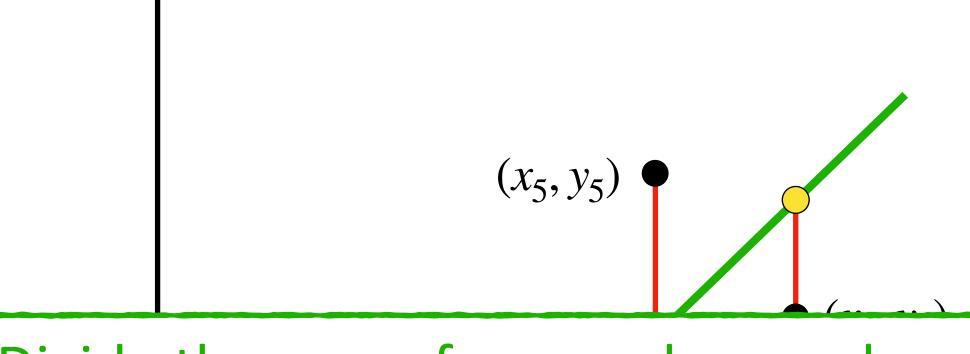
$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2$$

$$+ (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2 + (y_6 - \hat{y}_6)^2$$

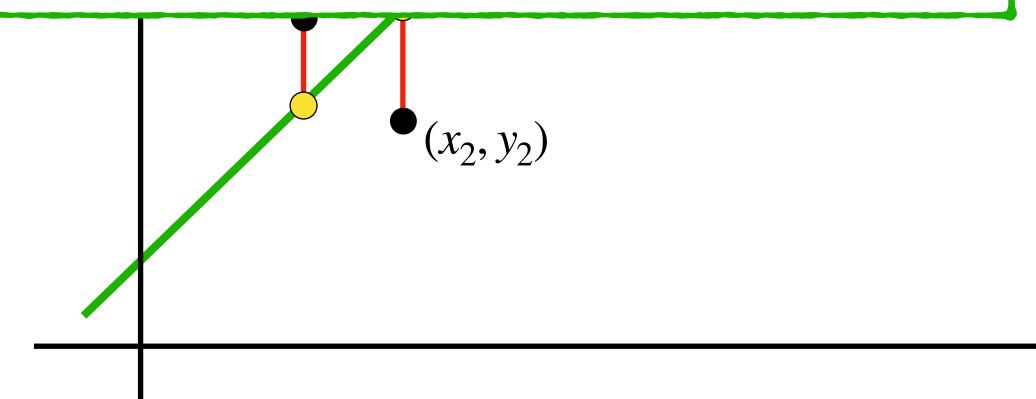
$$n$$

This is the Mean Square Error (MSE)

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$



Divide the sum of squared errors by the number of data points to get the average (mean) of the squared errors.



The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2$$

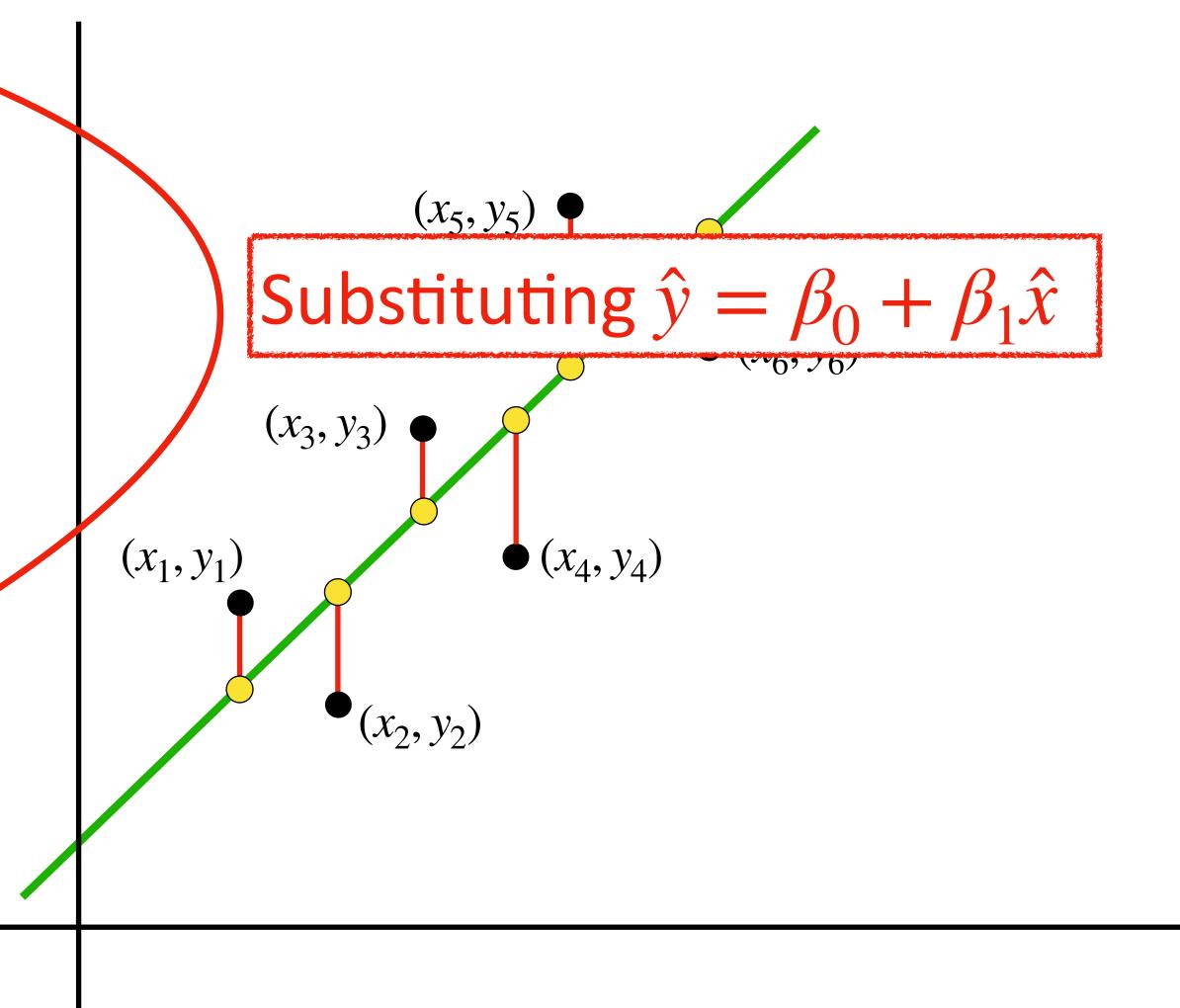
$$+ (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2 + (y_6 - \hat{y}_6)^2$$

$$n$$

This is the Mean Square Error (MSE)

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Weight (lbs)



The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

$$(y_1 - \hat{y_1})^2 + (y_2 - \hat{y_2})^2 + (y_3 - \hat{y_3})^2$$

$$+ (y_4 - \hat{y_4})^2 + (y_5 - \hat{y_5})^2 + (y_6 - \hat{y_6})^2$$

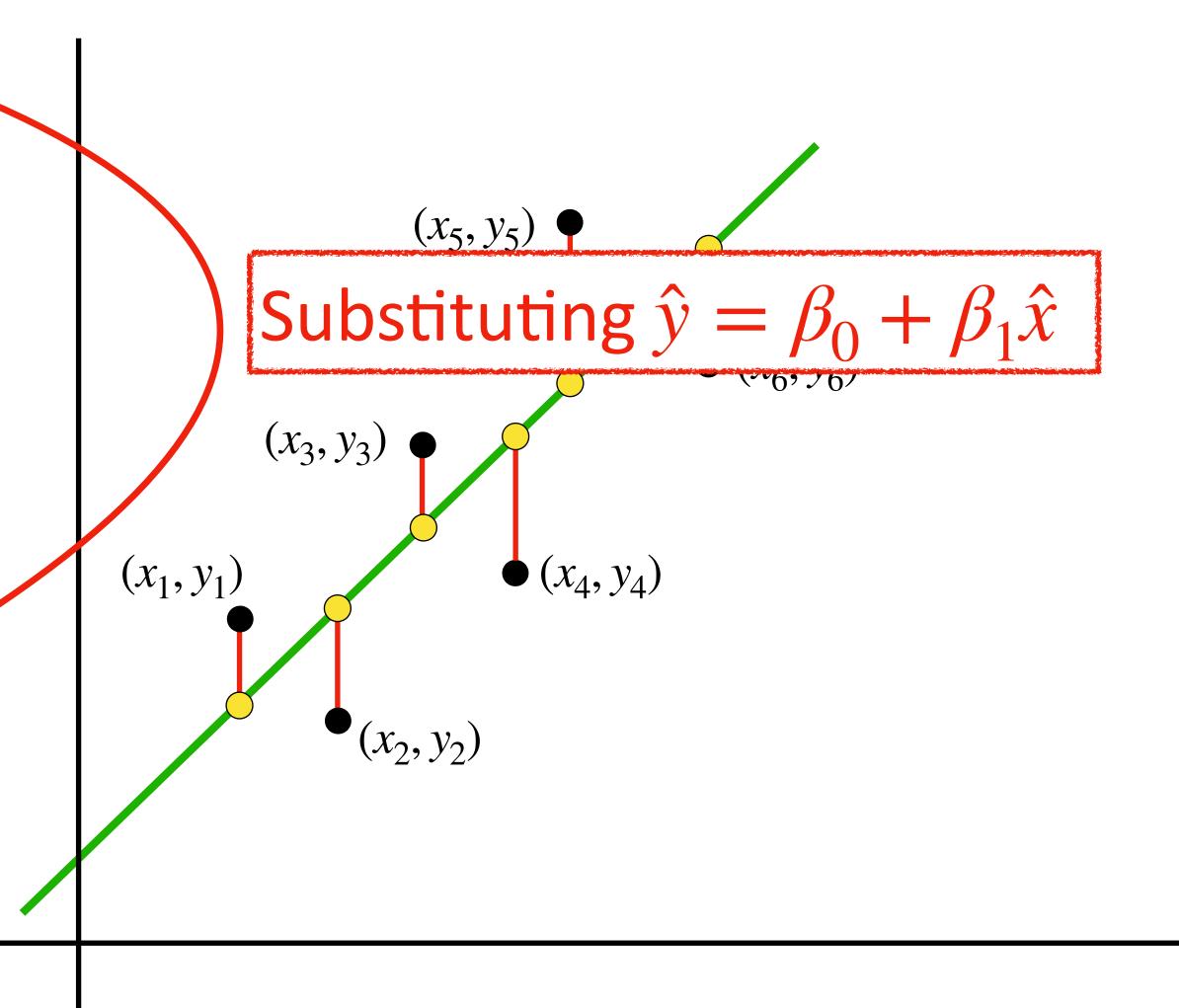
$$n$$

This is the Mean Square Error (MSE)

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

Weight (lbs)

For every value of i, \hat{x}_i equals x_i



The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2$$

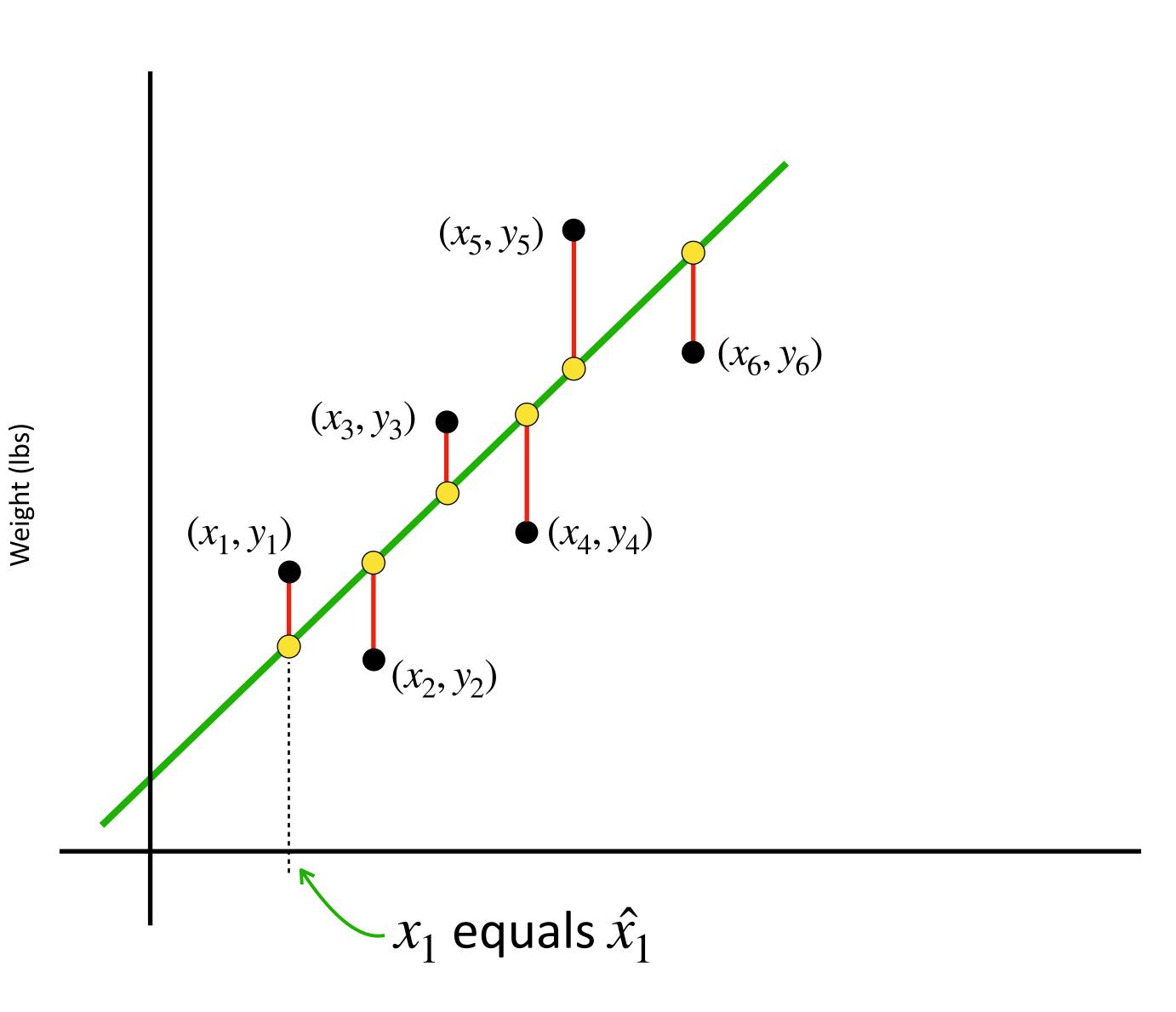
$$+ (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2 + (y_6 - \hat{y}_6)^2$$

$$n$$

This is the Mean Square Error (MSE)

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

For every value of i, \hat{x}_i equals x_i



The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2$$

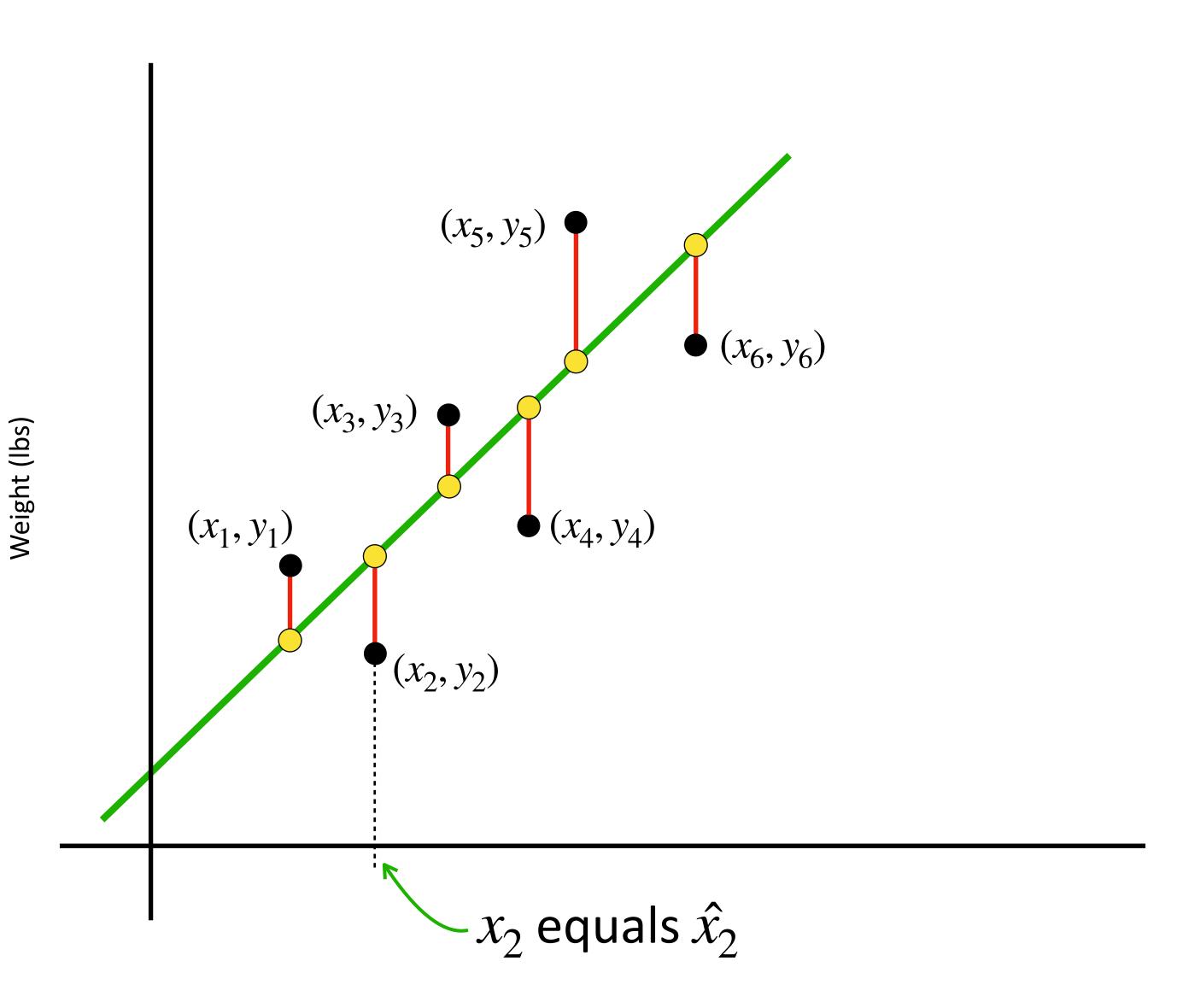
$$+ (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2 + (y_6 - \hat{y}_6)^2$$

$$n$$

This is the Mean Square Error (MSE)

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$

For every value of i, \hat{x}_i equals x_i



The line of best fit is $\hat{y} = \beta_0 + \beta_1 \hat{x}$

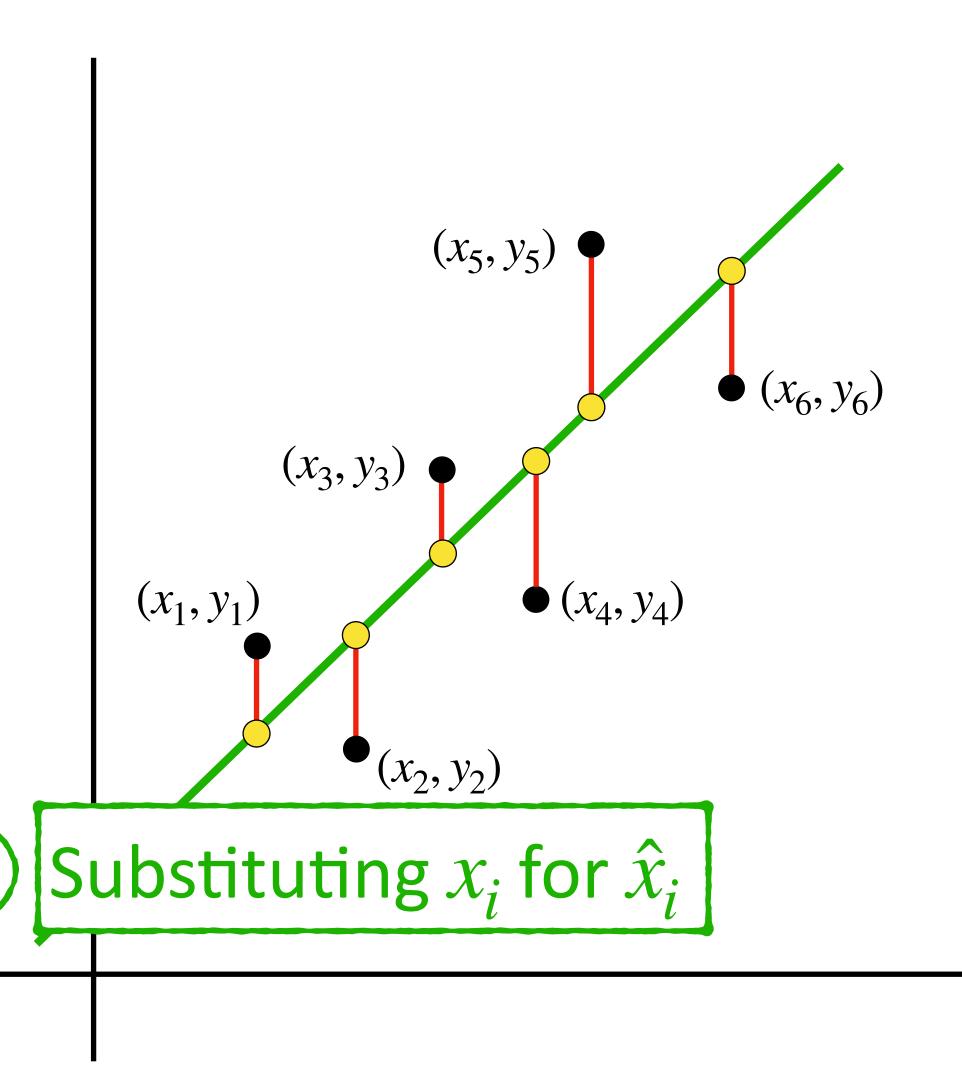
$$(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + (y_3 - \hat{y}_3)^2$$

$$+ (y_4 - \hat{y}_4)^2 + (y_5 - \hat{y}_5)^2 + (y_6 - \hat{y}_6)^2$$

$$n$$

This is the Mean Square Error (MSE)

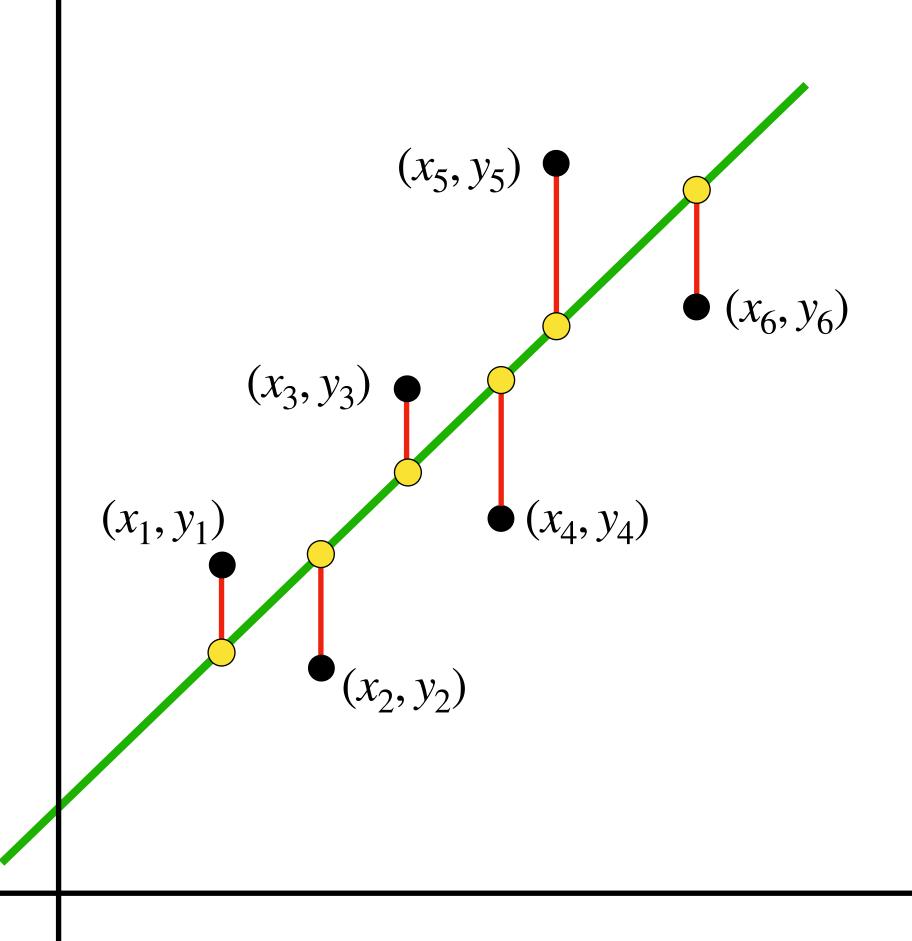
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$
$$= \frac{1}{n} \sum_{i=0}^{n} (y_i - \beta_0 - \beta_1 \hat{x}_i)^2$$



Weight (lbs)

The line of best fit is $\hat{y} = \beta_0 + \beta_1 x$

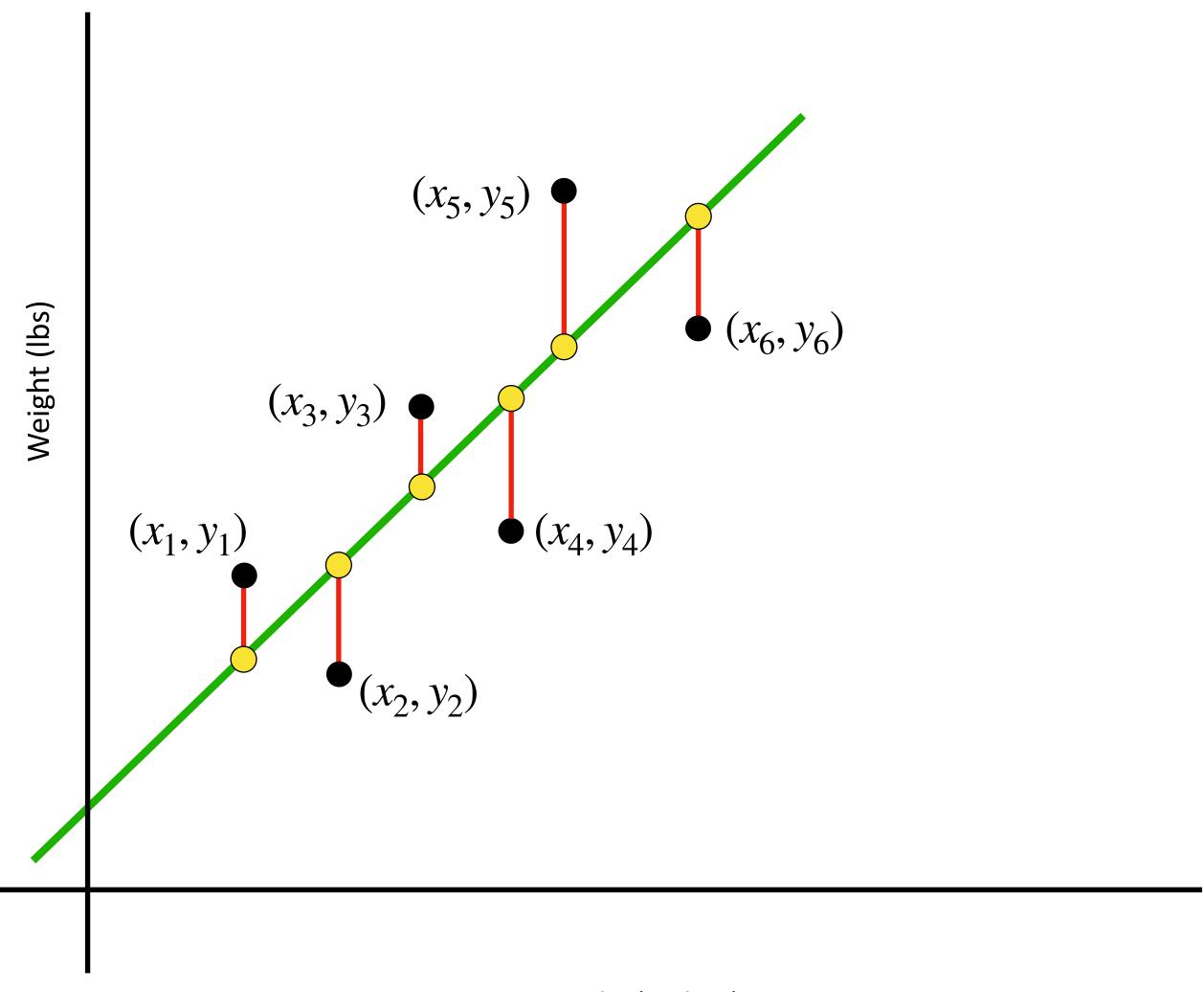
Problem Statement: Given a set of data points in \mathbb{R}^2 , $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_n, y_n),$ find the line that minimizes the Mean Squared Error (MSE)



The line of best fit is $\hat{y} = \beta_0 + \beta_1 x$

This is the Mean Squared Error (MSE)

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$



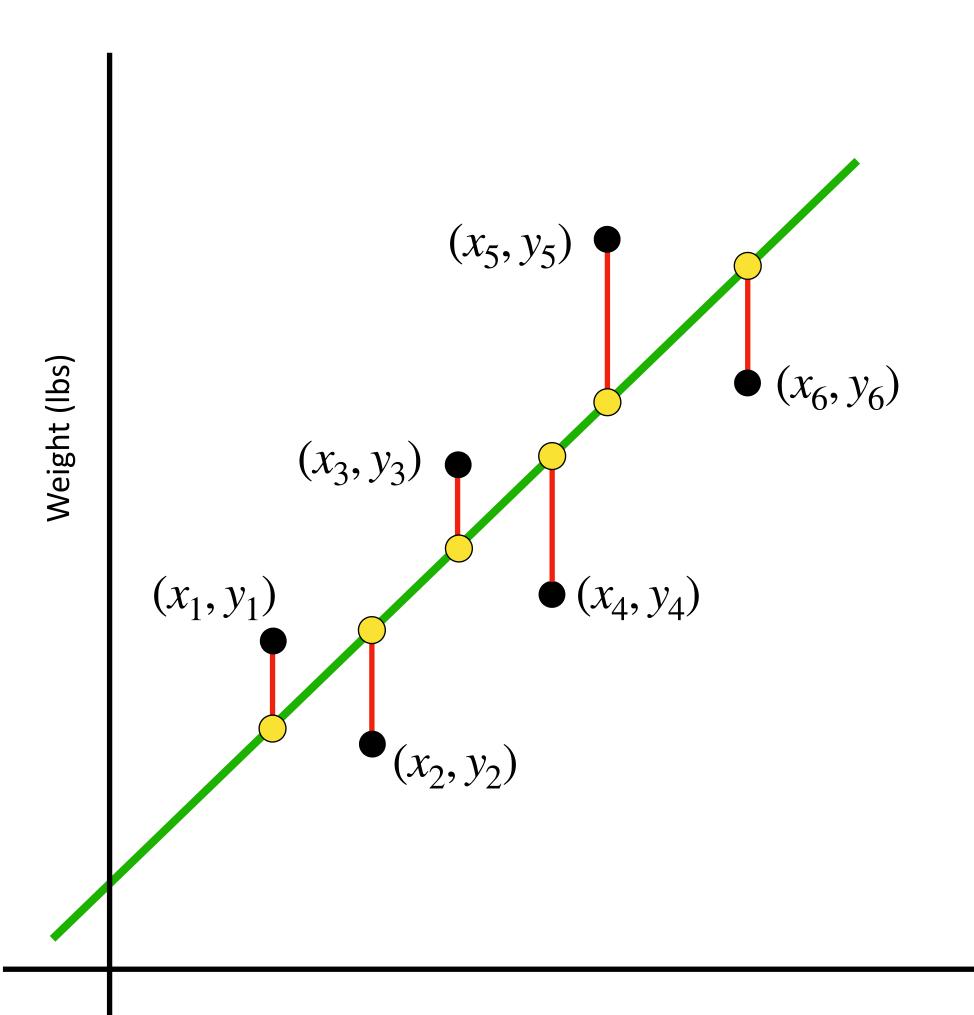
The line of best fit is $\hat{y} = \beta_0 + \beta_1 x$

This is the Mean Squared Error (MSE)

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

The Problem Statement:

Simple Linear Regression: Find the values of eta_0 and eta_1 such that the Mean Squared Error (MSE) is minimized.

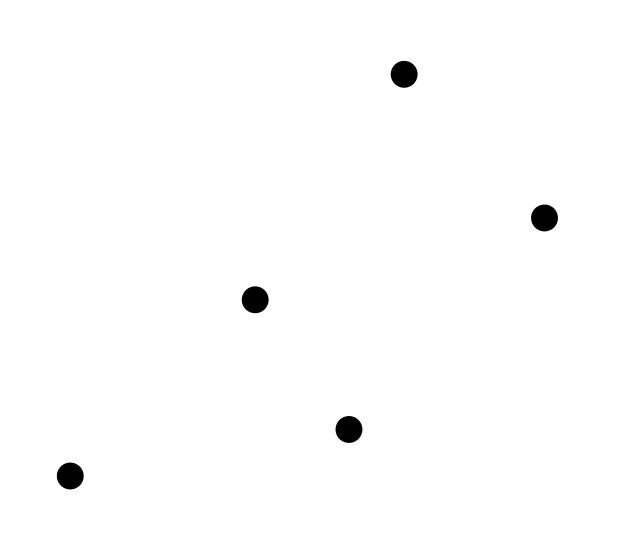


$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

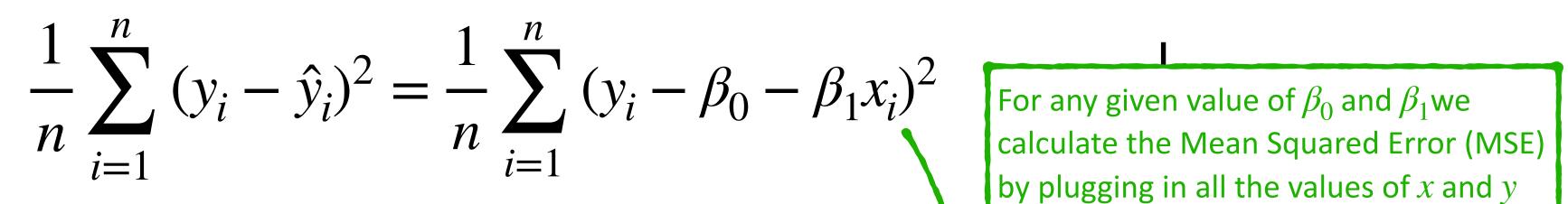
The Problem Statement:

Simple Linear Regression: Find the values of β_0 and β_1 such that the Mean Squared Error (MSE) is minimized.

Simple Linear Regression



Simple Linear Regression



by plugging in all the values of x and yfor each observation:

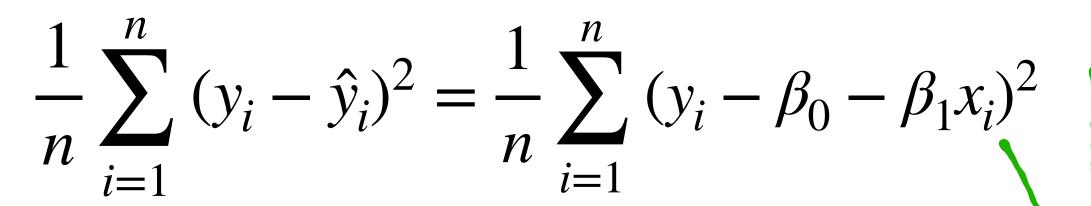
$$(62 - \beta_0 - \beta_1 138)^2 + (55 - \beta_0 - \beta_1 178)^2 + (44 - \beta_0 - \beta_1 123)^2 + (75 - \beta_0 - \beta_1 200)^2 + (65 - \beta_0 - \beta_1 229)^2 + (50 - \beta_0 - \beta_1 102)^2$$

The Problem Statement:

Simple Linear Regression: Find the values of eta_0 and eta_1 such that the Mean Squared Error (MSE) is minimized.

i	Height (in)	Weight (lbs)
1	62	138
2	55	178
3	44	123
4	75	200
5	65	229
6	50	102

Simple Linear Regression



For example: If
$$\beta_0=3$$
 and $\beta_1=-0.1$ then MSE = 430

$$(62 - \beta_0 - \beta_1 138)^2 + (55 - \beta_0 - \beta_1 178)^2 + (44 - \beta_0 - \beta_1 123)^2 + (75 - \beta_0 - \beta_1 200)^2 + (65 - \beta_0 - \beta_1 229)^2 + (50 - \beta_0 - \beta_1 102)^2$$

The Problem Statement:

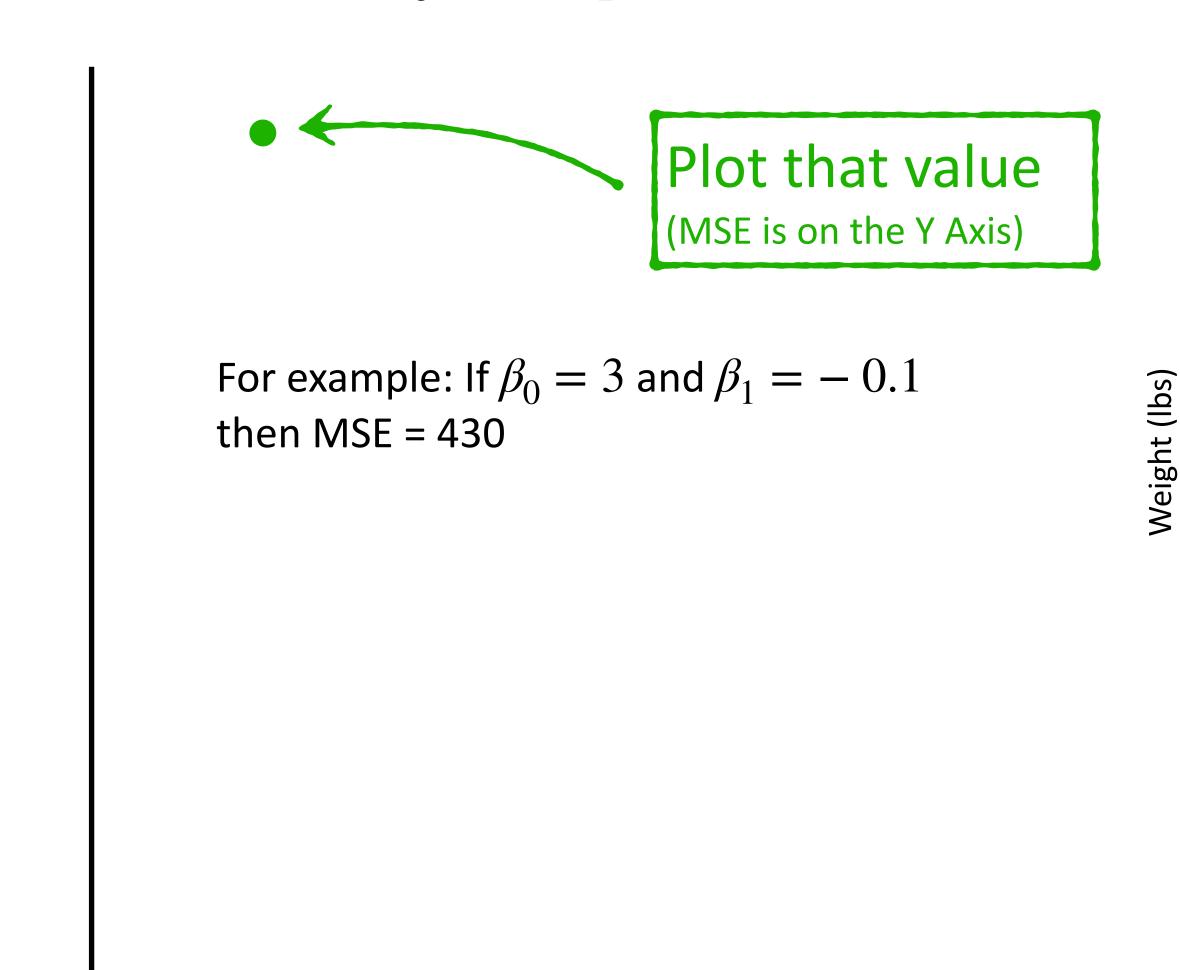
Simple Linear Regression: Find the values of β_0 and β_1 such that the Mean Squared Error (MSE) is minimized.

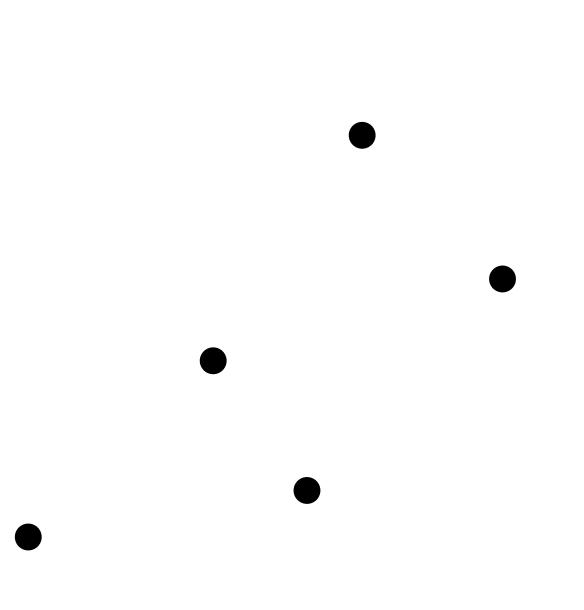
For any given value of β_0 and β_1 we calculate the Mean Squared Error (MSE) by plugging in all the values of x and y for each observation:

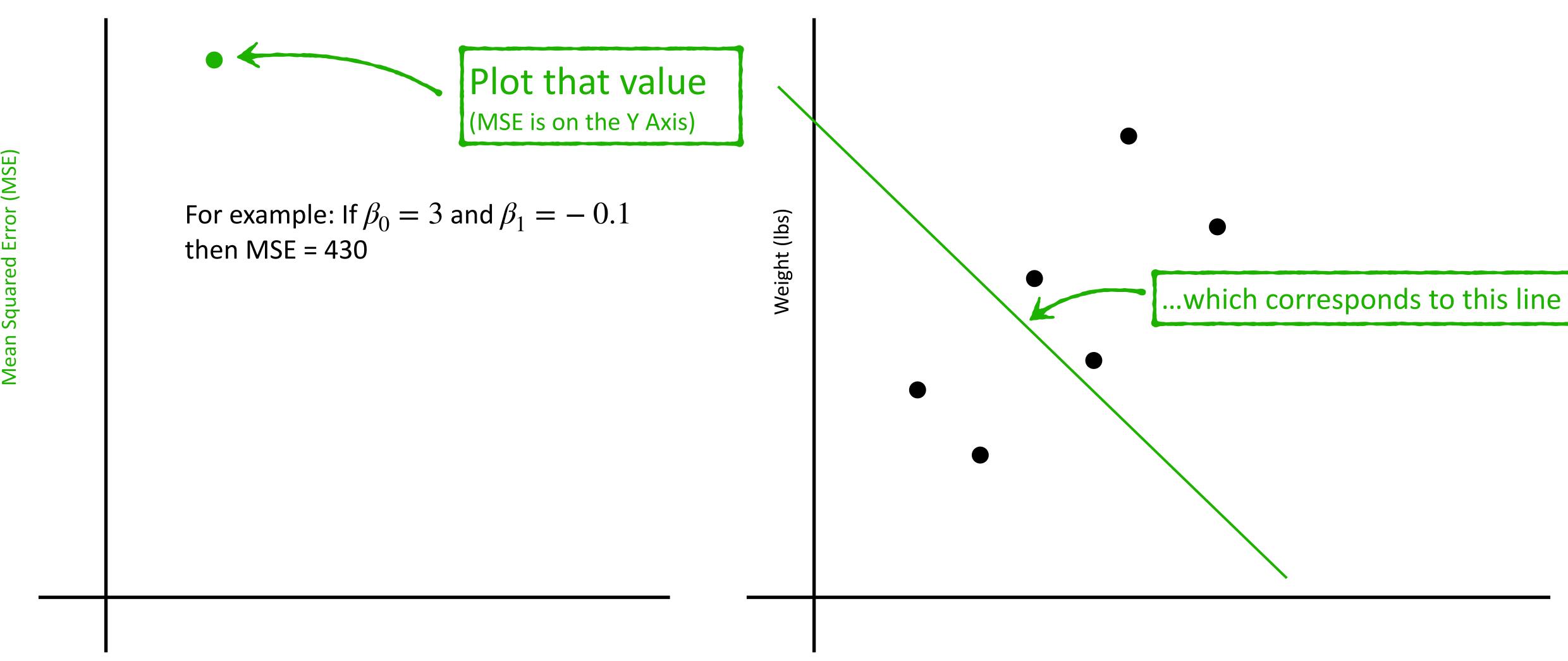
Weight (lbs)		

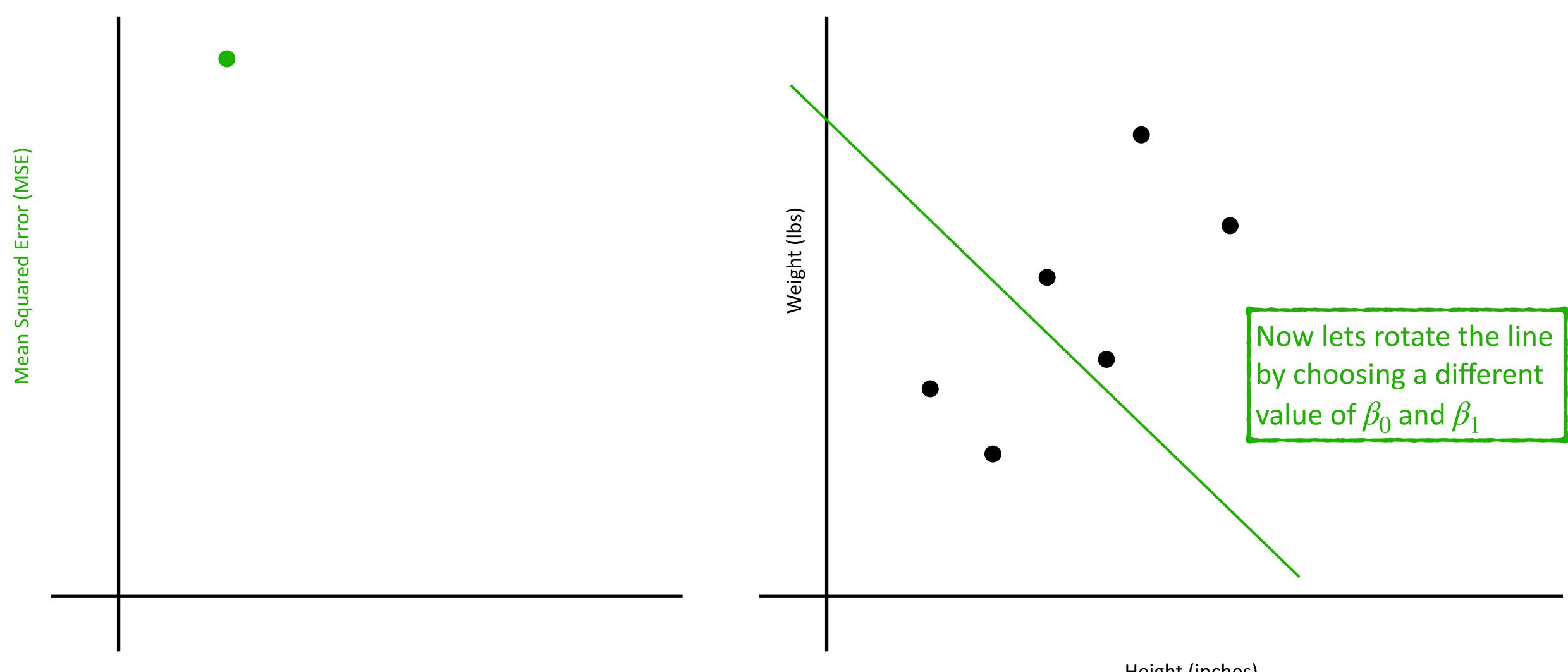
i	Height (in)	Weight (lbs)
1	62	138
2	55	178
3	44	123
4	75	200
5	65	229
6	50	102

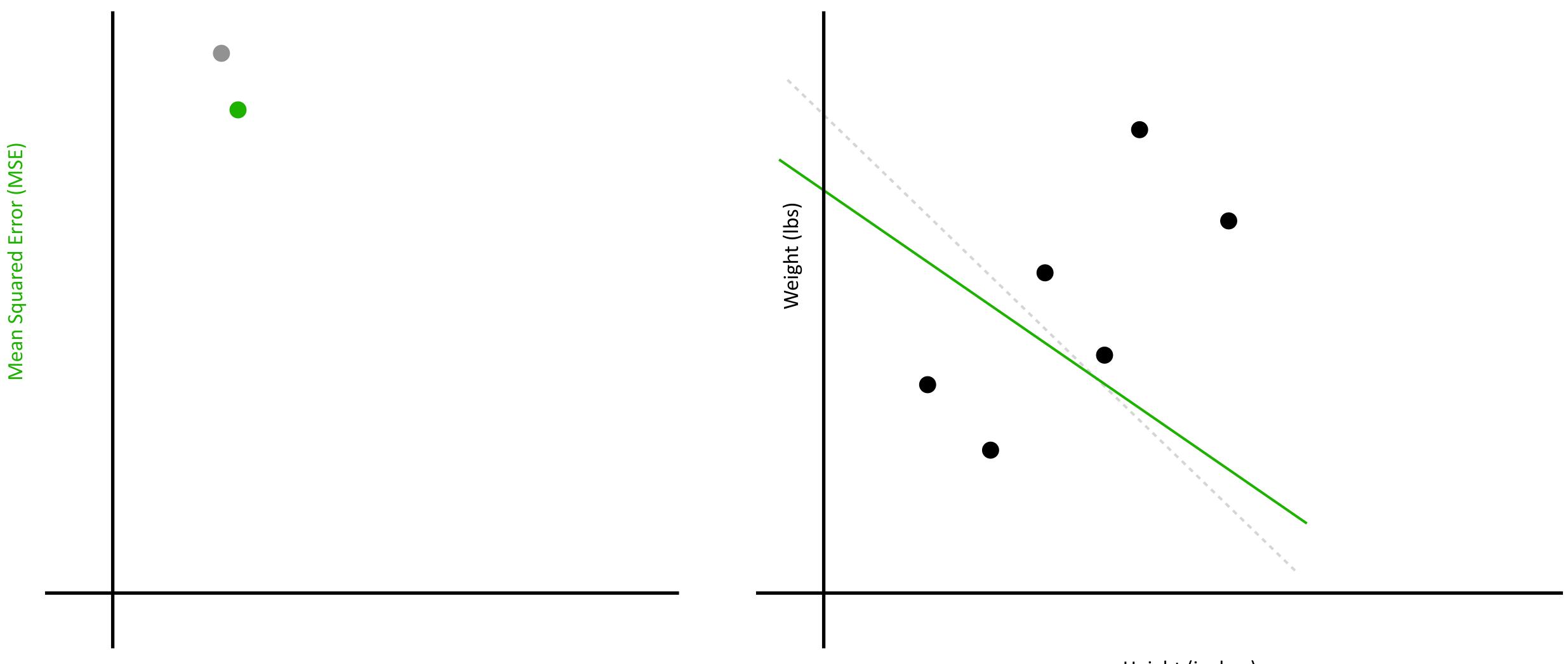
Simple Linear Regression

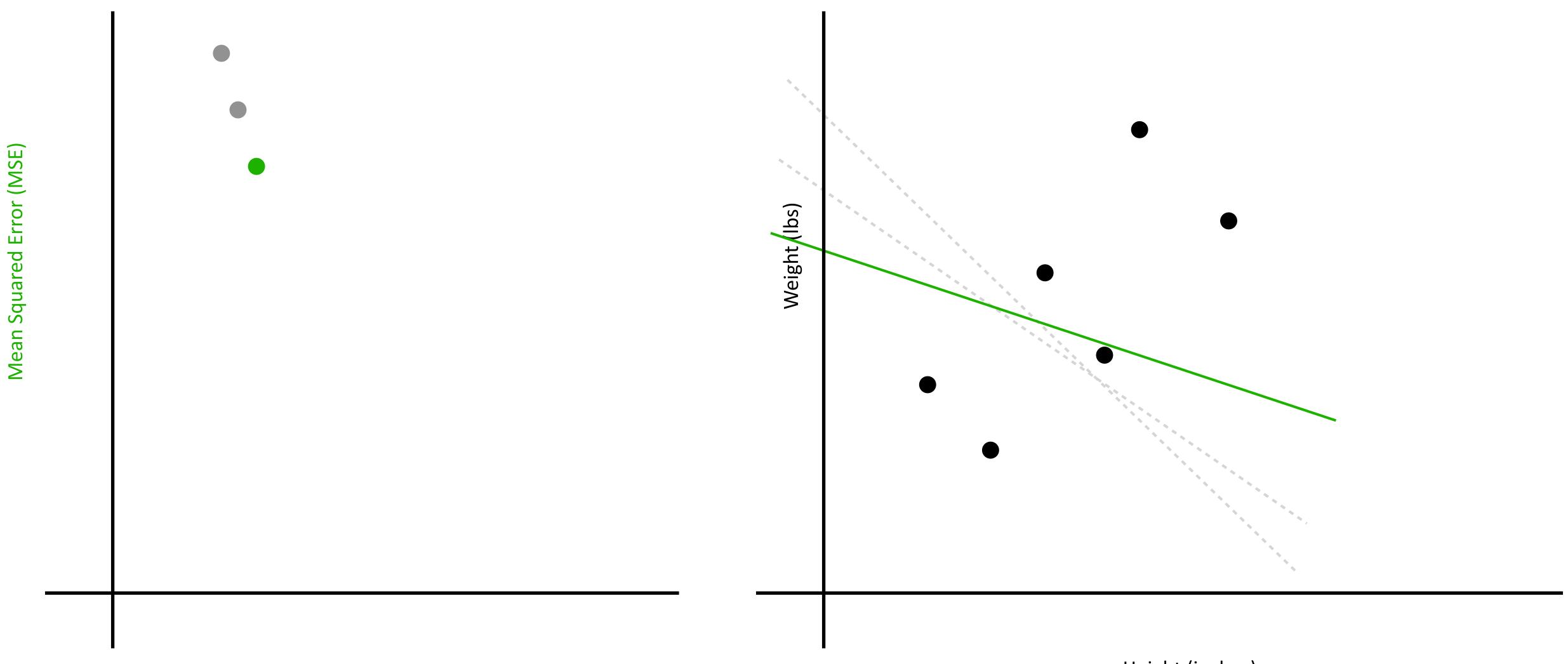


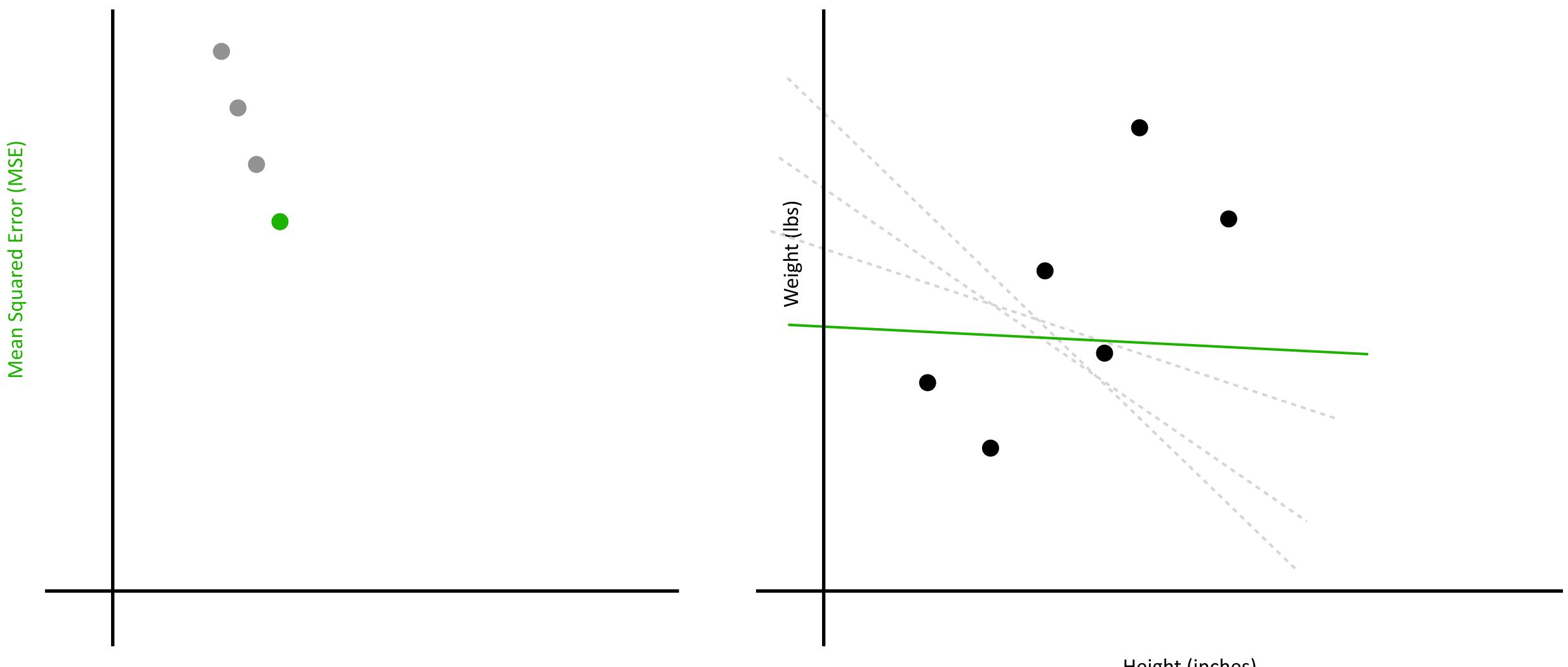


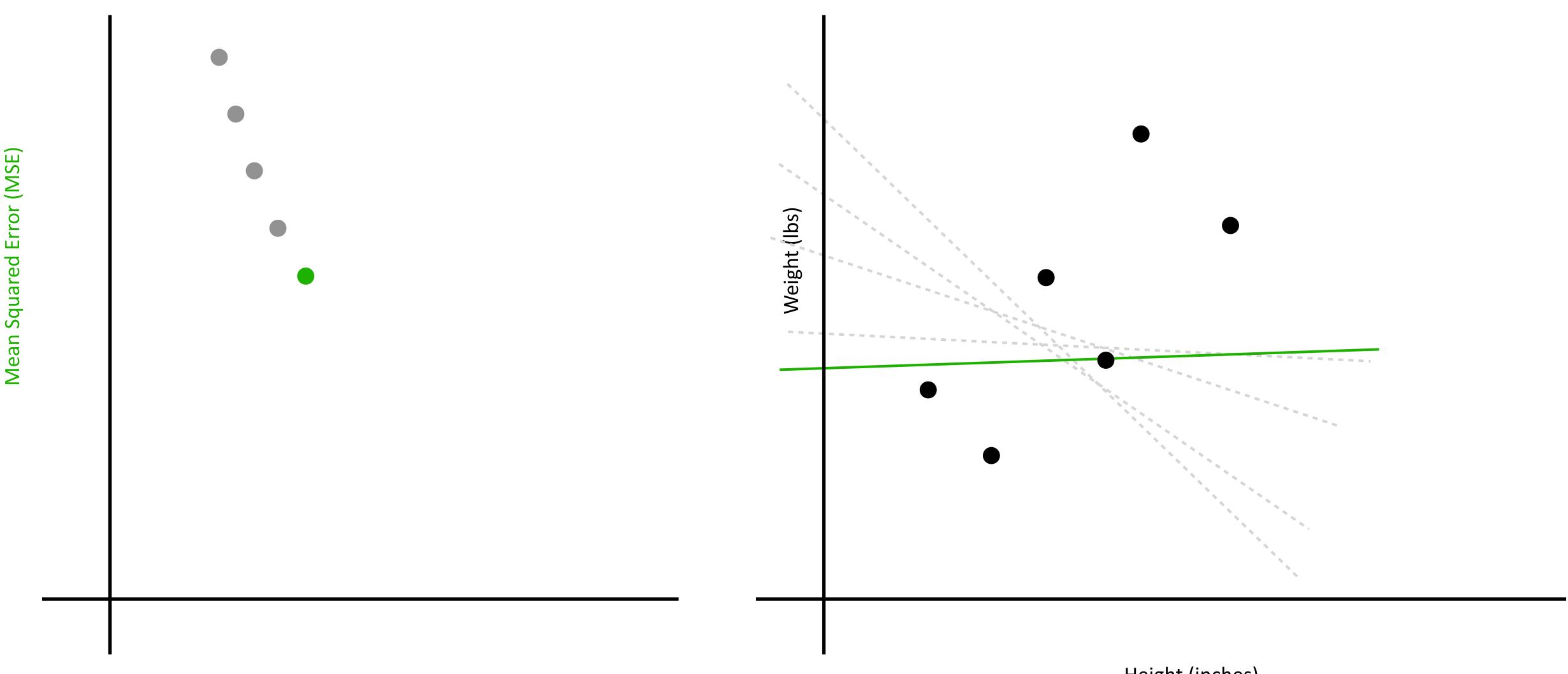


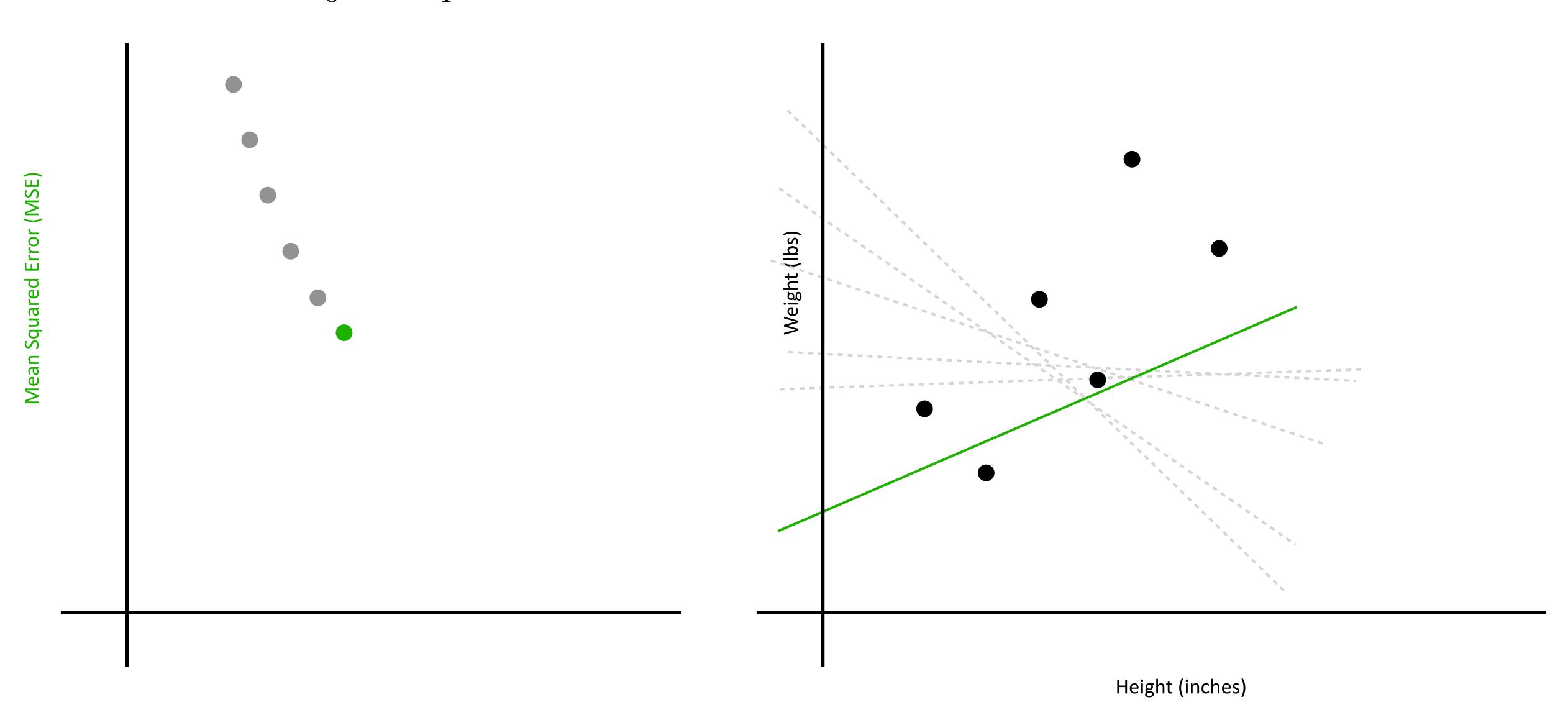


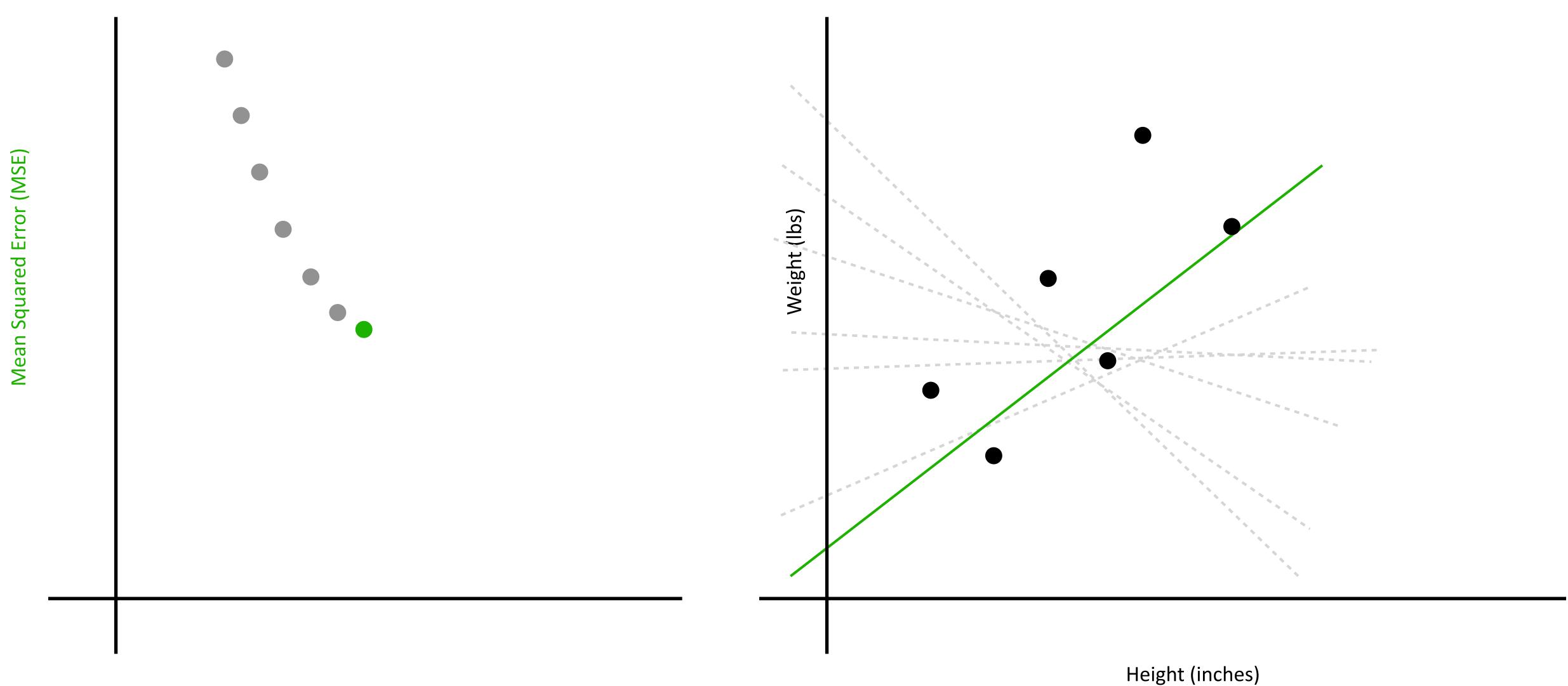




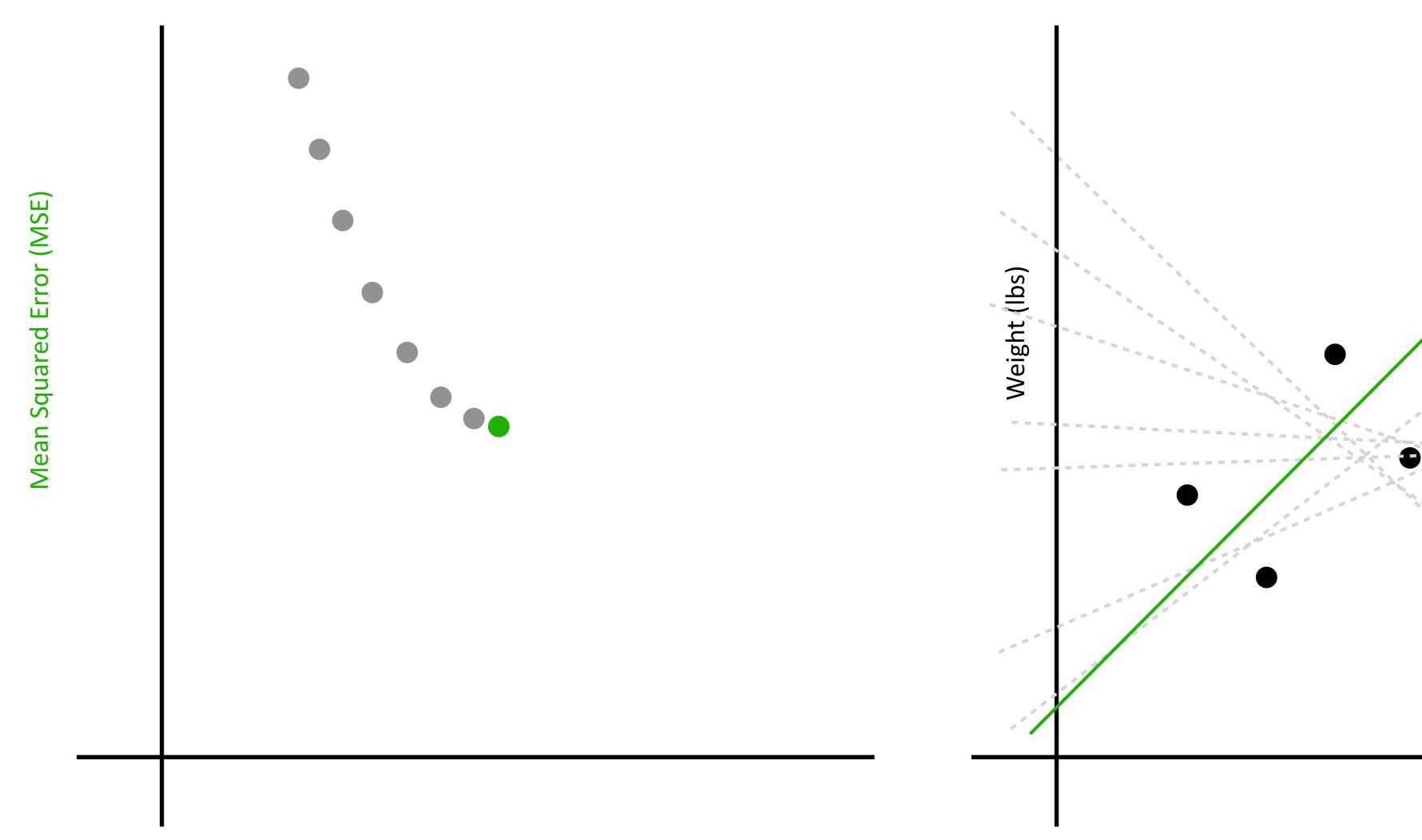


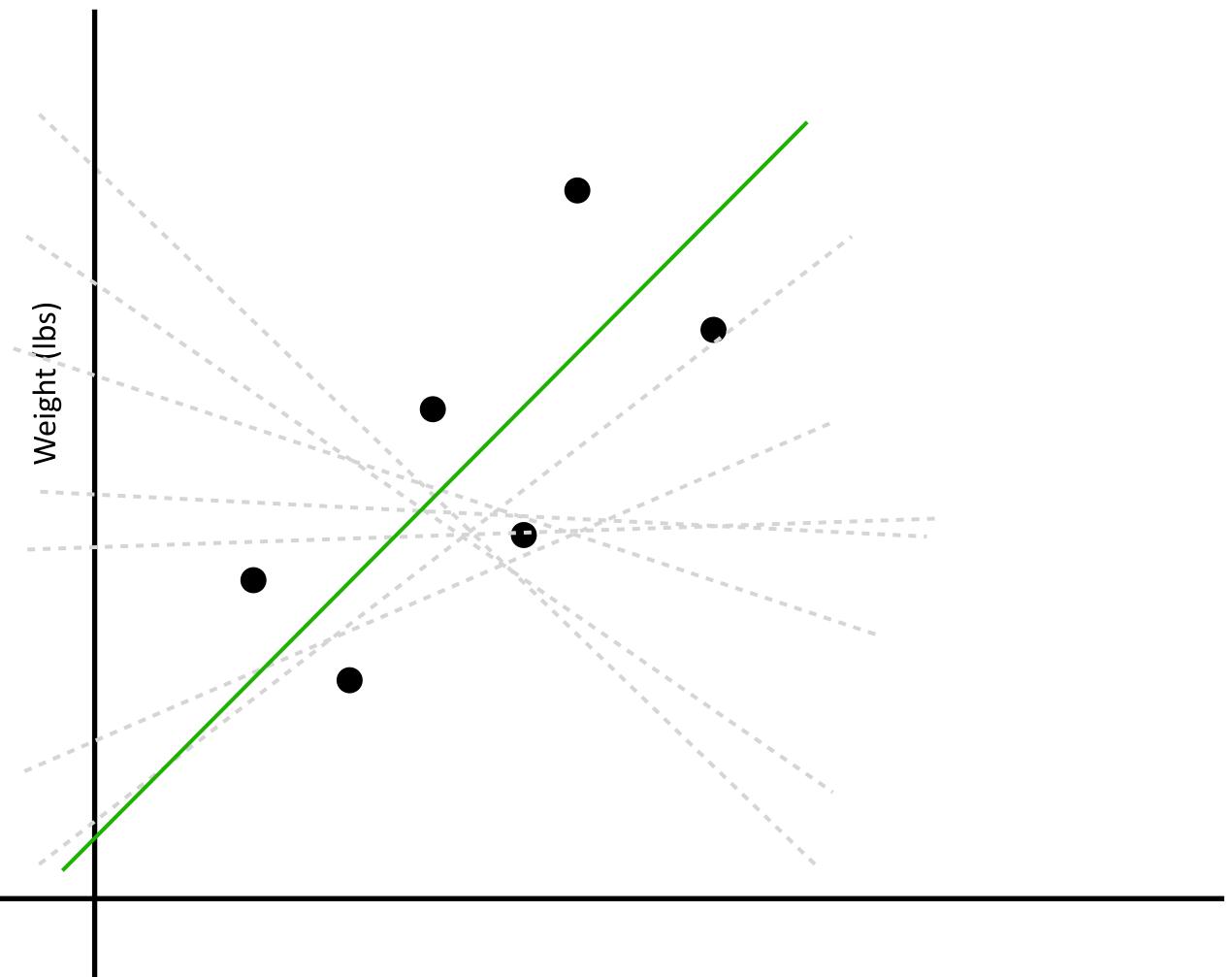




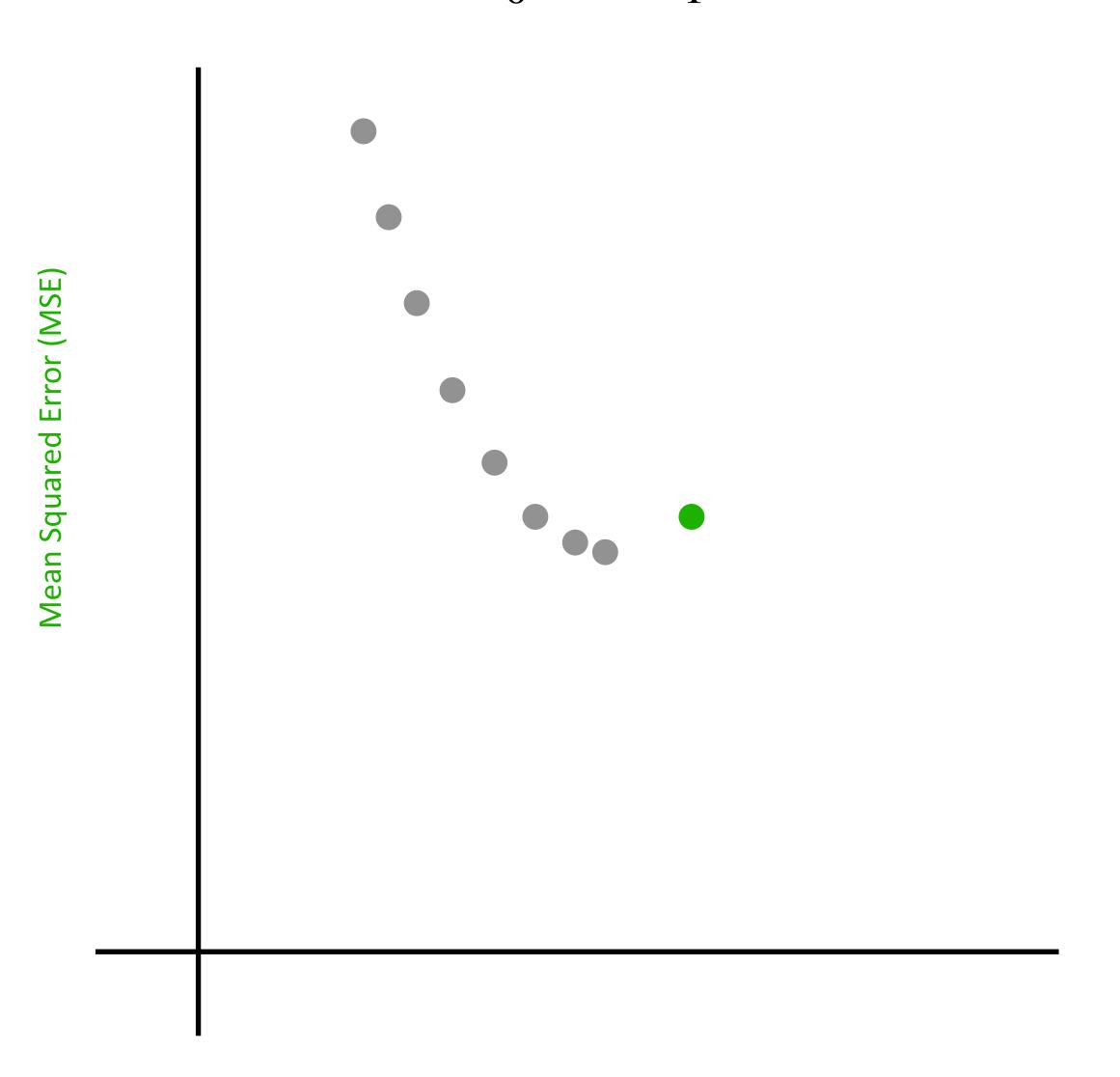


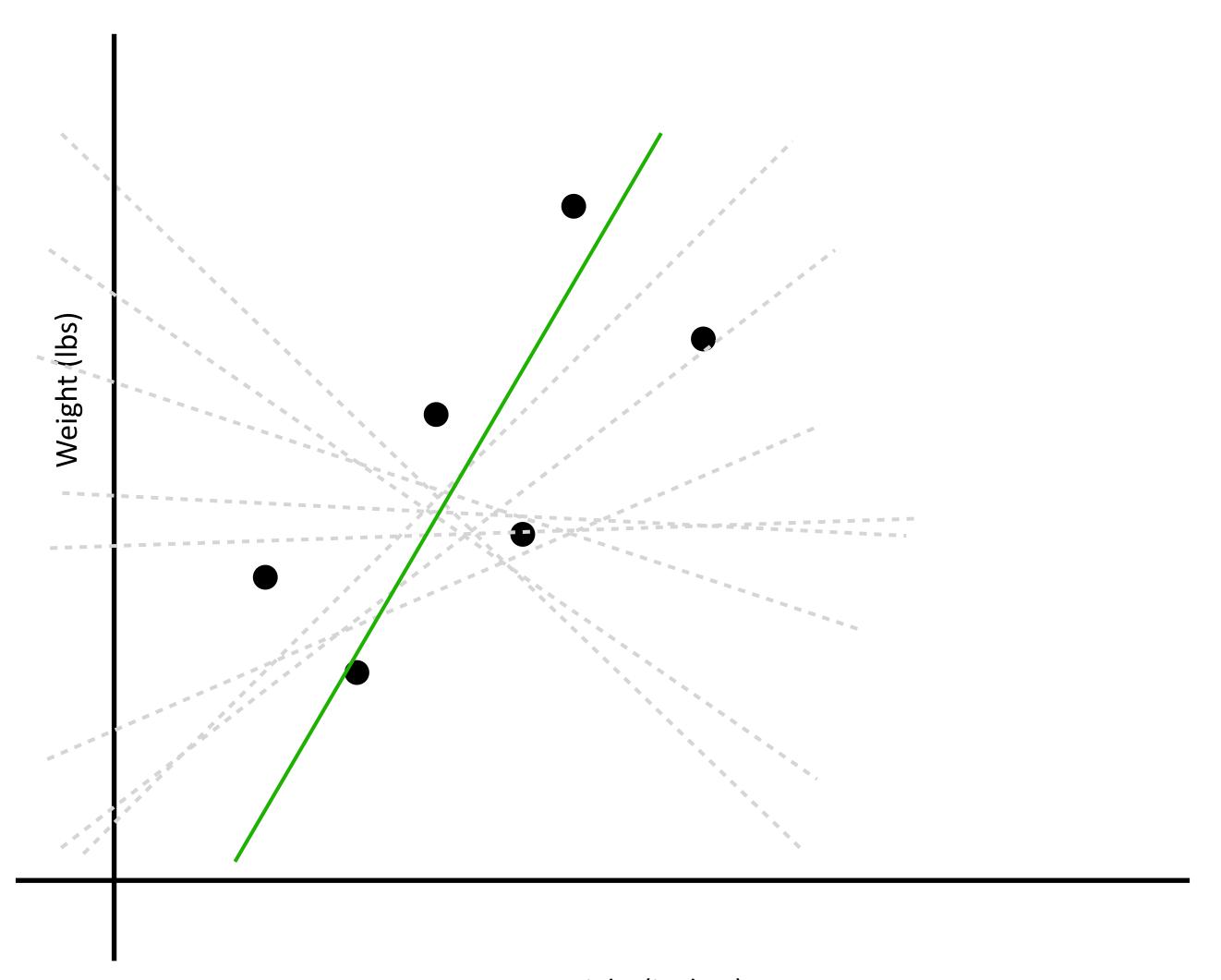
Simple Linear Regression



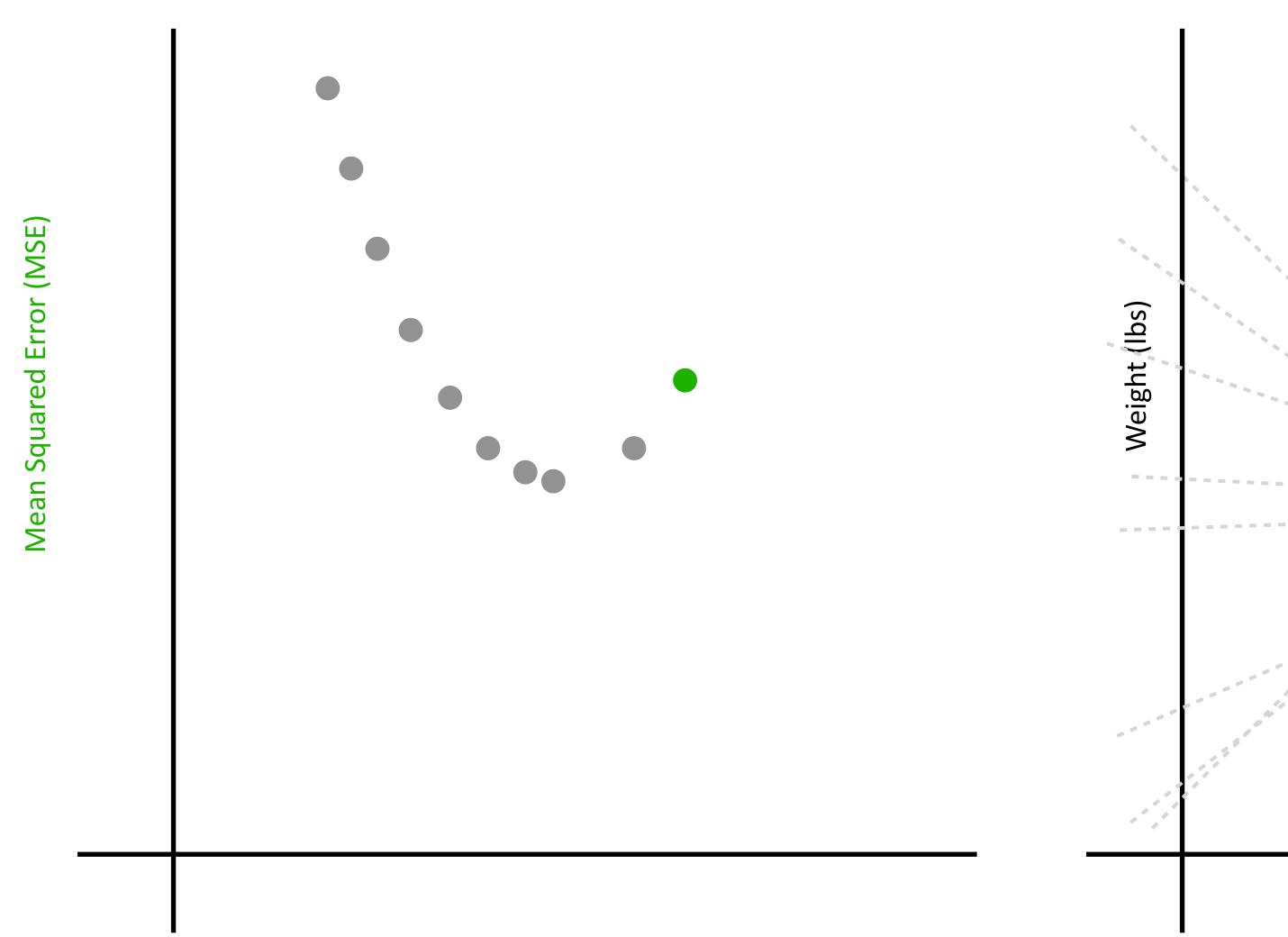


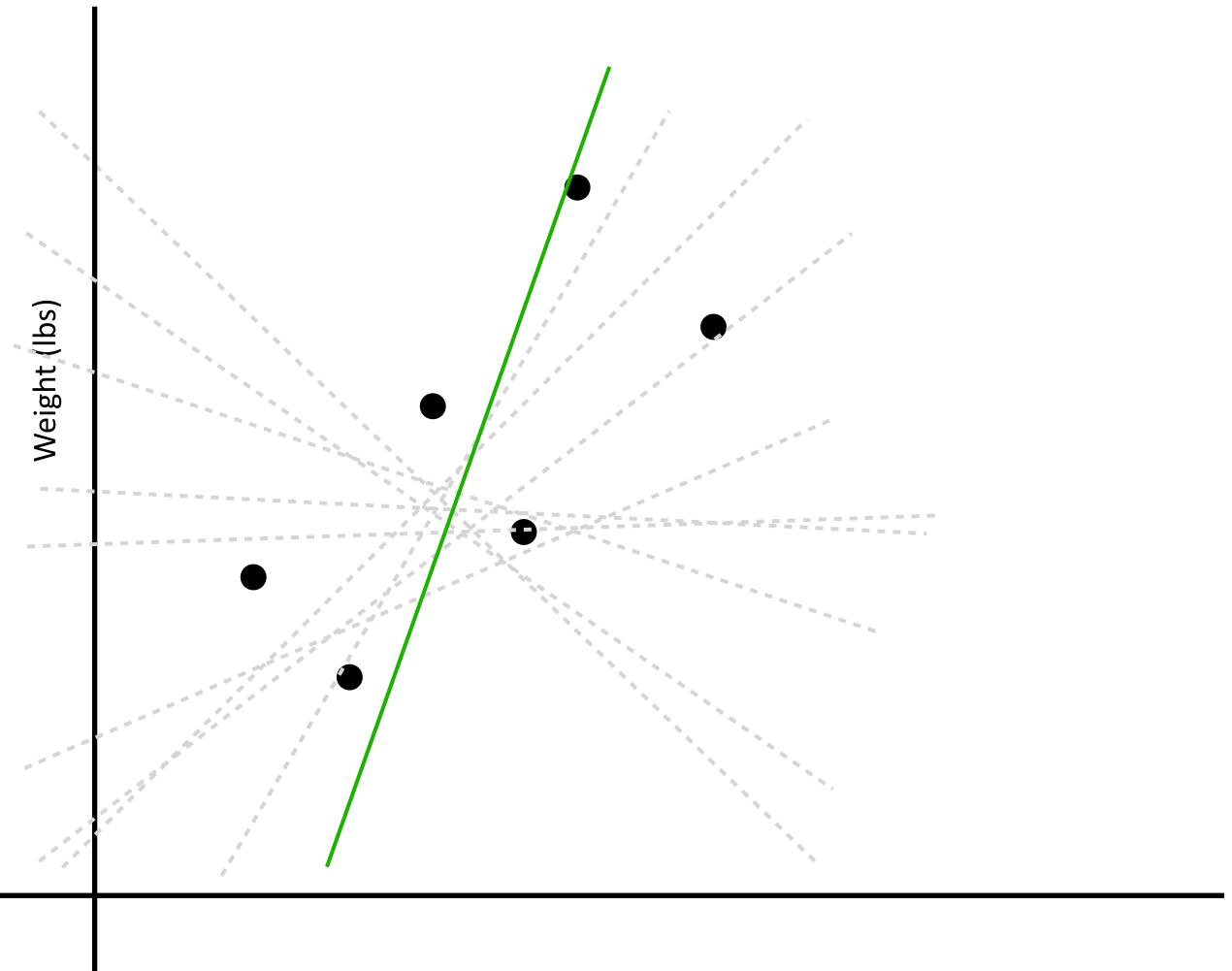
Simple Linear Regression

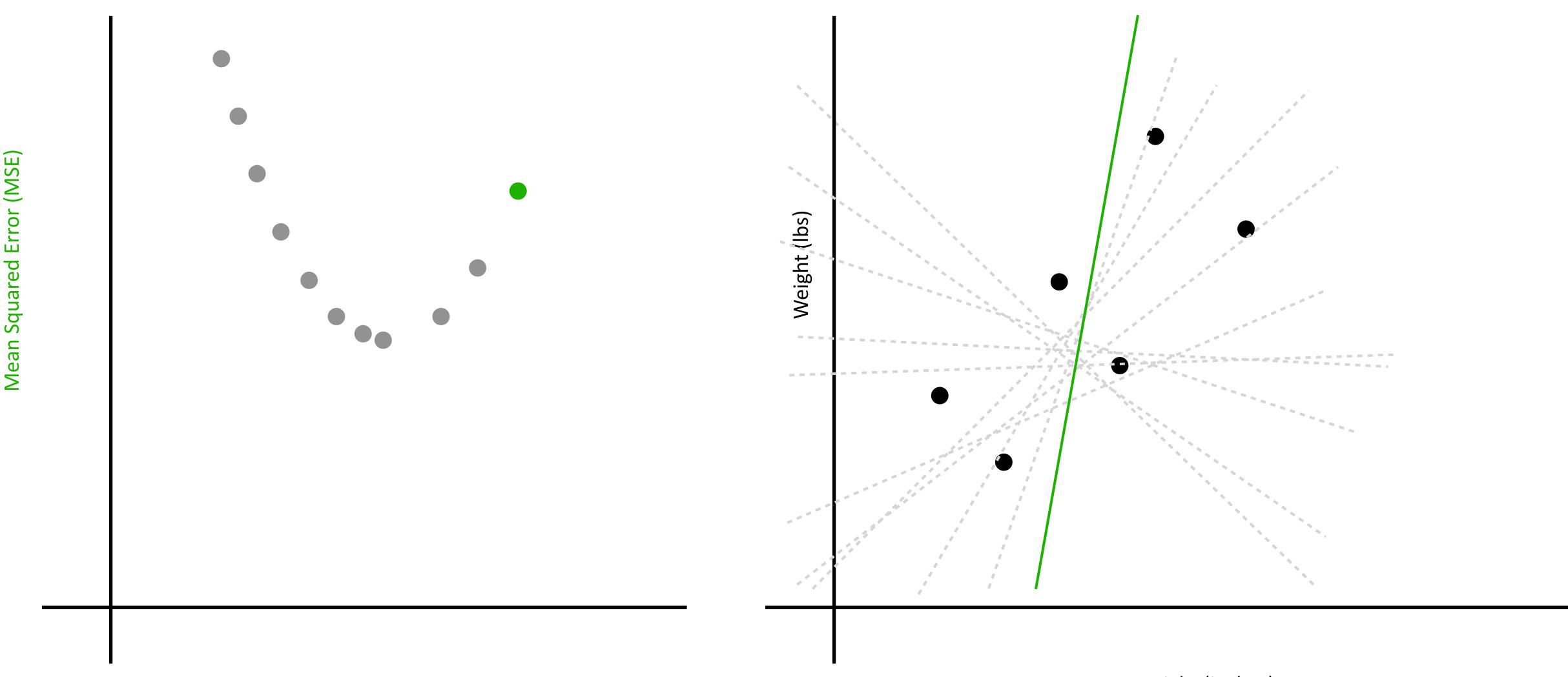


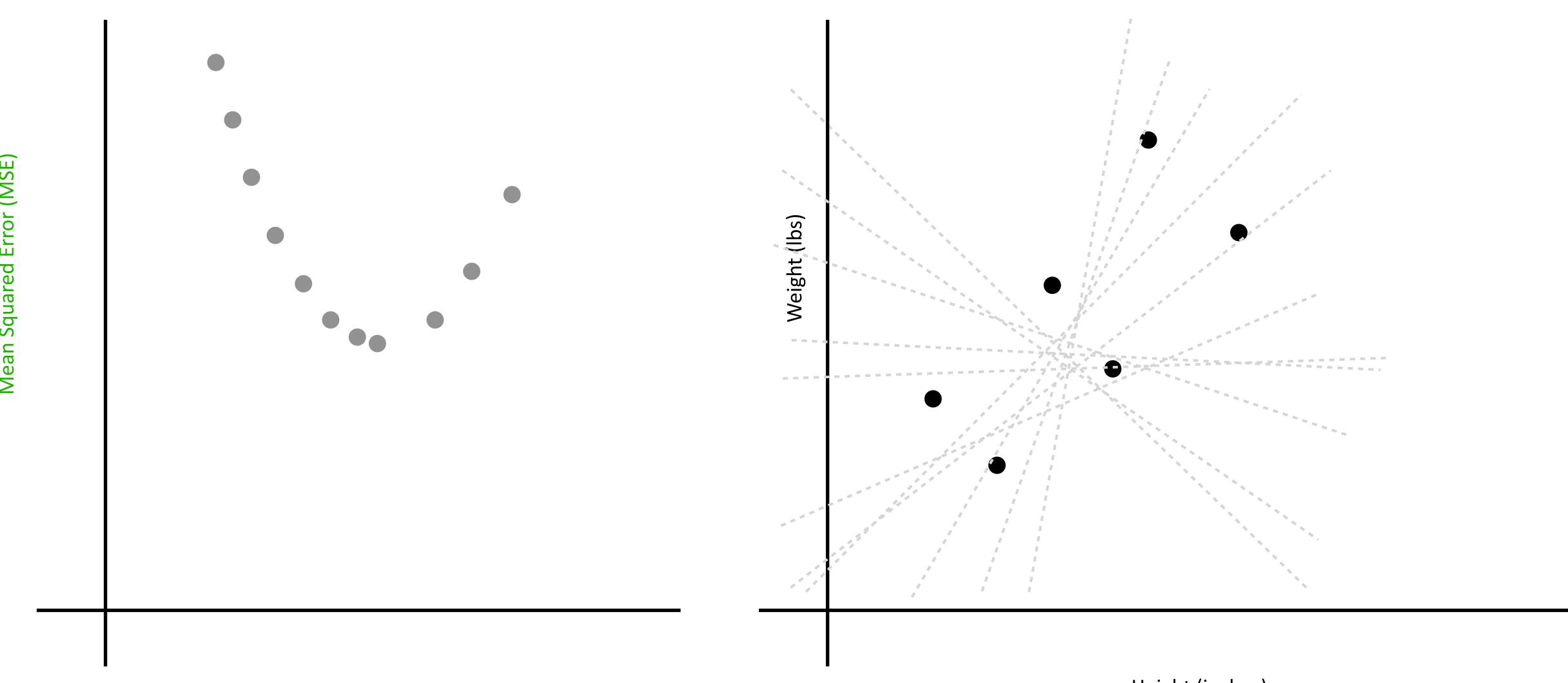


Simple Linear Regression

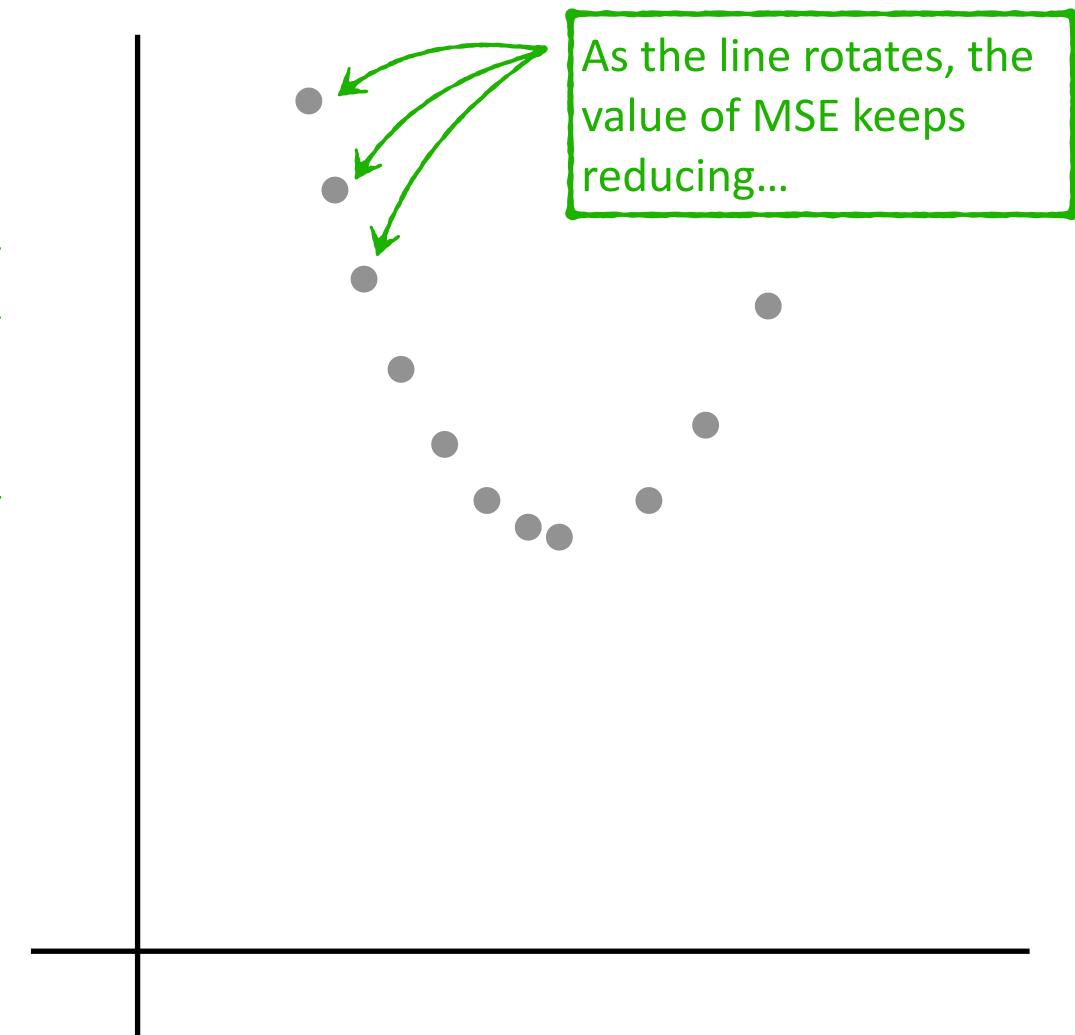






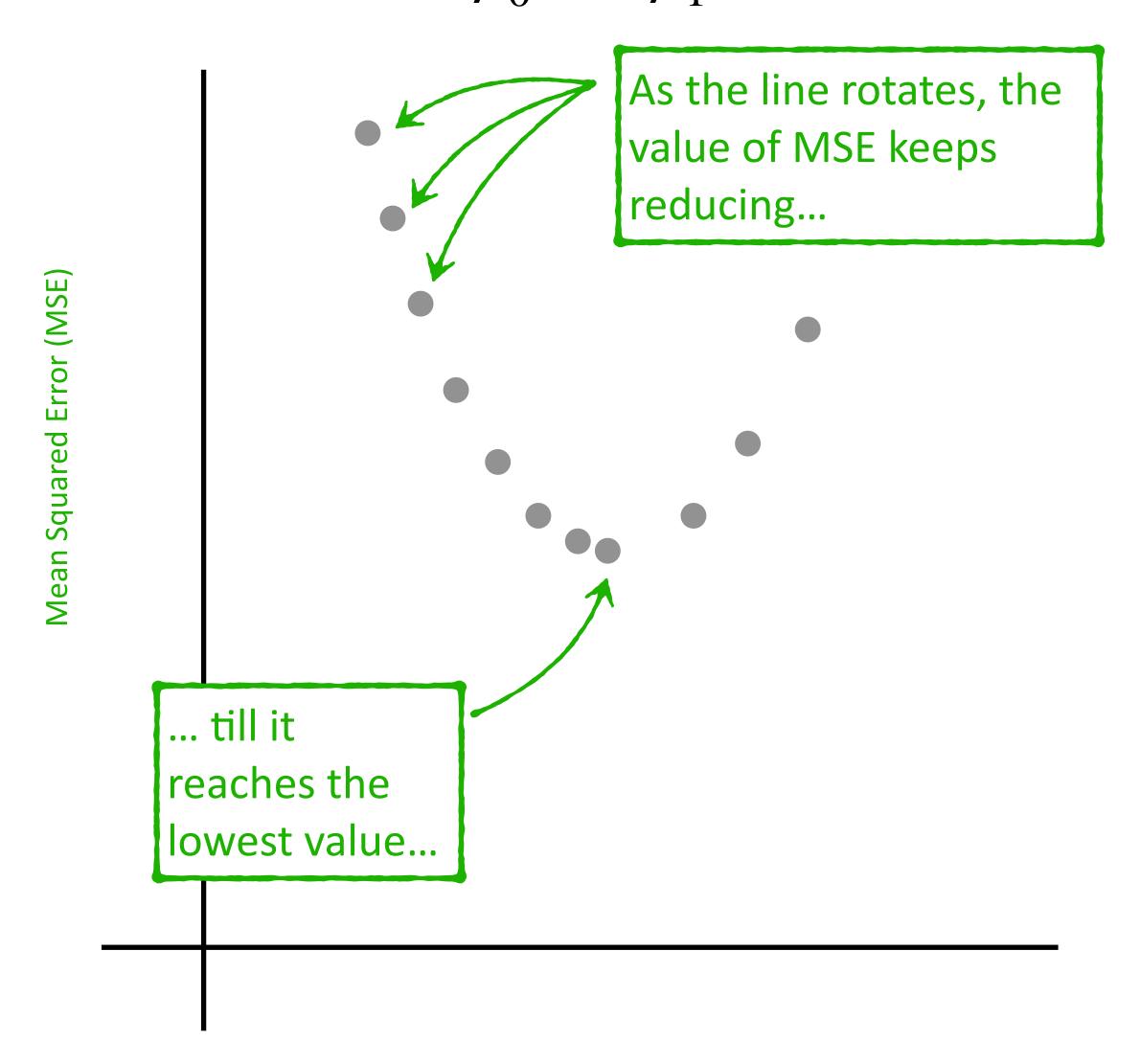


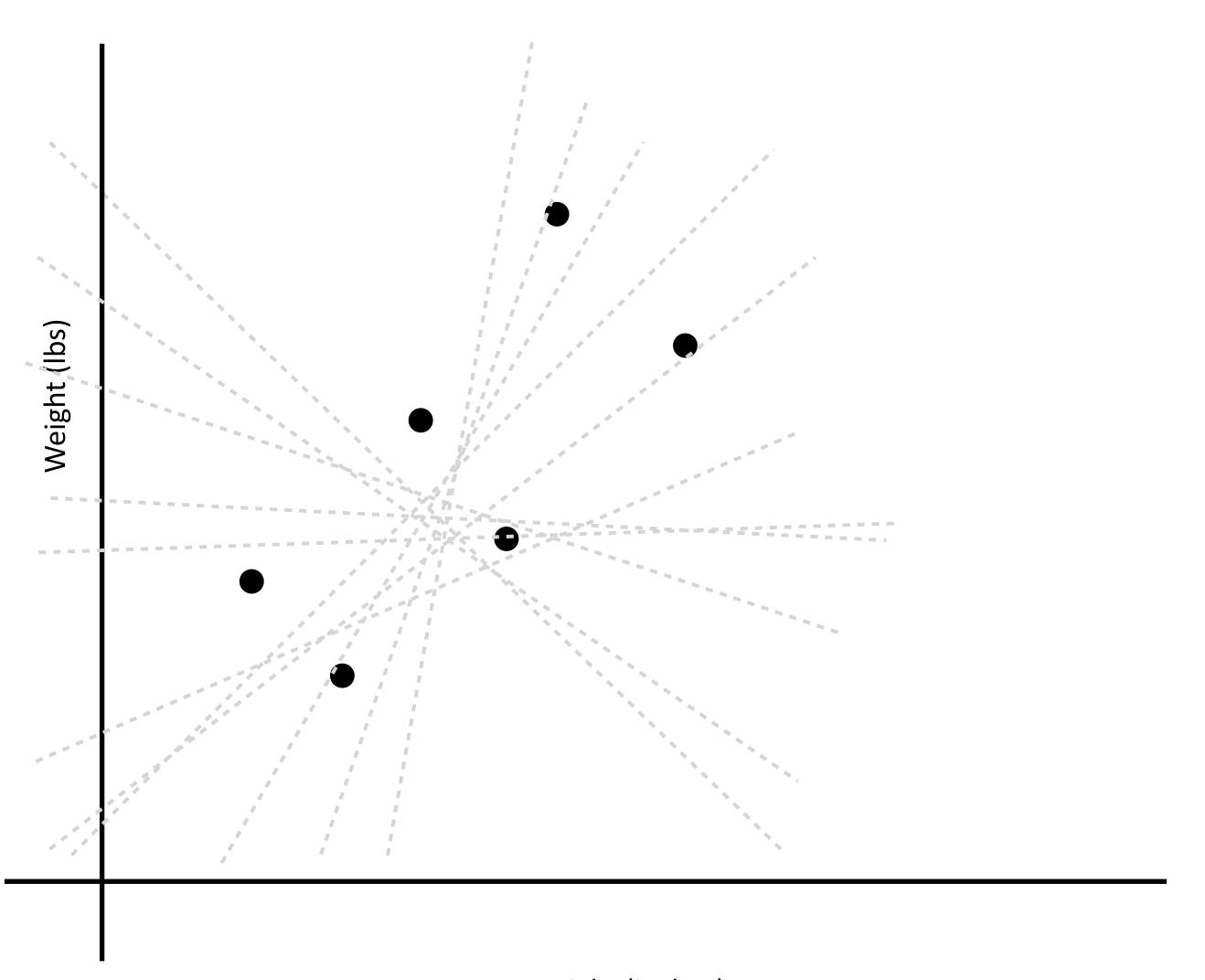
Simple Linear Regression



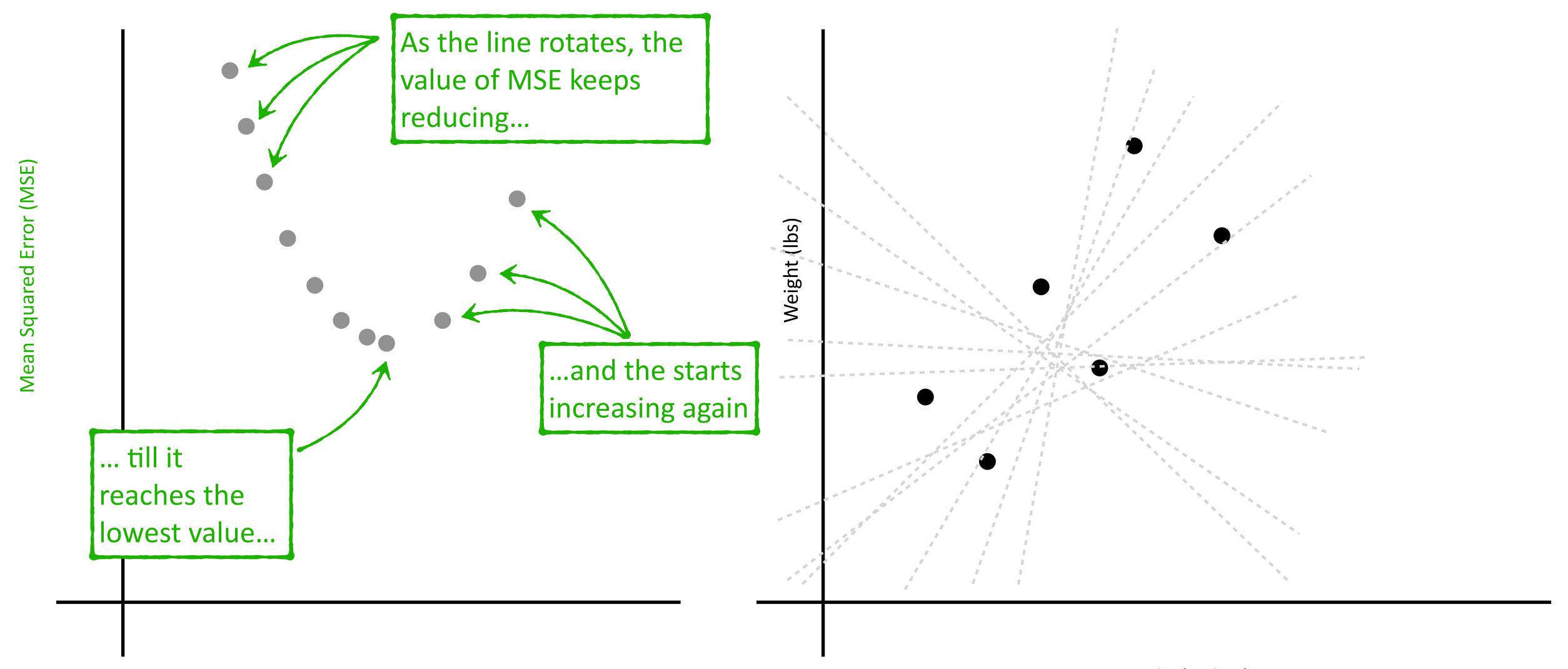


Simple Linear Regression



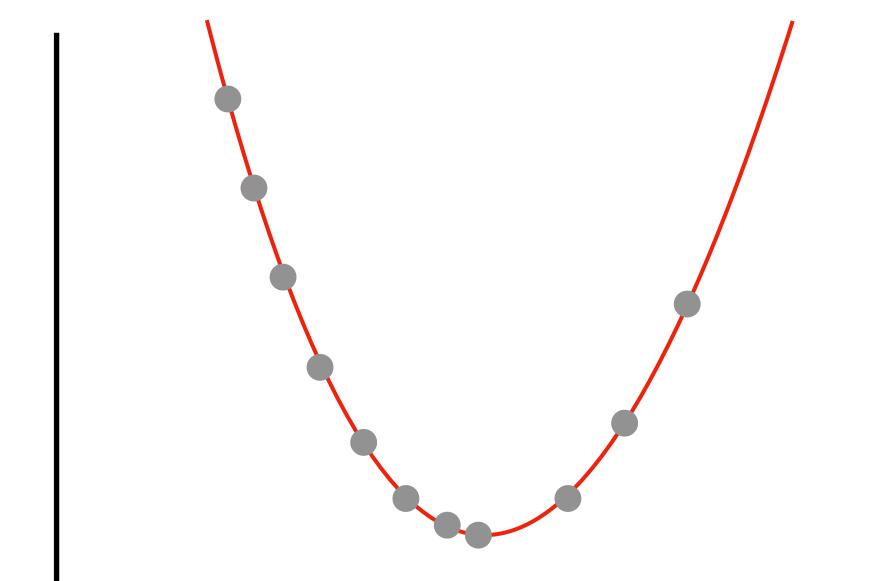


Simple Linear Regression



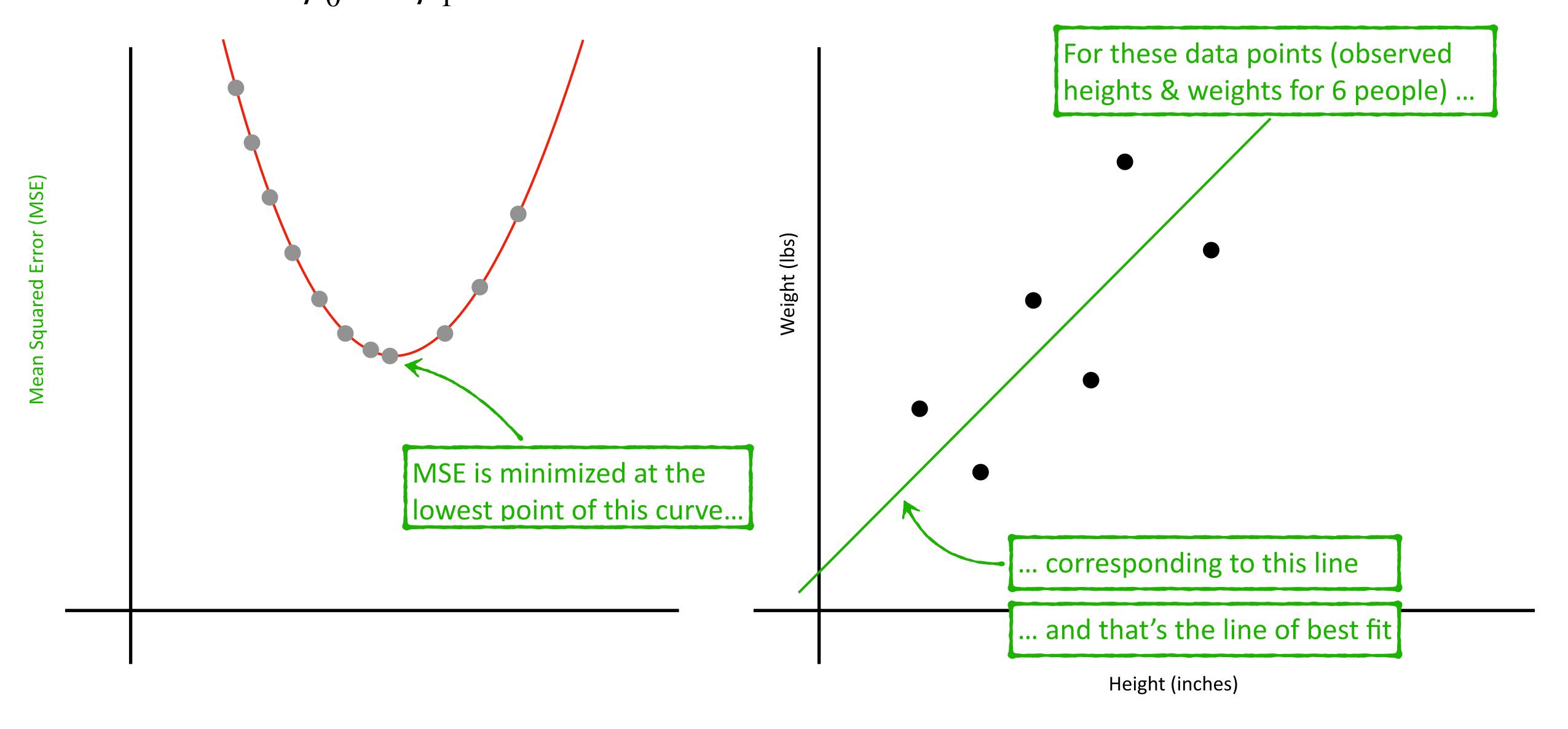
Simple Linear Regression

For these data points (observed heights & weights for 6 people) ...

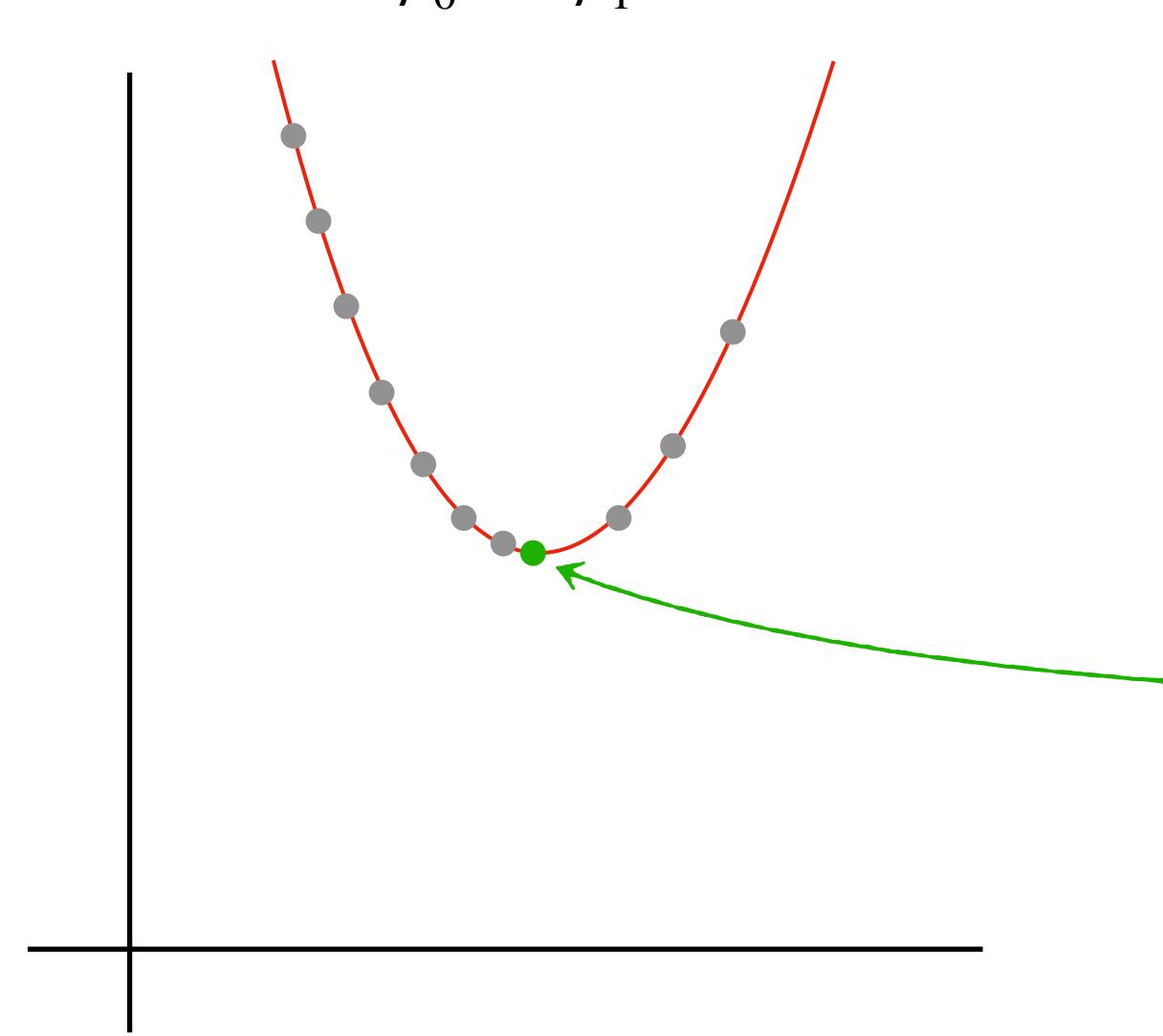


The Mean Squared Error (MSE) is

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$



Simple Linear Regression



MSE is minimized when the first derivative w.r.t β_0 and β_1 equals 0 See Tutorial on Differential Calculus

Simple Linear Regression

The Mean Squared Error (MSE) is

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \cdots eq(1)$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \cdots eq(2)$$

MSE is minimized when the first derivative w.r.t β_0 and β_1 equals 0 See Tutorial on Differential Calculus

Simple Linear Regression

The Mean Squared Error (MSE) is

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \cdots eq(1)$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \cdots eq(2)$$

Solving both equations for β_0 and β_1 we get...

MSE is minimized when the first derivative w.r.t β_0 and β_1 equals 0 See Tutorial on Differential Calculus

The Mean Squared Error (MSE) is

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\frac{\partial}{\partial \beta_0} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \cdots eq(1)$$

$$\frac{\partial}{\partial \beta_1} \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = 0 \cdots eq(2)$$

Solving both equations for β_0 and β_1 we get...

Simple Linear Regression

$$\beta_0 = \frac{\sum_{i=1}^n y_i - \beta_1 \sum_{i=1}^n x_i}{n}$$

$$\beta_1 = \frac{n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$

This is known as the **Closed Form Solution** for Simple Linear Regression

For the details on how the two equations are solved see Proof of the Closed Form Solution

Related Tutorials & Textbooks

Simple Linear Regression - Proof of the Closed Form Solution

A detailed proof of the the closed form solution of simple linear regression introduced above. This proof walks through solving two partial differential equations to compute the values of the two parameters.

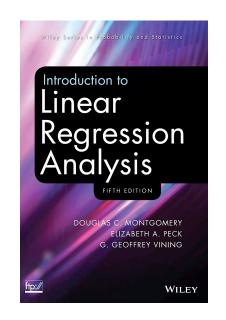
Multiple Regression [2]

Multiple regression extends the two dimensional linear model introduced in Simple Linear Regression to k+1 dimensions with one dependent variable, k independent variables and k+1 parameters.

Gradient Descent for Simple Linear Regression

An introduction to the Gradient Descent algorithm and a deep dive on how it can be used to optimize the two parameters β_0 and β_1 for Simple Linear Regression.

Recommended Textbooks



Introduction to Linear Regression Analysis

by Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

For a complete list of tutorials see:

https://arrsingh.com/ai-tutorials